The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park
Abstract
1. Introduction
2. Overview of the Research Area
3. Research Methods
3.1. Data Sources and Processing
3.2. Spatiotemporal Analysis of Land Use
3.3. Landscape Pattern Indices
Analytical Scale | Index Name | Ecological Significance | Interpretation in This Study |
---|---|---|---|
Landscape Metrics | Shannon’s Diversity Index (SHDI) | Reflects landscape richness and evenness in distribution | Used to assess changes in diversity under different levels of traffic interference [38] |
Contagion Index (CONTAG) | Indicates spatial aggregation of landscape types; lower values reflect fragmentation | Reveals the spatial disruption of connectivity caused by road networks [42] | |
Edge Density (ED) | Measures edge length per unit area; higher values indicate fragmentation | Captures the edge effects directly caused by road-induced landscape segmentation | |
Patch Density (PD) | Number of patches per unit area; also reflects fragmentation | Highlights the patch proliferation associated with road network expansion | |
Class Metrics | Largest Patch Index (LPI) | Ratio of the largest patch area to total landscape area within a class; reflects dominance. | Measures how road development disrupts dominant landscape patches |
Cohesion Index (COHESION) | Reflects the physical connectedness of patches within the same class | Evaluates how roads function as ecological barriers and disrupt connectivity | |
Patch Metrics | Fractal Dimension Index (FRAC) | Reflects the geometric complexity of patch boundaries | Quantifies the irregularity of patch shapes caused by transportation development [43] |
Proximity Index (PROX) | Measures spatial proximity among patches of the same type | Assesses the isolation effect of roads on species movement and patch adjacency [22] |
3.4. Ecological Security Pattern Construction
3.4.1. Delineation of Ecological Sources
- (1)
- Landscape Pattern Analysis Based on MSPA
- (2)
- Evaluation of Ecosystem Service Importance
3.4.2. Construction and Correction of the Ecological Resistance Surface
- (1)
- Ecological Resistance Surface
- (2)
- Resistance Surface Modification Based on Landscape Pattern Indices
3.4.3. Extraction and Identification of Ecological Corridors Based on Circuit Theory
3.4.4. Spatial Conflict Identification Between Transportation Networks and Ecological Security Patterns
4. Results
4.1. Spatiotemporal Changes in Land Use Types and Intensity
- (1)
- Characteristics of Land Use Change
- (2)
- Changes in Land Use Dynamics
4.2. Spatiotemporal Variation in Landscape Pattern Indices
- (1)
- Landscape Fragmentation and Low Connectivity
- (2)
- Dominant Landscape and Spatial Configuration Evolution
- (3)
- Landscape Heterogeneity and Morphological Complexity
- (4)
- Spatiotemporal Comparison of Landscape Metrics
4.3. Construction of the Ecological Security Pattern
4.3.1. Identification of Ecological Sources
- (1)
- Ecological Sources Analysis Based on MSPA
- (2)
- Evaluation of Ecosystem Service Importance
- (3)
- Results of Ecological Source Identification
4.3.2. Identification Results of the Integrated Resistance Surface
- (1)
- Integrated Resistance Surface
- (2)
- Landscape Pattern Index Selection and Dimension Reduction
- (3)
- Spatial Modeling with Geographically Weighted Regression
4.3.3. Ecological Corridor Delineation
- (1)
- Identification of Key Ecological Corridors
- (2)
- Identification of Conflict Zones Between Corridors and Transportation Networks
- (3)
- Comparison of Ecological Corridor Identification Results Based on Different Resistance Surfaces
4.3.4. Results of Ecological Security Pattern Construction
5. Discussion
5.1. Fragmentation Captured by Landscape Metrics and Resistance Modeling
5.2. Comparison with Global Practices
5.3. Limitations and Directions for Future Validation
5.4. Identification of High-Risk Zones and Management Implications
- (1)
- Optimize Road Alignment to Avoid Core Ecological Areas and Key Corridors
- (2)
- Establish Ecological Buffer Systems to Maintain Corridor Continuity
- (3)
- Hierarchical Ecological Restoration for Network Resilience
- (4)
- Strengthen Integrated Governance of Transportation and Ecology for Fine-Scale Spatial Management
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HTRNP | Hainan Tropical Rainforest National Park |
PD | Patch Density |
ED | Edge Density |
CONTAG | Contagion Index |
SHDI | Shannon Diversity Index |
LPI | Largest Patch Index |
COHESION | Cohesion Index |
FRAC | Fractal Dimension |
PROX | Proximity Index |
MSPA | Morphological Spatial Pattern Analysis |
HSI | Human Settlement Index |
MCR | Minimum Cumulative Resistance |
OLS | Ordinary Least Squares |
VIF | Variance Inflation Factor |
GWR | Geographically Weighted Regression |
PCA | Principal Component Analysis |
References
- Zang, Z.; Ouyang, Z.; Xu, W.; Du, A. Improve the procedures for the creation and establishment of national parks, and promote the construction of national parks orderly. Natl. Park 2024, 2, 632–637. [Google Scholar] [CrossRef]
- Li, X. Achieving Integrated Protection in Important Ecological Zones. Natural Resources Management Report, 2021. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, L.; Du, A.; Ouyang, Z. Review on the value assessment of cultural ecosystem services in national park. Acta Ecol. Sin. 2025, 45, 3021–3031. [Google Scholar] [CrossRef]
- Nanyang Forestry Hainan Tropical Rainforest National Park Master Plan (2023–2030). Available online: https://nyslyj.nanyang.gov.cn/2024/05-29/410513.html (accessed on 2 July 2025).
