Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,437)

Search Parameters:
Keywords = build-up

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 26843 KB  
Article
Investigating Soil Properties at Landslide Locations in the Eastern Cape Province, South Africa
by Jaco Kotzé, Jay Le Roux and Johan van Tol
GeoHazards 2025, 6(4), 68; https://doi.org/10.3390/geohazards6040068 (registering DOI) - 16 Oct 2025
Abstract
Landslides are a major natural hazard capable of causing severe damage to infrastructure, ecosystems, and human life. They result from complex interactions of geological, hydrological, and environmental factors, with soil properties playing a crucial role by influencing the mechanical behavior and moisture dynamics [...] Read more.
Landslides are a major natural hazard capable of causing severe damage to infrastructure, ecosystems, and human life. They result from complex interactions of geological, hydrological, and environmental factors, with soil properties playing a crucial role by influencing the mechanical behavior and moisture dynamics of slope materials that drive initiation and progression. In South Africa, few studies have examined soil influences on landslide susceptibility, and none have been conducted in the Eastern Cape Province. This study investigated the role of soil physical and chemical properties in landslide susceptibility by comparing profiles from landslide scars and stable sites in the Port St. Johns and Lusikisiki region. Samples from topsoil and subsoil horizons were analyzed for soil organic matter (SOM), cation exchange capacity (CEC), saturated hydraulic conductivity (Ksat), exchangeable sodium adsorption ratio (SARexc), and texture. Statistical analyses included the Shapiro–Wilk test to evaluate data normality. For inter-profile comparisons, Welch’s t-test was applied to normally distributed data, while the Mann–Whitney U test was used for non-normal distributions. Intra-profile differences across more than two groups were assessed using the Kruskal–Wallis test for the non-normally distributed data. Results showed that landslide-prone soils had higher SOM, CEC, and Ksat in topsoil, promoting moisture retention and rapid infiltration, which favor pore pressure build-up and slope failure. Non-landslide soils displayed higher sodium-related indices and finer textures, suggesting more uniform water retention and resilience. Vertical variation in landslide soils indicated hydraulic discontinuities, fostering perched saturation zones. Findings highlight landslide initiation as a product of interactions between hydromechanical gradients and chemical dynamics. Full article
Show Figures

