Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (563)

Search Parameters:
Keywords = buffer resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2194 KB  
Article
Long-Term Evaluation of CNT-Clad Stainless-Steel Cathodes in Multi-Channel Microbial Electrolysis Cells Under Variable Conditions
by Kevin Linowski, Md Zahidul Islam, Luguang Wang, Fei Long, Choongho Yu and Hong Liu
Energies 2025, 18(19), 5241; https://doi.org/10.3390/en18195241 - 2 Oct 2025
Abstract
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and [...] Read more.
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and thick layer non-acid-washed CNT (TK-NAW-CNT)—each composed of stainless-steel-supported CNTs coated with molybdenum phosphide (MoP). These were benchmarked against woven carbon cloth (WCC) under varied operational conditions. A custom multi-channel reactor operated for 341 days, testing cathode performance across applied voltages (0.7–1.2 V), buffer types (phosphate vs. bicarbonate), pH (7.0 and 8.5), buffer concentrations (10–200 mM), and substrates including acetate, lactate, and treated acid whey. CNT-based cathodes consistently showed higher current densities than WCC across most conditions with significant difference found at higher applied voltages. TK-NAW-CNT achieved peak current densities of 259 A m−2 at 1.2 V and maintained >41 A m−2 in real-waste conditions with no added buffer. Long-term performance losses were minimal: 4.5% (TN-NAW-CNT), 0.1% (TK-NAW-CNT), 10.8% (AW-CNT), and 6.8% (WCC). CNT cathodes showed improved performance from reduced resistance and greater electrochemical stability, while proton transfer improvements benefited all materials due to buffer type and pH conditions. These results highlight CNT-based cathodes as promising, scalable alternatives to WCC for energy-positive wastewater treatment. Full article
Show Figures

Figure 1

26 pages, 2660 KB  
Article
Poultry Food Assess Risk Model for Salmonella and Chicken Eggs in Riyadh, Saudi Arabia
by Amani T. Alsufyani, Norah M. Alotaibi, Fahad M. Alreshoodi, Lenah E. Mukhtar, Afnan Althubaiti, Manal Almusa, Maha Althubyani, Rashed Bin Jaddua, Bassam Alsulaiman, Sarah Alsaleh, Saleh I. Alakeel, Thomas P. Oscar and Sulaiman M. Alajel
Foods 2025, 14(19), 3382; https://doi.org/10.3390/foods14193382 - 30 Sep 2025
Abstract
Salmonella presents serious risks to human health, causing about 150,000 deaths per year through the consumption of contaminated food, especially chicken eggs. Consequently, risk of salmonellosis from chicken eggs is of significant interest to the Saudi Food and Drug Authority (SFDA). Models that [...] Read more.
Salmonella presents serious risks to human health, causing about 150,000 deaths per year through the consumption of contaminated food, especially chicken eggs. Consequently, risk of salmonellosis from chicken eggs is of significant interest to the Saudi Food and Drug Authority (SFDA). Models that predict the risk of salmonellosis from chicken eggs are valuable tools for protecting public health. After a review of existing models, the SFDA selected the Poultry Food Assess Risk Model (PFARM) for the purpose of evaluating its ability to assess the risk and severity of salmonellosis for a small cohort of chicken egg consumers in Riyadh, Saudi Arabia, as a proof-of-concept and pilot study. The PFARM was selected because it uses novel methods to consider more risk factors for salmonellosis than other models, such as growth potential and zoonotic potential of Salmonella, buffering capacity of the meal, and consumer behavior, health, and immunity. The SFDA examined chicken eggs from retail stores in Riyadh for Salmonella contamination and surveyed 125 consumers to obtain data for simulating how they store, prepare, and consume eggs at home, and their resistance to salmonellosis. The prevalence of Salmonella in chicken eggs at retail was 7% (7/100). The isolated Salmonella serotypes were Cerro (n = 4), Enteritidis, Stanley, and Winston. Salmonella’s mean number (growth units) per contaminated egg was 1.58 log10 (range: 0 to 3.08 log10). The mean category for consumer survey results ranged from 1.1 (very low risk) for meal preparation time to 3.7 (high risk) for home storage time with 34.4% of consumers having low resistance to salmonellosis. Per 100,000 egg meals, the PFARM predicted 88 infections, two illnesses, and no hospitalizations or deaths. The consumers who became ill were exposed to Salmonella Enteritidis, had moderate resistance to salmonellosis but high-risk behaviors for egg storage (temperature abuse), meal preparation (poor hygiene), and consumption (undercooked eggs). These results showed that the studied chicken eggs posed a low risk and severity of salmonellosis for the surveyed consumer cohort in Riyadh, Saudi Arabia, and that the PFARM was fit-for-purpose. The next step is to improve the PFARM and apply it more broadly in Saudi Arabia to better define the problem and its control. Full article
(This article belongs to the Special Issue Emerging Trends in Food Microbiology and Food Safety)
Show Figures