- Watson, J.E.M.; Dudley, N.; Segan, D.B.; Hockings, M. The Performance and Potential of Protected Areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Protected Planet Report 2024. Available online: https://digitalreport.protectedplanet.net (accessed on 2 July 2025).
- Hosaka, T.; Yamada, T.; Okuda, T. Road-Networks, a Practical Indicator of Human Impacts on Biodiversity in Tropical Forests. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012092. [Google Scholar] [CrossRef]
- Dinerstein, E.; Joshi, A.R.; Vynne, C.; Lee, A.T.L.; Pharand-Deschênes, F.; França, M.; Fernando, S.; Birch, T.; Burkart, K.; Asner, G.P.; et al. A “Global Safety Net” to Reverse Biodiversity Loss and Stabilize Earth’s Climate. Sci. Adv. 2020, 6, eabb2824. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Liu, W.; Wang, H.; Zhang, Y.; Quan, Z. Spatial and Temporal Variation of Water Conservation and Driving Factor Analysis in Tropical Rainforests: A Case Study of Hainan Tropical Rainforest National Park. Res. Environ. Sci. 2023, 36, 1716–1727. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Alexander, L.E. Roads And Their Major Ecological Effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Bennett, V.J. Effects of Road Density and Pattern on the Conservation of Species and Biodiversity. Curr. Landsc. Ecol. Rep. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Laurance, W.F.; Goosem, M.; Laurance, S.G.W. Impacts of Roads and Linear Clearings on Tropical Forests. Trends Ecol. Evol. 2009, 24, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, J.; Zou, Z.; Zhen, S.; Liu, S.; Li, J.; Zuo, X.; Lin, S.; Wu, Z.; Zhang, L.; et al. Sprawling Roads Enhanced Tropical Forest Loss during the Period 2001–2020. Commun. Earth Environ. 2025, 6, 218. [Google Scholar] [CrossRef]
- Poor, E.E.; Jati, V.I.M.; Imron, M.A.; Kelly, M.J. The Road to Deforestation: Edge Effects in an Endemic Ecosystem in Sumatra, Indonesia. PLoS ONE 2019, 14, e0217540. [Google Scholar] [CrossRef] [PubMed]
- Ideris, N.; Jaafar, S.; Sukri, R. Impact of Road Construction on Tree Diversity and Forest Structure in an Intact Bornean Mixed Dipterocarp Forest. Reinwardtia 2025, 24, 1–15. [Google Scholar] [CrossRef]
- Xiong, G.; Yang, F.; Wang, T.; He, R.; Li, L. Impact of Road Infrastructure on Wildlife Corridors in Hainan Rainforests. Transp. Res. Part. Transp. Environ. 2025, 139, 104539. [Google Scholar] [CrossRef]
- Wu, T.; Yao, X.; Ren, M. Distribution Pattern of Roads and Its Impact on Landscape Integrity in Hainan Tropical Rainforest National Park. J. Trop. Biol. 2022, 13, 101–111. [Google Scholar] [CrossRef]
- Jia, L.; Yang, S.; Leung, K.W.; Wang, X.; Wang, J.; Hu, J. Amphibian Roadkill Patterns in an Asian Tropical Rainforest. Transp. Res. Part. Transp. Environ. 2024, 136, 104396. [Google Scholar] [CrossRef]
- Chen, L.; Jing, Y.; Sun, R. Urban eco-security pattern construction:targets, principles and basic framework. Acta Ecol. Sin. 2018, 38, 4101–4108. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Xu, J.; Chao, B.; Peng, L.; Li, Z.; Zhang, B.; Guo, F.; Bian, F.; Yu, B.; Zou, Q. Ecological Corridor Construction of Hainan Tropical Rainforest National Park. J. Southwest. For. Univ. Sci. 2023, 43, 125–134. [Google Scholar]
- Chen, S.; Fu, H.; Du, Y.; Fu, G.; Chen, J. Landscape Pattern Changes in Hainan Tropical Rainforest National Park between 2015 and 2020. Guihaia 2023, 43, 1688–1699. [Google Scholar]