Figure 1

22 pages, 1201 KB  
Article
Investigation of Waste Steel Fiber Usage Rate and Length Change on Some Fresh State Properties of 3D Printable Concrete Mixtures
by Fatih Eren Akgümüş, Hatice Gizem Şahin and Ali Mardani
Buildings 2025, 15(20), 3731; https://doi.org/10.3390/buildings15203731 - 16 Oct 2025
Abstract
In this study, the effects of waste steel fiber and high volume blast furnace slag (BFS) substitution on rheological properties, thixotropic behavior and carbon emission were investigated in order to increase the sustainability of three-dimensional (3D) printable concrete (3DPC). Cement was replaced with [...] Read more.
In this study, the effects of waste steel fiber and high volume blast furnace slag (BFS) substitution on rheological properties, thixotropic behavior and carbon emission were investigated in order to increase the sustainability of three-dimensional (3D) printable concrete (3DPC). Cement was replaced with BFS at 0%, 25%, 50% and 75% by volume, while waste steel fibers were added to the mixtures at three different lengths (5, 10, 15 mm) and volumetric ratios (0.5% and 1.0%). A total of 39 mixtures were optimized with respect to extrudability, buildability and shape stability criteria, and their rheological and thixotropic properties were characterized by a modified rheometer procedure. Results showed that 50% BFS substitution reduced dynamic yield stress and viscosity by 69% and 52%, respectively, and eliminated the need for a water-reducing admixture. 75% BFS substitution improved structural build-up (Athix) but required 6% silica fume. The fiber effect interacted with length and BFS content, with short fibers increasing rheological resistance, while the effect of long fibers decreased in mixtures with high BFS. The carbon emission assessment revealed that 75% BFS substitution provided an outstanding CO2 reduction of up to 71% compared to the control mix. These findings prove that high-volume BFS and waste fibers are an effective strategy to optimize rheological performance and environmental impact for sustainable 3D concrete printing. Full article
(This article belongs to the Special Issue 3D-Printed Technology in Buildings)
13 pages, 1543 KB  
Article
Comparative Study on Modulation of Synchronized Neuronal Activity by SK Channels and Na/K-ATPase
by Dmitry A. Sibarov, Sergei I. Boikov, Tatiana V. Karelina, Vadim V. Yushko, Alyona I. Fedorina and Sergei M. Antonov
Int. J. Mol. Sci. 2025, 26(20), 10004; https://doi.org/10.3390/ijms262010004 - 14 Oct 2025
Abstract
Drug-resistant epilepsy remains a therapeutic challenge, requiring new molecular targets beyond conventional antiepileptic drugs. Small-conductance calcium-activated potassium (SK) channels and Na/K-ATPase (NKA) contribute to afterhyperpolarization via distinct mechanisms, offering complementary ways to suppress hyperexcitability. We examined SK activation and NKA modulation in synchronized [...] Read more.
Drug-resistant epilepsy remains a therapeutic challenge, requiring new molecular targets beyond conventional antiepileptic drugs. Small-conductance calcium-activated potassium (SK) channels and Na/K-ATPase (NKA) contribute to afterhyperpolarization via distinct mechanisms, offering complementary ways to suppress hyperexcitability. We examined SK activation and NKA modulation in synchronized epileptiform activity in a primary culture of cortical neurons obtained from rat embryos. Epileptiform discharges were induced by magnesium-free solution and assessed by patch-clamp and calcium imaging. The SK2/3 activator CyPPA (10 µM) reduced epileptiform current (EC) amplitude and integral and decreased synchronized calcium transient (CT) frequency but gradually elevated basal calcium. In contrast, ouabain (1 nM), a selective modulator of high-affinity NKA isoforms, attenuated EC amplitude, strongly suppressed CTs, and showed persistent effects after washout, accompanied by asynchronous glial calcium activity. Co-application of CyPPA with ouabain abolished CyPPA-induced calcium elevation while maintaining suppression of neuronal synchrony. The broader SK/IK activator NS309 (10 µM) reduced CT frequency and basal calcium without affecting glia. Thus, SK activation and NKA signaling suppress epileptiform synchronization through distinct yet convergent pathways: SK channels via afterhyperpolarization and NKA via afterhyperpolarization and calcium-dependent signaling. Their combination enhances efficacy and prevents adverse calcium buildup, supporting SK–NKA co-targeting as a strategy against drug-resistant epilepsy. Full article
(This article belongs to the Special Issue Advances in Epilepsy and Antiepileptic Drugs, 3rd Edition)
Show Figures

Figure 1

22 pages, 6300 KB  
Article
Understanding the Colloidal and Hydration Control in Rheological Evolution of 3D Printed MgO-SiO2-K2HPO4 Gel System
by Xianhuan Cai, Fan Chen, Zhihui Zhao, Peng Xiao and Yujuan Zhang
Gels 2025, 11(10), 827; https://doi.org/10.3390/gels11100827 (registering DOI) - 14 Oct 2025
Abstract
Monitoring the time-dependent rheological properties of 3D printed MgO-SiO2-K2HPO4 is critical for optimizing the dynamic structural reconstruction ability. The collaborative analysis for the contribution of colloidal force based on EDLVO theory and the volume fraction of K-struvite (MgKPO [...] Read more.
Monitoring the time-dependent rheological properties of 3D printed MgO-SiO2-K2HPO4 is critical for optimizing the dynamic structural reconstruction ability. The collaborative analysis for the contribution of colloidal force based on EDLVO theory and the volume fraction of K-struvite (MgKPO4·6H2O) was conducted. Results showed that 20% silica fume (SF) was identified as the optimal content to achieve balanced rheo-mechanical performance (28 d compressive strength = 113.63 MPa, dynamic yield stress = 359.98 Pa, thixotropic area = 2.14 × 104 Pa/s). The static yield stress development within 50 min exhibited two distinct stages: the initial rapid linear growth stage (Stage I, 5–30 min) dominated by colloidal forces (R2 = 0.81 at 20% SF), followed by the slow increased plateau (Stage II, 30–50 min) correlated with K-struvite volume fraction. Also, dual crystallization pathways of K-struvite included direct precipitation from supersaturated Mg2+, K+, PO43− ionic species and transformation from potassium-deficient phosphate phase. Quantitative results establish a predictive framework for microstructural construction, enabling precise control of structural build-up and 3D printability in MgO-SiO2-K2HPO4 cementitious composites. Full article
(This article belongs to the Special Issue Rheological Properties and Applications of Gel-Based Materials)
Show Figures