Figure 1

28 pages, 842 KB  
Review
Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies
by Huitong Zhou, Lingrong Bai, Shaobin Li, Jiqing Wang and Jon G. H. Hickford
Animals 2025, 15(19), 2790; https://doi.org/10.3390/ani15192790 - 25 Sep 2025
Abstract
The wool of sheep consists of structurally intricate natural fibres that can be processed and manufactured into a range of products. It is prized for its insulation, moisture-buffering capability, flame resistance, and biodegradability. These features arise from its unique fibre architecture and specialised [...] Read more.
The wool of sheep consists of structurally intricate natural fibres that can be processed and manufactured into a range of products. It is prized for its insulation, moisture-buffering capability, flame resistance, and biodegradability. These features arise from its unique fibre architecture and specialised protein composition, which set it apart from most other natural and synthetic fibres. However, despite these novel characteristics, wool fibre variation hampers its uses and reduces its ability to compete with other fibres. This review summarises our current knowledge of wool fibre biology. It begins with a description of wool’s functional properties and performance attributes, then explores the structural foundations of these properties, the molecular basis of fibre trait variation, and prospects for improving fibre quality using genetic approaches. Particular attention is given to the wool keratin and keratin-associated protein genes, their spatiotemporal expression patterns, and genetic polymorphism that may influence fibre characteristics. Opportunities for the genetic improvement of sheep are discussed, including the use of genetic modification and marker-assisted selection. Challenges in interpreting gene–trait associations, particularly from high-throughput omics studies, are highlighted, along with the need for functionally validated genetic markers. Potential trade-offs between wool characteristics and other production and reproductive traits are considered, emphasising the need for balanced breeding approaches. By integrating insights from structural biology, molecular genetics, and breeding strategies, this review provides a foundation for wool fibre improvement. Full article
Show Figures

Figure 1

28 pages, 4952 KB  
Article
Integrating InVEST and MaxEnt Models for Ecosystem Service Network Optimization in Island Cities: Evidence from Pingtan Island, China
by Jinyan Liu, Bowen Jin, Jianwen Dong and Guochang Ding
Sustainability 2025, 17(18), 8470; https://doi.org/10.3390/su17188470 - 21 Sep 2025
Viewed by 322
Abstract
As unique geographical entities, island cities boast abundant ecological resources and profound cultural values, serving as critical hubs for maintaining ecosystem services in coastal transition zones. Ensuring the stability of ecosystem services is strategically significant for sustainable urban development, while the construction of [...] Read more.
As unique geographical entities, island cities boast abundant ecological resources and profound cultural values, serving as critical hubs for maintaining ecosystem services in coastal transition zones. Ensuring the stability of ecosystem services is strategically significant for sustainable urban development, while the construction of Ecosystem Service Networks (ESNs) has emerged as a core strategy to enhance ecological functionality and mitigate systemic risks. Based on current research gaps, this study focuses on three key questions: (1) How to construct a Composite Ecosystem Service Index (CESI) for island cities? (2) How to identify the Ecosystem Service Networks (ESNs) of island-type cities? (3) How to optimize the ecosystem service networks of island cities? This study selects Pingtan Island as a representative case, innovatively integrating the InVEST and MaxEnt models to conduct a comprehensive assessment of ecological and cultural services. By employing Principal Component Analysis (PCA), a Composite Ecosystem Service Index (CESI) was established. The research follows a systematic technical approach to construct and optimize the ESN: landscape connectivity indices were applied to identify ecological source areas based on CESI outcomes; multidimensional resistance factors were integrated into the Minimum Cumulative Resistance (MCR) model to develop the foundational ecological network; gradient buffer zone analysis and circuit theory were sequentially employed to refine the network structure and evaluate ecological efficacy. Key findings reveal: (1) Landscape connectivity analysis scientifically delineated 20 ecologically valuable source areas; (2) The coupled MCR model and circuit theory established a hierarchical ESN comprising 45 corridors (12 Level-1, 14 Level-2, and 19 Level-3), identifying 5.75 km2 of ecological pinch points, 7.17 km2 of ecological barriers, and 84 critical nodes—primarily concentrated in cultivated areas; (3) Buffer zone gradient analysis confirmed 30 m as the optimal corridor width for multi-scale planning; (4) Circuit theory optimization significantly enhanced network current density (1.653→8.224), demonstrating a leapfrog improvement in ecological service efficiency. The proposed “assessment–construction–optimization” integrated methodology establishes an innovative paradigm for deep integration of ecosystem services with urban spatial planning. These findings provide practical spatial guidance for island city planning, supporting corridor design, conservation prioritization, and targeted restoration, thereby enhancing ecosystem service efficiency, biodiversity protection, and resilience against coastal ecosystem fragmentation. Full article
Show Figures