- Zhang, X.; Wang, L. Study on Ecological Landscape Patterns Along Expressways Based on GIS and Fragstats. J. Green. Sci. Technol. 2023, 25, 234–239. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Guan, H.; Ren, Y.; Chen, Y.; Chen, M.; Yang, Z.; Lin, D.; Liu, W.; Xu, J.; et al. Unveiling China’s Natural and Planted Forest Spatial–Temporal Dynamics from 1990 to 2020. ISPRS J. Photogramm. Remote Sens. 2024, 209, 37–50. [Google Scholar] [CrossRef]
- Li, Q.; Tang, L.; Qiu, Q.; Li, S.; Xu, Y. Construction of urban ecological security pattern based on MSPA and MCR Model: A case study of Xiamen. Acta Ecol. Sin. 2024, 44, 2284–2294. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global Forest Fragmentation Change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Dantas de Paula, M.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High Resolution Analysis of Tropical Forest Fragmentation and Its Impact on the Global Carbon Cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Peng, P.; Liu, T.; Wang, J.; Zhang, S.; Niu, P. Revealing the Spatiotemporal Changes in Land Use and Landscape Patterns and Their Effects on Ecosystem Services: A Case Study in the Western Sichuan Urban Agglomeration, China. Land 2025, 14, 1012. [Google Scholar] [CrossRef]
- Deng, P. Analysis of land use and landscape type change in resource-depleted cities—A case study of Dongchuan District, Kunming City. Environ. Ecol. 2022, 4, 1–5. [Google Scholar]
- Wang, Z.; Hong, M.; Liu, X. Spatial and Temporal Change Pattern and Trend Prediction of Land Use in the Middle Reaches of the Yellow River. Remote Sens. Technol. Appl. 2025, 40, 748–760. [Google Scholar]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; Qiao, Z. Dynamic simulation of land use change and habitat quality in the Three River Source Region based on the PLUS-InVEST models. Arid. Zone Res. 2025, 42, 1080–1092. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhang, Y.; Liu, J.; Gan, L.; Li, H. Study on the Extraction Method for Ecological Corridors under the Cumulative Effect of Road Traffic. Appl. Sci. 2023, 13, 6091. [Google Scholar] [CrossRef]
- Chang, S.-C.; Blanco, J.A.; Lo, Y.-H. Introductory Chapter: Land Use Change Ecosystem Services and Tropical Forests. In Tropical Forests-The Challenges of Maintaining Ecosystem Services while Managing the Landscape; Blanco, J.A., Chang, S.-C., Lo, Y.-H., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2758-1. [Google Scholar]
- Liao, L.; Lu, B.; Cao, Y. Spatial and Temporal Dynamics and Spatial Correlation Analysis of Landscape Pattern and Habitat Quality Surrounding Wuyishan National Park. Chin. Landsc. Archit. 2023, 39, 21–27. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, L.; Fu, H. Spatiotemporal Correlation Analysis of Landscape Pattern and Habitat Quality in and Around China’s Tropical Rainforest National Park. Forests 2024, 15, 2070. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Huang, T.; Ou, G.; Shen, H. Response of Temporal and Spatial Dynamic Changes of Landscape Pattern to Human Disturbance in Kunming City. J. Southwest For. Univ. 2025, 45, 128–136. [Google Scholar]
- Wu, J.; Luo, K.; Zhao, Y. Evolution of Shenzhen’s Urban Landscape Pattern over the Past 20 Years and Its Driving Forces. Geogr. Res. 2020, 39, 1725–1738. [Google Scholar]