Graphical abstract

23 pages, 9577 KB  
Article
Polarity-Dependent DC Dielectric Behavior of Virgin XLPO, XLPE, and PVC Cable Insulations
by Khomsan Ruangwong, Norasage Pattanadech and Pittaya Pannil
Energies 2025, 18(20), 5404; https://doi.org/10.3390/en18205404 - 14 Oct 2025
Abstract
Reliable DC cable insulation is crucial for photovoltaic (PV) systems and high-voltage DC (HVDC) networks. However, conventional materials such as cross-linked polyethylene (XLPE) and polyvinyl chloride (PVC) face challenges under prolonged DC stress—notably space charge buildup, dielectric losses, and thermal aging. Cross-linked polyolefin [...] Read more.
Reliable DC cable insulation is crucial for photovoltaic (PV) systems and high-voltage DC (HVDC) networks. However, conventional materials such as cross-linked polyethylene (XLPE) and polyvinyl chloride (PVC) face challenges under prolonged DC stress—notably space charge buildup, dielectric losses, and thermal aging. Cross-linked polyolefin (XLPO) has emerged as a halogen-free, thermally stable alternative, but its comparative DC performance remains underreported. Methods: We evaluated the insulations of virgin XLPO, XLPE, and PVC PV cables under ±1 kV DC using time-domain indices (IR, DAR, PI, Loss Index), supported by MATLAB and FTIR. Multi-layer cable geometries were modeled in MATLAB to simulate radial electric field distribution, and Fourier-transform infrared (FTIR) spectroscopy was employed to reveal polymer chemistry and functional groups. Results: XLPO exhibited an IR on the order of 108–109 Ω, and XLPE (IR ~ 108 Ω) and PVC (IR ~ 107 Ω, LI ≥ 1) at 60 s, with favorable polarization indices under both polarities. Notably, they showed high insulation resistance and low-to-moderate loss indices (≈1.3–1.5) under both polarities, indicating controlled relaxation with limited conduction contribution. XLPE showed good initial insulation resistance but revealed polarity-dependent relaxation and higher loss (especially under positive bias) due to trap-forming cross-linking byproducts. PVC had the lowest resistance (GΩ-range) and near-unit DAR/PI, dominated by leakage conduction and dielectric losses. Simulations confirmed a uniform electric field in XLPO insulation with no polarity asymmetry, while FTIR spectra linked XLPO’s low polarity and PVC’s chlorine content to their electrical behavior. Conclusions: XLPO outperforms XLPE and PVC in resisting DC leakage, charge trapping, and thermal stress, underscoring its suitability for long-term PV and HVDC applications. This study provides a comprehensive structure–property understanding to guide the selection of advanced, polarity-resilient cable insulation materials. Full article
Show Figures

Figure 1

19 pages, 1784 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Viewed by 149
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