Figure 1

12 pages, 10348 KB  
Article
The Effect of Dual-Layer Carbon/Iron-Doped Buffers in an AlGaN/GaN High-Electron-Mobility Transistor
by Po-Hsuan Chang, Chong-Rong Huang, Chia-Hao Liu, Kuan-Wei Lee and Hsien-Chin Chiu
Micromachines 2025, 16(9), 1034; https://doi.org/10.3390/mi16091034 - 10 Sep 2025
Viewed by 363
Abstract
This study compared the effectiveness of gallium nitride (GaN) with a single carbon-doped (C-doped) buffer layer and a composite carbon/iron-doped (C/Fe-doped) buffer layer within an AlGaN/GaN high-electron-mobility transistor (HEMT). In traditional power devices, Fe-doping has a large memory effect, causing Fe ions to [...] Read more.
This study compared the effectiveness of gallium nitride (GaN) with a single carbon-doped (C-doped) buffer layer and a composite carbon/iron-doped (C/Fe-doped) buffer layer within an AlGaN/GaN high-electron-mobility transistor (HEMT). In traditional power devices, Fe-doping has a large memory effect, causing Fe ions to diffuse outwards, which is undesirable in high-power-device applications. In the present study, a C-doped GaN layer was added above the Fe-doped GaN layer to form a composite buffer against Fe ion diffusion. Direct current (DC) characteristics, pulse measurement, low-frequency noise, and variable temperature analysis were performed on both devices. The single C-doped buffer layer in the AlGaN/GaN HEMT had fewer defects in capturing and releasing carriers, and better dynamic characteristics, whereas the composite C/Fe-doped buffers, by suppressing Fe migration toward the channel, showed higher vertical breakdown voltage and lower sheet resistance, and still demonstrated potential for further performance tuning to achieve enhanced semi-insulating behavior. With optimized doping concentrations and layer thicknesses, the dual-layer configuration offers a promising path toward improved trade-offs between leakage suppression, trap control, and dynamic performance for next-generation GaN-based power devices. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

