Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies
Simple Summary
Abstract
1. Introduction
2. Key Functional Properties of Wool Fibre
2.1. Thermal and Acoustic Insulation
2.2. Moisture Regulation
2.3. Chemical and Odour Absorption
2.4. Fire Resistance and Safety
2.5. UV Shielding
2.6. Durability, Elasticity and Resilience
3. Health and Environmental Benefits of Wool
3.1. Health and Wellbeing
3.1.1. Skin Health
3.1.2. Sleep Quality
3.2. Environmental Sustainability
4. Structural Basis of Wool’s Functional Properties
4.1. The Cuticle: The Surface Structure and Protective Outer Layer
4.2. The Cortex: Internal Architecture and Contribution to Fibre Performance
4.3. Microstructural Organisation Within Cortical Cells
5. Molecular Genetics of Wool Fibre Traits
5.1. Wool Keratin Genes
5.2. Keratin-Associated Protein Genes
5.3. Integrated Effects of Keratin and KAP Genes
6. Genetic Strategies for Improving Wool Quality
6.1. Genetic Modification: High Potential, Limited Progress
6.1.1. Early Transgenic Experiments
6.1.2. The Potential of CRISPR/Cas Editing for Wool Trait Improvement
6.1.3. Molecular Complexity and Knowledge Gaps in Wool Genetic Modification
6.2. Genetic Selection: Practical Approaches, Ongoing Challenges
6.2.1. Ensuring Biological Plausibility in Gene–Trait Associations
6.2.2. Choosing the Appropriate Level of Genetic Variation
6.2.3. Integrating Genetic Markers into Breeding Programmes
7. Trade-Offs and Synergies in Wool Trait Improvement
7.1. Trade-Offs and Synergies Among Wool Traits
7.2. Potential Effects of Wool Trait Selection on Production and Reproductive Traits
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuffner, H.; Popescu, C. Wool fibres. In Handbook of Natural Fibres; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publisher: Cambridge, UK, 2012; Volume 1, pp. 171–195. [Google Scholar]
- Wool Notes, Issue 3, A Summary of Wool Textile Information, Including Notes and Interesting Wool Facts. 2024. International Wool Textile Organisation 2024. Available online: https://iwto.org/sheep-wool/about-sheep/ (accessed on 18 September 2025).
- Datta, M.; Basu, G.; Das, S. Wool, a natural biopolymer: Extraction and structure–property relationships. In Handbook of Natural Polymers; Sreekala, M.S., Ravindran, L., Goda, K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 441–469. [Google Scholar]
- Latif, E. A review of low energy thermal insulation materials for building applications. In Proceedings of the 2nd International Conference on Green Energy and Environmental Technology (ICGEET), Bangkok, Thailand, 7–8 February 2020. [Google Scholar]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Ormondroyd, G.; Curling, S.; Mansour, E.; Hill, C. The water vapour sorption characteristics and kinetics of different wool types. J. Text. Inst. 2017, 108, 1198–1210. [Google Scholar] [CrossRef]
- Why Wool Feels warm. My Textile Notes. Available online: https://mytextilenotes.blogspot.com/2009/10/why-wool-feels-warm.html (accessed on 15 July 2025).
- Mansour, E. Wool Fibres for the Sorption of Volatile Organic Compounds (VOCs) from Indoor Air. Ph.D. Thesis, Bangor University, Gwynedd, UK, 2018. [Google Scholar]
- McNeil, S. The Removal of Indoor air Contaminants by Wool Textiles. Technical Bulletin, 2015. Available online: https://www.researchgate.net/profile/Steve-Mcneil/publication/353757473_The_Removal_of_Indoor_Air_Contaminants_by_Wool_Textiles/links/610f02bf0c2bfa282a2f469c/The-Removal-of-Indoor-Air-Contaminants-by-Wool-Textiles.pdf (accessed on 5 August 2025).
- Johnson, N.; Wood, E.; Ingham, P.; McNeil, S.; McFarlane, I. Wool as a technical fibre. J. Text. Inst. 2003, 94, 26–41. [Google Scholar] [CrossRef]
- Sid Masri, M.; Reuter, F.W.; Friedman, M. Interaction of wool with metal cations. Text. Res. J. 1974, 44, 298–300. [Google Scholar] [CrossRef]
- Laurie, S.H.; Barraclough, A. Use of waste wool for the removal of mercury from industrial effluents, particularly those from the chlor-alkali industry. Int. J. Environ. Stud. 1979, 14, 139–149. [Google Scholar] [CrossRef]
- Allahkarami, E.; Allahkarami, E.; Rezai, B. A brief review on utilizing natural adsorbents for microplastic removal from wastewater: A sustainable approach to environmental protection. Results Eng. 2025, 27, 106441. [Google Scholar] [CrossRef]
- International Wool Textile Organisation. Wool & Fire. Available online: https://iwto.org/wp-content/uploads/2020/04/IWTO_Wool-Fire.pdf (accessed on 15 July 2025).
- London Fire Brigade. Firefighters’ uniforms. London Fire Brigade Museum. Available online: https://www.london-fire.gov.uk/museum/london-fire-brigade-history-and-stories/equipment-and-uniforms/firefighters-uniforms/ (accessed on 15 July 2025).
- Gambichler, T.; Rotterdam, S.; Altmeyer, P.; Hoffmann, K. Protection against ultraviolet radiation by commercial summer clothing: Need for standardised testing and labelling. BMC Dermatol. 2001, 1, 6. [Google Scholar] [CrossRef]
- CHARACTERISTICS OF WOOL Fact Sheet. Available online: https://www.wool.ca/images/uploads/files/care/wool-fact-sheets-charcteristics.pdf (accessed on 16 July 2025).