10 pages, 966 KB  
Article
Application of Treated Wastewater for Cultivation of Marigold Roses (Tagetes erecta) in a Semi-Arid Climate in Palestine
by Abdelhaleem Khader, Tareq Abubaker, Issam A. Al-Khatib and Yung-Tse Hung
Water 2025, 17(20), 2921; https://doi.org/10.3390/w17202921 - 10 Oct 2025
Viewed by 267
Abstract
Local communities in many parts of the West Bank, Palestine have very limited water resources available for irrigation. In addition, since these communities are traditionally agricultural communities, water shortage and the lack of innovation in the agricultural sector led to loss of jobs [...] Read more.
Local communities in many parts of the West Bank, Palestine have very limited water resources available for irrigation. In addition, since these communities are traditionally agricultural communities, water shortage and the lack of innovation in the agricultural sector led to loss of jobs in this sector. This in turn led young people to start looking for jobs in different sectors and even increased migration to urban centers. The reuse of treated wastewater can provide a viable solution to irrigation water shortage. It can help in creating jobs in the marginalized communities in the West Bank, especially in areas under full Israeli control (Area C according to the Oslo Accord). Furthermore, it is important to select crops that can resist the effects of climate change and create revenue for the farmers at the same time. In this research, we studied the impact of irrigating marigold (Tagetes erecta), which is a flower plant commonly used in the Palestinian market, with treated wastewater from the Nablus West Wastewater Treatment Plant (NWWTP). The quality of the treated wastewater, as indicated by parameters such as COD, BOD5, pH, EC, and TSS, shows its suitability for agricultural reuse. With low levels of organic matter, a near-neutral pH, and minimal suspended solids, the water poses minimal environmental risks and is ideal for irrigation, though monitoring for salinity buildup is necessary. Twenty-six marigold plants were planted, half of them were irrigated with the treated wastewater and the other half with tap water. Observations of length, number of roses, rose size, days to flower, and flowering days were recorded for both cases. The statistical analysis of the results shows that there is no significant difference between marigolds irrigated with treated wastewater and those treated with tap water, in terms of Plant Height, Rose Number and Rose Diameter. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment, 4th Edition)
Show Figures

Figure 1

10 pages, 1225 KB  
Article
Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study
by Öznur Eraslan, Mukadder İnci Başer Kolcu, Oğuz Eraslan and Sema Belli
Biomimetics 2025, 10(10), 674; https://doi.org/10.3390/biomimetics10100674 - 7 Oct 2025
Viewed by 376
Abstract
Purpose: This study aimed to evaluate the effect of different coronal restoration methods on stresses in immature central incisors with regenerative endodontic treatment and excessive loss of coronal structure. Methods: A three-dimensional (3D) Finite Element Analysis (FEA) model of a maxillary central incisor [...] Read more.
Purpose: This study aimed to evaluate the effect of different coronal restoration methods on stresses in immature central incisors with regenerative endodontic treatment and excessive loss of coronal structure. Methods: A three-dimensional (3D) Finite Element Analysis (FEA) model of a maxillary central incisor treated with a 3 mm MTA coronal plug after regenerative endodontic treatment was created. Six different models were simulated: (1) intact immature tooth (control), (2) direct composite resin build-up, (3) fibre-reinforced composite build-up, (4) hybrid ceramic endocrown, (5) LiSi ceramic endocrown, and (6) endocore and ceramic crown restoration. Analyses were performed with SolidWorks/CosmosWorks, and a 150 N load was applied at a 135° angle. Results: Maximum tensile stresses were concentrated in the cervical region (4.577 MPa). Direct composite and fibre-reinforced restorations showed high stress in root dentin (3.891 and 3.841 MPa, respectively). The endocore/ceramic crown restoration (1.578 MPa) provided the closest stress distribution to the natural tooth (1.322 MPa). Conclusions: The biomechanical performance of the restoration–tooth complex depends on both the restorative material and the restoration design. In immature teeth undergoing regenerative endodontic treatment, the most biomechanically favourable restoration option was an endocore/ceramic crown. Full article
Show Figures