19 pages, 3944 KB  
Article
Influence of Overlay Welding Process on the Morphology, Microstructure, and Performance of the Overlay Layer
by Yinghe Ma, Jinpeng Zhang, Zhen Yu, Min Li, Zhihui Cai, Daochen Feng, Sendong Ren, Wenjian Zheng and Jianguo Yang
Metals 2025, 15(9), 987; https://doi.org/10.3390/met15090987 - 5 Sep 2025
Viewed by 389
Abstract
This study investigates the effects of welding parameters and the addition of a buffer layer on the morphology, microstructure, mechanical properties, and corrosion resistance of the overlay layer during overlay welding. This paper uses Q235 steel as the base material, ER309L as the [...] Read more.
This study investigates the effects of welding parameters and the addition of a buffer layer on the morphology, microstructure, mechanical properties, and corrosion resistance of the overlay layer during overlay welding. This paper uses Q235 steel as the base material, ER309L as the buffer layer, and ER347 as the overlay layer to conduct process experiments on overlay welding component, aiming to obtain optimal process parameters. The effects of welding line energy and weld bead overlap rate on the morphology, dimensions, and dilution rate of the overlay layer were analyzed. Furthermore, the influence of the presence or absence of the buffer layer on the microstructure, mechanical properties, and corrosion resistance of the overlay layer was investigated. The microstructure and morphology of the overlay layer were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Mechanical and electrochemical tests were also performed to evaluate the mechanical and corrosion resistance properties of ER347 stainless steel weld overlays. The results showed that the optimal process parameters were successfully obtained, which ensured sound weld bead formation while minimizing dilution. The addition of the buffer layer (ER309L) improved the bonding quality of the overlay welding component interface, reduced element dilution in the overlay layer, significantly improved hardness distribution, and reduced sudden changes in hardness in the fusion zone, thereby optimizing the mechanical properties of the ER347 stainless steel overlay layer. After adding the buffer layer, the corrosion current density decreased from 6.23 × 10−5 A·cm−2 to 2.21 × 10−5 A·cm−2, and the corrosion potential increased from −1.049 V to −0.973 V, effectively reducing the corrosion risk of the overlay component. This study innovatively introduced a buffer layer in the process of overlay welding austenitic stainless steel on low-carbon steel and investigated the impact of the overlay welding process on the overlay layer, thereby contributing to a comprehensive understanding of the overlay welding process from multiple perspectives. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

19 pages, 3335 KB  
Article
CH3COOAg with Laccase-like Activity for Differentiation and Detection of Aminoglycoside Antibiotics
by Huan Zhu, Tong-Qing Chai, Jia-Xin Li, Jing-Jing Dai, Lei Xu, Wen-Ling Qin and Feng-Qing Yang
Biosensors 2025, 15(9), 570; https://doi.org/10.3390/bios15090570 - 1 Sep 2025
Viewed by 491
Abstract
Aminoglycoside antibiotics (AGs) are widely used in medicine and animal husbandry, but they pose significant risks due to residual toxicity and antibiotic resistance. In this study, a novel chemical sensor based on the laccase-like activity of CH3COOAg was developed for the [...] Read more.
Aminoglycoside antibiotics (AGs) are widely used in medicine and animal husbandry, but they pose significant risks due to residual toxicity and antibiotic resistance. In this study, a novel chemical sensor based on the laccase-like activity of CH3COOAg was developed for the selective detection of AGs. CH3COOAg exhibited varying degrees of laccase-like activity in different buffers (MES, HEPES, and NaAc) and H2O, and five AGs showed distinct intensities of the inhibitory effect on the laccase-like activity of CH3COOA in different buffers and H2O. Therefore, a four-channel colorimetric sensor array was constructed in combination with the use of principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) for the efficient identification of five AGs (0.02–0.3 μM) in environment samples like tap and lake water. In addition, a colorimetric method was developed for kanamycin (KAN) detection in a honey sample with a linear range of 10–100 nM (R2 = 0.9977). The method has excellent sensitivity with a limit of detection of 3.99 nM for KAN. This work not only provides a rapid and low-cost detection method for AG monitoring but also provides a reference for the design of non-copper laccase mimics. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