- Zhang, X.; Yao, L.; Luo, J.; Liang, W. Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries. Land 2022, 11, 940. [Google Scholar] [CrossRef]
- Frissell, C. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, W. Analysis on the spatial-temporal evolution characteristics of ecological environment sensitivity and landscape distribution pattern of national parks: Take Shennongjia National Park as an example. J. Cent. South. Univ. For. Technol. 2023, 43, 126–135,152. [Google Scholar] [CrossRef]
- Wu, T.; Chen, Y.; Chen, Z.; Lei, J.; Chen, X.; Li, Y. Analysis on the Spatial Distribution Characteristics of Representative Populations in Tropical Rainforest of Hainan. For. Grassl. Resour. Res. 2023, 2023, 133–141. [Google Scholar] [CrossRef]
- Hu, X.; Jia, T. Construction and Optimization of Ecological Security Pattern in Three-River-Source National Park Based on Ecological Sensitivity and Landscape Connectivity. Resour. Environ. Yangtze Basin 2023, 32, 1724–1735. [Google Scholar]
- Wang, X.; Dang, A.; Tong, B.; Liu, X. Construction and Optimization of Ecological Security Pattern in the Wuding River Basin of Human Settlements. Landsc. Archit. 2025, 32, 31–39. [Google Scholar] [CrossRef]
- Lin, X.; Fu, H. Optimization of Tropical Rainforest Ecosystem Management: Implications from the Responses of Ecosystem Service Values to Landscape Pattern Changes in Hainan Tropical Rainforest National Park, China, over the Past 40 Years. Front. For. Glob. Change 2023, 6, 1242068. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Q.; Li, Q.; Yufang, J. Construction and Evaluation of Ecological Networks Based on Morphological Spatial Pattern Analysis and Circuit Theory:Taking Shenzhen as an Example. Land Resour. Her. 2024, 21, 116–125. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.-C.; Hu, F.; Hu, G.-H.; Lang, Y.; Huang, H.-L. Analysis of Ecological Network Evolution in Taihang Mountains Based on MSPA-InVEST Model. Environ. Sci. 2024. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon Storage through China’s Planted Forest Expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Yang, J.; Huang, S.; Wang, R.; Duan, Z. Effect of Close-to-Nature Management on the Growth Regeneration and Species Diversity in Acacia Mangium Plantation. Trop. For. 2022, 50, 13–17. [Google Scholar]
- Cui, W.; Wei, Y.; Su, H.; Liu, X.; Wu, D.; Zhang, N.; Ji, N. Research on Ecological Security Pattern Construction of Protection andDevelopment Belt of in Wuyishan National Park. Res. Environ. Sci. 2024, 37, 874–886. [Google Scholar] [CrossRef]
- Ren, B.; Wang, Q.; Zhang, R.; Zhou, X.; Wu, X.; Zhang, Q. Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province. Sustainability 2022, 14, 9145. [Google Scholar] [CrossRef]
- Pan, X.; Chen, P.; Fu, S.; Wu, J.; Chen, Q. Landscape ecological risk assessment in Xiamen by landscape pattern analysis. J. Appl. Oceanogr. 2024, 43, 771–780. [Google Scholar]
- Chen, S.; Fu, H.; Fu, G.; Chen, J. Comparison of Spatial-Temporal Dynamics of the Landscape Patterns of 5 National Nature Reserves in Hainan Province. J. Northwest For. Univ. 2023, 38, 181–189. [Google Scholar]
- Yang, K.; Cao, Y.-G.; Feng, Z.; Geng, B.-J.; Feng, Y.; Wang, S.-F. Research Progress of Ecological Security Pattern Construction Based on Minimum Cumulative Resistance Model. J. Ecol. Rural. Environ. 2021, 37, 555–565. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Liu, M.; Dong, J.; Ma, C. Integrating Patch Stability and Network Connectivity to Optimize Ecological Security Pattern. Landsc. Ecol. 2024, 39, 54. [Google Scholar] [CrossRef]