Figure 1

24 pages, 2338 KB  
Article
Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters
by Małgorzata Rajfur, Paweł Świsłowski, Tymoteusz Turlej, Oznur Isinkaralar, Kaan Isinkaralar, Sara Almasi, Arianna Callegari and Anca-Iulia Stoica
Molecules 2025, 30(19), 4009; https://doi.org/10.3390/molecules30194009 - 7 Oct 2025
Viewed by 455
Abstract
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, [...] Read more.
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum mosses. The experimental campaign took place from August 2021 to February 2022, spanning the autumn and winter seasons. PAH concentrations were measured using gas chromatography–mass spectrometry (GC-MS) following methodical sample extraction protocols. Filters documented transient air changes in PAHs, particularly high-molecular-weight (HMW) components such as benzo[a]pyrene (BaP), which exhibited considerable increases during the colder months due to heightened heating activities and less dispersion. The size of particles deposited on the filters varied from 0.16 to 73.6 μm, with an average size of 0.71 μm. Mosses exhibited cumulative uptake trends, with D. polysetum showing the greatest bioaccumulation efficiency, particularly for low- and medium-molecular-weight PAHs, followed by P. schreberi and S. fallax. Meteorological indices, including sun radiation and air temperature, demonstrated significant negative relationships with PAH buildup in mosses. Diagnostic ratio analysis verified primarily pyrogenic sources (e.g., fossil fuel burning), although petrogenic contributions were detected in D. polysetum, indicating its increased sensitivity to evaporative emissions. The study shows that the integration of moss biomonitoring with traditional filter samples provides a strong, complementary framework for assessing air quality, particularly in fluctuating meteorological settings. The results advocate for the integration of moss-based methodologies into environmental monitoring initiatives and provide significant insights into contaminant dynamics influenced by seasonal and meteorological factors. Full article
Show Figures

Figure 1

24 pages, 13326 KB  
Review
Applications of Heat Pipes in Thermal Management
by Milan Malcho, Jozef Jandačka, Richard Lenhard, Katarína Kaduchová and Patrik Nemec
Energies 2025, 18(19), 5282; https://doi.org/10.3390/en18195282 - 5 Oct 2025
Viewed by 433
Abstract
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, [...] Read more.
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, alcohol, ammonia) between the evaporator and the condenser, while they have no moving parts and are distinguished by their simplicity of construction. Different types of heat pipes—gravity, capillary, and closed loop (thermosiphon loop)—are suitable according to specific applications and requirements for the working position, temperature range, and condensate return transport. An example of an effective application is the removal of heat from the internal winding of a static energy converter transformer, where the use of a gravity heat pipe has enabled effective cooling even through epoxy insulation and kept the winding temperature below 80 °C. Other applications include the cooling of mounting plates, power transistors, and airtight cooling of electrical enclosures with the ability to dissipate lost thermal power in the order of 102 to 103 W. A significant advantage of heat pipes is also the ability to dust-tightly seal equipment and prevent the build-up of dirt, thereby increasing the reliability of the electronics. In the field of environmental technology, systems have been designed to reduce the radiant power of fireplace inserts by up to 40%, or to divert their heat output of up to about 3 kW into hot water storage tanks, thus optimising the use of the heat produced and preventing overheating of the living space. The use of nanoparticles in the working substances (e.g., Al2O3 in water) makes it possible to intensify the boiling process and thus increase the heat transfer intensity by up to 30% compared to pure water. The results of the presented research confirm the versatility and high efficiency of the use of heat pipes for modern cooling requirements in electronics and environmental engineering. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