30 pages, 19973 KB  
Article
The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park
by Letong Yang, Yuting Peng, Gaoru Zhu, Fuqing Yue, Xueyan Zhao and Jiliang Fu
Forests 2025, 16(9), 1393; https://doi.org/10.3390/f16091393 - 1 Sep 2025
Viewed by 482
Abstract
The rapid expansion of transportation infrastructure on Hainan Island has intensified ecological pressures such as landscape fragmentation and decreased connectivity, threatening the environmental integrity of Hainan Tropical Rainforest National Park. As China’s only tropical island national park, it is important to maintain biodiversity [...] Read more.
The rapid expansion of transportation infrastructure on Hainan Island has intensified ecological pressures such as landscape fragmentation and decreased connectivity, threatening the environmental integrity of Hainan Tropical Rainforest National Park. As China’s only tropical island national park, it is important to maintain biodiversity and ecological resilience. Therefore, this study attempts to examine the park and its 5 km buffer zone to assess how transport expansion from 2003 to 2023 has altered land use patterns and landscape connectivity. Through the analysis of multi-period land use data, the land use changes are tracked by using ArcGIS and Fragstats 4.3 software, and the landscape dynamics are quantified. We linked these patterns to ecological processes via a resistance-surface model, which is further refined by spatial structural indices to better reflect ecological realism. Ecological sources were subsequently identified through morphological analysis and ecosystem service evaluation, and circuit theory was applied to delineate potential corridors and construct an ecological security network. The results indicate that (1) transportation development has significantly increased landscape fragmentation and ecological resistance, particularly along major highways; (2) while core forest areas inside the park remain relatively intact, the buffer zones show accelerating degradation; and (3) Although there are many ecological conflict points between the transportation network and the ecological corridor, the construction of animal channels in combination with bridges, tunnels and culverts can effectively improve ecological connectivity and protect the integrity of animal habitat. These findings highlight the vulnerability of ecological integrity as the network expands. The proposed modeling framework provides a more realistic assessment of infrastructure impact and offers a scientific basis for coordinating ecological protection and transport planning in tropical island national parks. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

17 pages, 3834 KB  
Article
Redundancy-Interpolated Three-Segment DAC with On-Chip Digital Calibration for Improved Static Linearity
by Godfred Bonsu, Kelvin Tamakloe, Isaac Bruce, Emmanuel Nti Darko and Degang Chen
Electronics 2025, 14(17), 3477; https://doi.org/10.3390/electronics14173477 - 30 Aug 2025
Viewed by 594
Abstract
This paper presents a three-segment interpolating Digital-to-Analog Converter (DAC) that employs a redundancy-based interpolation scheme and digital calibration to enhance linearity. The proposed architecture consists of a Most Significant Bit (MSB) resistor string DAC, an Intermediate Significant Bit (ISB) resistor string DAC, and [...] Read more.
This paper presents a three-segment interpolating Digital-to-Analog Converter (DAC) that employs a redundancy-based interpolation scheme and digital calibration to enhance linearity. The proposed architecture consists of a Most Significant Bit (MSB) resistor string DAC, an Intermediate Significant Bit (ISB) resistor string DAC, and a Least Significant Bit (LSB) interpolating differential buffer. The MSB segment uses a split-unit resistor structure (rA,rB) to improve post-calibration differential nonlinearity (DNL) by minimizing voltage step errors. A fully digital calibration algorithm is implemented to compensate for process variations, component mismatches, and finite switch resistance, ensuring a highly linear DAC output. The proposed 16-bit DAC is implemented in a 180 nm CMOS process and is segmented into a 5-bit MSB stage, a 5-bit ISB stage, and a 6-bit LSB stage. The structure achieves post-calibration integral nonlinearity (INL) and differential nonlinearity (DNL) values of less than ±1 LSB. Simulation results validate the proposed design, demonstrating enhanced linearity and reduced area overhead compared with conventional segmented architectures. Full article
Show Figures