- Wei, L.; Li, M.; Ma, Y.; Wang, Y.; Wu, G.; Liu, T.; Gong, W.; Mao, M.; Zhao, Y.; Wei, Y.; et al. Construction of an Ecological Security Pattern for the National Park of Hainan Tropical Rainforest on the Basis of the Importance of the Function and Sensitivity of Its Ecosystem Services. Land 2024, 13, 1618. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Tian, X.; Yang, L.; Wu, X.; Wu, J.; Guo, Y.; Guo, Y.; Chen, H.; Li, J.; Lin, Y. Landscape Fragmentation and Spatial Autocorrelation of a Typical Watershed in the Wenchuan Earthquake-Affected Area—A Case Study in the Longxi River Basin. Forests 2023, 14, 2349. [Google Scholar] [CrossRef]
- Yan, M.; Duan, J.; Li, Y.; Yu, Y.; Wang, Y.; Zhang, J.; Qiu, Y. Construction of the Ecological Security Pattern in Xishuangbanna Tropical Rainforest Based on Circuit Theory. Sustainability 2024, 16, 3290. [Google Scholar] [CrossRef]
- MacDonald, M.A. The Role of Corridors in Biodiversity Conservation in Production Forest Landscapes: A Litterature Revie. Tasforests. 2003, 14, 41–52. [Google Scholar]
- Yao, X.; Zhou, L.; Wu, T.; Ren, M. Landscape dynamics and ecological risk of the expressway crossing section in the Hainan Rainforest National Park. Acta Ecol. Sin. 2022, 42, 6695–6703. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Wang, Y.; Li, C.; Wu, Y.; Gao, B.; Wang, M. Study on the Spatial Heterogeneity of the Impact of Forest Land Change on Landscape Ecological Risk: A Case Study of Erhai Rim Region in China. Forests 2023, 14, 1427. [Google Scholar] [CrossRef]
- Engert, J.E.; Souza, C.M.; Kleinschroth, F.; Bignoli, D.J.; Costa, S.C.P.; Botelho, J.; Ishida, F.Y.; Nursamsi, I.; Laurance, W.F. Explosive Growth of Secondary Roads Is Linked to Widespread Tropical Deforestation. Curr. Biol. 2025, 35, 1641–1648.e4. [Google Scholar] [CrossRef] [PubMed]
- Caro, T. Roads through National Parks: A Successful Case Study. Trop. Conserv. Sci. 2015, 8, 1009–1016. [Google Scholar] [CrossRef]
- Zhai, D.; Xu, J.; Dai, Z.; Schmidt-Vogt, D. Lost in Transition: Forest Transition and Natural Forest Loss in Tropical China. Plant Divers. 2017, 39, 149–153. [Google Scholar] [CrossRef]
- Han, M.-W.; Zhang, S.-P.; Xu, Q.-X.; Dai, J.-F.; Huang, G.-L. Construction of Cross-basin Ecological Security Patterns Based on Carbon Sinks and Landscape Connectivity. Environ. Sci. 2024, 45, 5844–5852. [Google Scholar] [CrossRef]
- Zhang, X.; Mou, X.; Wang, X.; Zhu, Z.; Yu, Y.; Huang, J. Study on the Ecological Restoration Zoning of Territorial Space: Taking Hainan Island as An Example. Ecol. Econ. 2021, 37, 183–189. [Google Scholar]
- Zhai, J.; Hou, P.; Cao, W.; Yang, M.; Cai, M.; Li, J. Ecosystem Assessment and Protection Effectiveness of a Tropical Rainforest Region in Hainan Island, China. J. Geogr. Sci. 2018, 28, 415–428. [Google Scholar] [CrossRef]
Data Type | Source | Spatial Resolution |
---|---|---|
Land use/land cover data (2003/2013/2023) | GlobeLand30 | 30 m |
Road and railway data (2003/2013/2023) | OpenStreetMap | Polyline |
Digital Elevation Model (DEM) | FathomDEM https://zenodo.org/records/14511570 (accessed on 30 April 2025) | 30 m |
Global meteorological stations | National Climatic Data Center (NCDC), USA | Point |
Multi-year average precipitation | Point | |