17 pages, 1484 KB  
Article
Insights from Metabolomics Profiling of MSUD in Pediatrics Toward Disease Progression
by Abeer Z. Alotaibi, Reem H. AlMalki, Rajaa Sebaa, Maha Al Mogren, Mohammad Alanazi, Khalid M. Sumaily, Ahmad Alodaib, Ahmed H. Mujamammi, Minnie Jacob, Essa M. Sabi, Ahmad Alfares and Anas M. Abdel Rahman
Metabolites 2025, 15(10), 658; https://doi.org/10.3390/metabo15100658 - 4 Oct 2025
Viewed by 540
Abstract
Background: Maple syrup urine disease (MSUD) is a genetic disorder caused by mutations in the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, leading to toxic buildup of branched-chain amino acids (BCAAs) and their ketoacid derivatives. While newborn screening (NBS) and molecular testing are standard diagnostic [...] Read more.
Background: Maple syrup urine disease (MSUD) is a genetic disorder caused by mutations in the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, leading to toxic buildup of branched-chain amino acids (BCAAs) and their ketoacid derivatives. While newborn screening (NBS) and molecular testing are standard diagnostic tools, they face challenges such as delayed results and false positives. Untargeted metabolomics has emerged as a complementary approach, offering comprehensive metabolic profiling and potential for novel biomarker discovery. We previously applied untargeted metabolomics to neonates with MSUD, identifying distinct metabolic signatures. Objective: This follow-up study investigates metabolic changes and biomarkers in pediatric MSUD patients and explores shared dysregulated metabolites between neonatal and pediatric MSUD. Methods: Dried blood spot (DBS) samples from pediatric MSUD patients (n = 14) and matched healthy controls (n = 14) were analyzed using LC/MS-based untargeted metabolomics. Results: In pediatric MSUD, 3716 metabolites were upregulated and 4038 downregulated relative to controls. Among 1080 dysregulated endogenous metabolites, notable biomarkers included uric acid, hypoxanthine, and bilirubin diglucuronide. Affected pathways included sphingolipid, glycerophospholipid, purine, pyrimidine, nicotinate, and nicotinamide metabolism, and steroid hormone biosynthesis. Seventy-two metabolites overlapped with neonatal MSUD cases, some exhibiting inverse trends between age groups. Conclusion: Untargeted metabolomics reveals that the metabolic profiling of MCUD pediatric patients different from that of their controls. Also, there are valuable age-specific and shared metabolic alterations in MSUD, enhancing the understanding of disease progression in MSUD patients. This supports its utility in improving diagnostic precision and developing personalized treatment strategies across developmental stages. Full article
Show Figures

Figure 1

27 pages, 27373 KB  
Article
Computational Analysis of a Towed Jumper During Static Line Airborne Operations: A Parametric Study Using Various Airdrop Configurations
by Usbaldo Fraire, Mehdi Ghoreyshi, Adam Jirasek, Keith Bergeron and Jürgen Seidel
Aerospace 2025, 12(10), 897; https://doi.org/10.3390/aerospace12100897 - 3 Oct 2025
Viewed by 252
Abstract
This study uses the CREATETM-AV/Kestrel simulation software to model a towed jumper scenario using standard aircraft settings to quantify paratrooper stability and risk of contact during static line airborne operations. The focus areas of this study include a review of the [...] Read more.
This study uses the CREATETM-AV/Kestrel simulation software to model a towed jumper scenario using standard aircraft settings to quantify paratrooper stability and risk of contact during static line airborne operations. The focus areas of this study include a review of the technical build-up, which includes aircraft, paratrooper and static line modeling, plus preliminary functional checkouts executed to verify simulation performance. This research and simulation development effort is driven by the need to meet the analysis demands required to support the US Army Personnel Airdrop with static line length studies and the North Atlantic Treaty Organization (NATO) Joint Airdrop Capability Syndicate (JACS) with airdrop interoperability assessments. Each project requires the use of various aircraft types, static line lengths and exit procedures. To help meet this need and establish a baseline proof of concept (POC) simulation, simulation setups were developed for a towed jumper from both the C-130J and C-17 using a 20-ft static line to support US Army Personnel Airdrop efforts. Concurrently, the JACS is requesting analysis to support interoperability testing to help qualify the T-11 parachute from an Airbus A400M Atlas aircraft, operated by NATO nations. Due to the lack of an available A400M geometry, the C-17 was used to demonstrate the POC, and plans to substitute the geometry are in order when it becomes available. The results of a nominal Computational Fluid Dynamics (CFD) simulation run using a C-17 and C-130J will be reviewed with a sample of the output to help characterize performance differences for the aircraft settings selected. The US Army Combat Capabilities Development Command Soldier Center (DEVCOM-SC) Aerial Delivery Division (ADD) has partnered with the US Air Force Academy (USAFA) High Performance Computing Research Center (HPCRC) to enable Modeling and Simulation (M&S) capabilities that support the Warfighter and NATO airdrop interoperability efforts. Full article
(This article belongs to the Special Issue Advancing Fluid Dynamics in Aerospace Applications)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Viewed by 292
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