Figure 1

21 pages, 6437 KB  
Article
Assessment of the Surface Characteristics of ISO 5832-1 Stainless Steel for Biomaterial Applications
by Eurico Felix Pieretti, Davide Piaggio and Isolda Costa
Materials 2025, 18(17), 4020; https://doi.org/10.3390/ma18174020 - 27 Aug 2025
Viewed by 600
Abstract
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, [...] Read more.
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, and wear volume in ball-cratering wear tests. The laser marking was performed using a nanosecond Q-switched Nd:YAG laser. Cytotoxicity tests assessed the biocompatibility of the biomaterial. Non-marked surfaces were also evaluated for comparison. A phosphate-buffered saline solution (PBS) served as both the lubricant and corrosion medium. The surface finishing was analyzed using optical microscopy and scanning electron microscopy coupled with a field-emission gun (SEM-FEG), combined with an energy-dispersive X-ray spectrometer. The oxide film was examined through X-ray photoelectron spectroscopy (XPS). Wear tests lasted 10 min, with PBS drops applied every 10 s at 75 rpm; solid balls of AISI 316L stainless steel (SS) and polypropylene (PP), each 1 inch in diameter, were used as counter-bodies. Corrosion resistance was assessed using electrochemical methods. Results showed variations in roughness and microstructure due to laser marking. The tribological behaviour was influenced by the type of marking process, and the wear amount depended on the normal force and ball nature. None of the samples was considered cytotoxic, although laser-marked surfaces exhibited the lowest cellular viability among the tested surfaces and the lowest corrosion resistance. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 4672 KB  
Article
Desynchronization Resilient Audio Watermarking Based on Adaptive Energy Modulation
by Weinan Zhu, Yanxia Zhou, Deyang Wu, Gejian Zhao, Zhicheng Dong, Jingyu Ye and Hanzhou Wu
Mathematics 2025, 13(17), 2736; https://doi.org/10.3390/math13172736 - 26 Aug 2025
Viewed by 656
Abstract
With the rapid proliferation of social media platforms and user-generated content, audio data is frequently shared, remixed, and redistributed online. This raises urgent needs for copyright protection and traceability to safeguard the integrity and ownership of such content. Resilience to desynchronization attacks remains [...] Read more.
With the rapid proliferation of social media platforms and user-generated content, audio data is frequently shared, remixed, and redistributed online. This raises urgent needs for copyright protection and traceability to safeguard the integrity and ownership of such content. Resilience to desynchronization attacks remains a significant challenge in audio watermarking. Most existing techniques face a trade-off between embedding capacity, robustness, and imperceptibility, making it difficult to meet all three requirements effectively in real-world applications. To address this issue, we propose an improved patchwork-based audio watermarking algorithm. Each audio frame is divided into two non-overlapping segments, from which mid-frequency energy features are extracted and modulated for watermark embedding. A linearly decreasing buffer compensation mechanism balances imperceptibility and robustness. Additionally, an optimization algorithm is incorporated to enhance watermark transparency while maintaining resistance to desynchronization attacks. During watermark extraction, each bit of the watermark is recovered by analyzing the intra-frame energy relationships. Furthermore, we provide a theoretical analysis demonstrating that the proposed method is robust against various types of attack. Extensive experimental results demonstrate that the proposed scheme ensures high audio quality, strong robustness against desynchronization attacks, and a higher embedding capacity than existing methods. Full article
(This article belongs to the Special Issue Information Security and Image Processing)
Show Figures

Figure 1

33 pages, 5718 KB  
Article
Progressive Water Deficit Impairs Soybean Growth, Alters Metabolic Profiles, and Decreases Photosynthetic Efficiency
by Renan Falcioni, Caio Almeida de Oliveira, Nicole Ghinzelli Vedana, Weslei Augusto Mendonça, João Vitor Ferreira Gonçalves, Daiane de Fatima da Silva Haubert, Dheynne Heyre Silva de Matos, Amanda Silveira Reis, Werner Camargos Antunes, Luis Guilherme Teixeira Crusiol, Rubson Natal Ribeiro Sibaldelli, Alexandre Lima Nepomuceno, Norman Neumaier, José Renato Bouças Farias, Renato Herrig Furlanetto, José Alexandre Melo Demattê and Marcos Rafael Nanni
Plants 2025, 14(17), 2615; https://doi.org/10.3390/plants14172615 - 22 Aug 2025
Cited by 1 | Viewed by 649
Abstract
Soybean (Glycine max (L.) Merrill) is highly sensitive to water deficit, particularly during the vegetative phase, when morphological and metabolic plasticity support continued growth and photosynthetic efficiency. We applied eleven water regimes, from full irrigation (W100) to total water withholding (W0), to [...] Read more.
Soybean (Glycine max (L.) Merrill) is highly sensitive to water deficit, particularly during the vegetative phase, when morphological and metabolic plasticity support continued growth and photosynthetic efficiency. We applied eleven water regimes, from full irrigation (W100) to total water withholding (W0), to plants grown under controlled conditions. After 14 days, we quantified morphophysiological, biochemical, leaf optical, gas exchange, and chlorophyll a fluorescence traits. Drought induces significant reductions in leaf area, biomass, pigment pools, and photosynthetic rates (A, gs, ΦPSII) while increasing the levels of oxidative stress markers (electrolyte leakage, ROS) and proline accumulation. OJIP transients and JIP test metrics revealed reduced electron-transport efficiency and increased energy dissipation for many parameters under severe stress. Principal component analysis (PCA) clearly separated those treatments. PC1 captured growth and water status variation, whereas PC2 reflected photoprotective adjustments. These data show that progressive drought limits carbon assimilation via coordinated diffusive and biochemical constraints and that the accumulation of proline, phenolics, and lignin is associated with osmotic adjustment, antioxidant buffering, and cell wall reinforcement under stress. The combined use of hyperspectral sensors, gas exchange, chlorophyll fluorescence, and multivariate analyses for phenotyping offers a rapid, nondestructive diagnostic tool for assessing drought severity and the possibility of selecting drought-resistant genotypes and phenotypes in a changing stress environment. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