Multi-year average temperature | Point | |
Soil texture | Harmonized World Soil Database (HWSD)—China Soil Dataset (v1.1) | 1 km * |
Plantation and natural forest distribution [24] | Chinese Ecosystem Research Network (CERN) | 30 m |
Vegetation Net Primary Productivity (NPP) | Resource and Environmental Science and Data Center, Chinese Academy of Sciences | 500 m * |
Normalized Difference Vegetation Index (NDVI) | Geospatial Data Cloud | 30 m |
Nighttime lights (DMSP/OLS) | https://doi.org/10.7910/DVN/GIYGJU (accessed on 30 April 2025) | 1 km * |
Resistance Factor | Classification | Resistance Coefficient | Weight |
---|---|---|---|
Land Use * | Forest | 10 | 0.5 |
Grassland | 30 | ||
Water | 50 | ||
Cropland | 75 | ||
Construction/Transportation | 100 | ||
Slope | <5 | 1 | 0.25 |
5–10 | 10 | ||
10–20 | 50 | ||
20–30 | 75 | ||
>30 | 100 | ||
DEM (m) | <250 | 1 | 0.25 |
250–450 | 10 | ||
450–700 | 50 | ||
700–1000 | 75 | ||
>1000 | 100 |
State | Class Metrics | Landscape Metrics | Patch Metrics | |||||
---|---|---|---|---|---|---|---|---|
PD | ED | CONTAG | SHDI | LPI | COHESION | FRAC | PROX | |
2003-state1 | 2.2178 | 14.922 | 88.689 | 0.3073 | 76.6 | 99.9234 | 1.2741 | 402973 |
2003-state2 | 2.0571 | 14.606 | 89.4557 | 0.3127 | 39.6 | 99.8734 | 1.2471 | 1051221 |
2003-state3 | 2.0571 | 14.609 | 89.4533 | 0.3128 | 39.5 | 99.8728 | 1.2467 | 1051328 |
2013-state1 | 2.3839 | 15.978 | 88.5529 | 0.3069 | 77.2 | 99.925 | 1.2811 | 397414 |
2013-state2 | 2.2335 | 15.935 | 89.1338 | 0.3174 | 70.9 | 99.9128 | 1.2704 | 337670 |
2013-state3 | 2.2333 | 15.936 | 89.1329 | 0.3174 | 53.1 | 99.8879 | 1.2562 | 608069 |
2023-state1 | 2.6226 | 18.373 | 84.5392 | 0.3792 | 74.8 | 99.9212 | 1.2886 | 350956 |
2023-state2 | 2.6355 | 20.613 | 84.5487 | 0.4174 | 37.0 | 99.8076 | 1.2465 | 524054 |
2023-state3 | 2.6391 | 20.66 | 84.5099 | 0.4184 | 27.1 | 99.7648 | 1.2351 | 272684 |
KMO | 0.6 | |
---|---|---|
Bartlett Sphericity test | Approximate chi-square | 74.460 |
df | 6 | |
p-value | 0.000 |
Variable | VIF | Moran’s I | PC1 | PC2 |
---|---|---|---|---|
LPI | 1.281792 | 0.152 | 0.703 | −0.543 |
CONTAG | 1.275923 | 0.103 | 0.835 | 0.359 |
FRAC | 1.277192 | 0.874 | 0.805 | 0.515 |
PROX | 1.309766 | 0.655 | 0.725 | 0.558 |
Mean | Ste. Dev | Min | Max | |
---|---|---|---|---|
Intercept | 0.044 | 0.019 | −0.020 | 0.083 |
C1_PC1 | 0.079 | 0.082 | 0.004 | 0.386 |
C2_PC2 | 0.042 | 0.076 | −0.028 | 0.306 |
Local R2 | 0.126 | 0.115 | 0.001 | 0.535 |
Variety | lcDist | cwdToEucRatio | cwdToPathRatio |
---|---|---|---|
Original | 91604.349 | 16.2981 | 11.6071 |
Modified | 47589.123 | 8.4682 | 6.0334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Peng, Y.; Zhu, G.; Yue, F.; Zhao, X.; Fu, J. The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park. Forests 2025, 16, 1393. https://doi.org/10.3390/f16091393
Yang L, Peng Y, Zhu G, Yue F, Zhao X, Fu J. The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park. Forests. 2025; 16(9):1393. https://doi.org/10.3390/f16091393
Chicago/Turabian StyleYang, Letong, Yuting Peng, Gaoru Zhu, Fuqing Yue, Xueyan Zhao, and Jiliang Fu. 2025. "The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park" Forests 16, no. 9: 1393. https://doi.org/10.3390/f16091393
APA StyleYang, L., Peng, Y., Zhu, G., Yue, F., Zhao, X., & Fu, J. (2025). The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park. Forests, 16(9), 1393. https://doi.org/10.3390/f16091393