26 pages, 6412 KB  
Article
Optimized Charging Strategy for Lithium-Ion Battery Based on Improved MFO Algorithm and Multi-State Coupling Model
by Shuangming Duan and Linglong Chen
World Electr. Veh. J. 2025, 16(10), 565; https://doi.org/10.3390/wevj16100565 - 2 Oct 2025
Viewed by 345
Abstract
In lithium-ion battery charging, balancing charging speed with efficiency and state of health (SOH) is paramount. First, a multi-state electric-thermal-aging coupling model was developed to accurately reflect battery operating conditions. Second, a voltage-based multi-stage constant current-constant voltage (VMCC-CV) strategy was implemented, incorporating an [...] Read more.
In lithium-ion battery charging, balancing charging speed with efficiency and state of health (SOH) is paramount. First, a multi-state electric-thermal-aging coupling model was developed to accurately reflect battery operating conditions. Second, a voltage-based multi-stage constant current-constant voltage (VMCC-CV) strategy was implemented, incorporating an innovative V-SOC-Rint conversion mechanism—integrating voltage, state of charge (SOC), and internal resistance—to effectively mitigate thermal buildup during transitions. To optimize the VMCC-CV currents, an innovative enhancement was applied to the moth-flame optimization (MFO) algorithm, demonstrating superior performance over its traditional counterpart across diverse charging scenarios. Finally, three practical strategies were devised: rapid charging, multi-objective balanced charging, and enhanced safety performance charging. Relative to the manufacturer’s 0.75 C-CCCV protocol, the balanced strategy significantly accelerates charging, reducing time by 34.11%, while sustaining 93.54% efficiency and limiting SOH degradation to 0.006856%. Compared to conventional CCCV methods, the proposed approach offers greater versatility and applicability in varied real-world scenarios. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

17 pages, 11223 KB  
Article
Hydrocarbon-Bearing Hydrothermal Fluid Migration Adjacent to the Top of the Overpressure Zone in the Qiongdongnan Basin, South China Sea
by Dongfeng Zhang, Ren Wang, Hongping Liu, Heting Huang, Xiangsheng Huang and Lei Zheng
Appl. Sci. 2025, 15(19), 10587; https://doi.org/10.3390/app151910587 - 30 Sep 2025
Viewed by 176
Abstract
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by [...] Read more.
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by a combination of undercompaction and clay diagenesis. In contrast, the deeper high-pressure compartment results from hydrocarbon gas generation. Numerical pressure modeling indicates late-stage (post-5 Ma) development of significant overpressure within the deep compartment. It is proposed that accelerated subsidence in the Pliocene-Quaternary initiated substantial gas generation, thereby promoting the formation of the deep overpressured system. Multiple organic maturation parameters, combined with fluid inclusion microthermometry, reveal a thermal anomaly adjacent to the upper boundary of the deep overpressured zone. This anomaly indicates vertical transport of hydrothermal fluids ascending from the underlying high-pressure zone. Laser Raman spectroscopy confirms the presence of both hydrocarbons and carbon dioxide within these migrating fluids. Integration of fluid inclusion thermometry with burial history modeling constrains the timing of hydrocarbon-carrying fluid charge to the interval from 4.2 Ma onward, synchronous with modeled peak gas generation and a phase of pronounced overpressure buildup. We propose that upon exceeding the fracture gradient threshold, fluid pressure triggered upward migration of deeply sourced, hydrocarbon-enriched fluids through hydrofracturing pathways. This process led to localized dissolution and fracturing near the top of the deep overpressured system, while simultaneously facilitating significant hydrocarbon accumulation and forming preferential accumulation zones. These findings provide critical insights into petroleum exploration in overpressured sedimentary basins. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Application)
Show Figures

Figure 1

Back to TopTop