22 pages, 2313 KB  
Article
Development of Technology of Restructured Meat Products Using Biotechnological Methods of Transformation of Functional and Technological Properties of Raw Materials
by Alem Beisembayeva, Aigul Tayeva, Irina Chernukha, Berdikul Rskeldiyev, Mamura Absalimova and Zhadyra Imangaliyeva
Foods 2025, 14(16), 2894; https://doi.org/10.3390/foods14162894 - 20 Aug 2025
Viewed by 467
Abstract
This study developed a technology for restructured meat products (RMPs) from culled cow meat using the bioprotective culture Lactobacillus sakei (SafePro B-2, 1011 CFU/g) and fortification with L-selenomethionine or zinc citrate. Four variants (Control, SafePro B-2, SafePro B-2 + Se, and SafePro [...] Read more.
This study developed a technology for restructured meat products (RMPs) from culled cow meat using the bioprotective culture Lactobacillus sakei (SafePro B-2, 1011 CFU/g) and fortification with L-selenomethionine or zinc citrate. Four variants (Control, SafePro B-2, SafePro B-2 + Se, and SafePro B-2 + Zn) were produced under identical processing conditions and assessed for microbiological, physicochemical, textural, colorimetric, antioxidant, histological, mineral, and amino acid properties. Protein content remained high across all samples (up to 18.7%), while moisture increased by up to 1.4% compared to the control. The Zn-enriched sample showed the greatest cohesiveness and resistance to deformation (p < 0.05), with color stability under light exposure improving by up to 12.5%. Despite a reduction in FRAP antioxidant activity (up to 30.8% in buffer extract), the Zn-fortified product exhibited the highest levels of key essential amino acids, including leucine (12.9 mg/g) and lysine (12.6 mg/g). Microbiological analysis confirmed low total aerobic mesophilic counts (≤3.1 log CFU/g), with no detection of Salmonella spp. or Listeria monocytogenes. Histological evaluation revealed denser and more homogeneous protein matrices in fortified variants. Overall, L. sakei-driven bioprotection combined with Se/Zn fortification improved the safety and functional and nutritional characteristics of RMP from low-value beef, supporting sustainable and circular meat production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1239 KB  
Article
A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems
by Jirapong Jittakort and Apinan Aurasopon
J. Sens. Actuator Netw. 2025, 14(4), 82; https://doi.org/10.3390/jsan14040082 - 4 Aug 2025
Viewed by 864
Abstract
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed [...] Read more.
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed system dynamically adjusts the excitation current to maintain optimal Analog-to-Digital Converter (ADC) input conditions. The measurement circuit employs a fixed reference resistor and an inverting amplifier configuration, where the excitation current is generated by one or more pulse-width modulated (PWM) signals filtered through low-pass RC networks. A microcontroller selects the appropriate PWM channel to ensure that the output voltage remains within the ADC’s linear range. To support multiple sensors, an analog switch enables sequential measurements using the same dual-PWM current source. The full experimental implementation uses four op-amps to support modularity, buffering, and dual-range operation. Experimental results show accurate measurement of resistances from 1 kΩ to 100 kΩ, with maximum relative errors of 0.15% in the 1–10 kΩ range and 0.33% in the 10–100 kΩ range. The method provides a low-cost, scalable, and digitally controlled solution suitable for embedded resistive sensing applications without the need for high-resolution ADCs or programmable gain amplifiers. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

24 pages, 5342 KB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 648
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

Back to TopTop