- Su, J.; Dailey, R.; Zallmann, M.; Leins, E.; Taresch, L.; Donath, S.; Heah, S.; Lowe, A. Determining effects of superfine sheep wool in INfantile eczema (DESSINE): A randomized paediatric crossover study. Brit. J. Dermatol. 2017, 177, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Spelman, L.; Supranowicz, M.J.; Davidson, K.A.; Johnston, J.J.; Yau, B.; Holland, T.L. An investigator blinded, clinical trial assessing the efficacy of superfine merino wool base layer garments (SMWBG) in children with atopic dermatitis (AD) measuring SCORAD1, EASI2, POEM3 and DSA4 scores. Biomed. J. Sci. Tech. Res. 2018, 7, 5687–5693. [Google Scholar] [CrossRef]
- Fowler, J.F.; Fowler, L.M.; Lorenz, D. Effects of merino wool on atopic dermatitis using clinical, quality of life, and physiological outcome measures. Dermatitis 2019, 30, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Zallmann, M.; Smith, P.K.; Tang, M.L.; Spelman, L.J.; Cahill, J.L.; Wortmann, G.; Katelaris, C.H.; Allen, K.J.; Su, J.C. Debunking the myth of wool allergy: Reviewing the evidence for immune and non-immune cutaneous reactions. Acta Derm. Venereol. 2017, 97, 906–915. [Google Scholar] [CrossRef]
- Shin, M.; Halaki, M.; Swan, P.; Ireland, A.H.; Chow, C.M. The effects of fabric for sleepwear and bedding on sleep at ambient temperatures of 17 °C and 22 °C. Nat. Sci. Sleep 2016, 8, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.M.; Shin, M.; Mahar, T.J.; Halaki, M.; Ireland, A. The impact of sleepwear fiber type on sleep quality under warm ambient conditions. Nat. Sci. Sleep 2019, 11, 167–178. [Google Scholar] [CrossRef]
- Li, X.; Halaki, M.; Chow, C.M. How do sleepwear and bedding fibre types affect sleep quality: A systematic review. J. Sleep Res. 2024, 33, e14217. [Google Scholar] [CrossRef]
- The Woolmark Company. (n.d.). Where Does Carbon Come From? Available online: https://www.woolmark.com/globalassets/_06-new-woolmark/_industry/research/factsheets/gd2405-where-does-carbon-come-from_122.pdf (accessed on 16 July 2025).
- Wiedemann, S.G.; Biggs, L.; Nebel, B.; Bauch, K.; Laitala, K.; Klepp, I.G.; Swan, P.G.; Watson, K. Environmental impacts associated with the production, use, and end-of-life of a woollen garment. Int. J. Life Cycle Assess. 2020, 25, 1486–1499. [Google Scholar] [CrossRef]
- Allen, M.R.; Shine, K.P.; Fuglestvedt, J.S.; Millar, R.J.; Cain, M.; Frame, D.J.; Macey, A.H. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Clim. Atmos. Sci. 2018, 1, 16. [Google Scholar] [CrossRef]
- Hodgson, A.; Leighs, S.J.; van Koten, C. Compostability of wool textiles by soil burial. Text. Res. J. 2023, 93, 3692–3702. [Google Scholar] [CrossRef]
- Collie, S.; Brorens, P.; Hassan, M.M.; Fowler, I. Marine biodegradation behavior of wool and other textile fibers. Water Air Soil Poll. 2024, 235, 283. [Google Scholar] [CrossRef]
- Laitala, K.; Klepp, I.G. Wool wash: Technical performance and consumer habits. Tenside Surfact. Det. 2016, 53, 458–468. [Google Scholar] [CrossRef]
- Caven, B.; Redl, B.; Bechtold, T. An investigation into the possible antibacterial properties of wool fibers. Text. Res. J. 2018, 89, 510–516. [Google Scholar] [CrossRef]
- Rippon, J.A. The structure of wool. In The Coloration of Wool and Other Keratin Fibres; Lewis, D.M., Rippon, J.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–42. [Google Scholar]
- Connell, D.L. Chapter 11. Wool finishes: The control of shrinkage. In Textile Finishing; Heywood, D., Ed.; Society of Dyers and Colourists: Hampshire, UK, 2003; pp. 372–397. [Google Scholar]
- Mercer, E. The relation between external shape and internal structure of wool fibers. Text. Res. J. 1954, 24, 39–43. [Google Scholar] [CrossRef]
- Harland, D.P.; Vernon, J.A.; Woods, J.L.; Nagase, S.; Itou, T.; Koike, K.; Scobie, D.A.; Grosvenor, A.J.; Dyer, J.M.; Clerens, S. Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. J. Exp. Biol. 2018, 221, jeb172312. [Google Scholar] [CrossRef]
- Zhou, H.; Bai, L.; Li, S.; Li, W.; Wang, J.; Tao, J.; Hickford, J.G. Genetics of wool and cashmere fibre: Progress, challenges, and future research. Animals 2024, 14, 3228. [Google Scholar] [CrossRef]
- Powell, B.C.; Rogers, G.E. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997, 78, 59–148. [Google Scholar]
- Plowman, J.E.; Paton, L.N.; Bryson, W.G. The differential expression of proteins in the cortical cells of wool and hair fibres. Exp. Dermatol. 2007, 16, 707–714. [Google Scholar] [CrossRef]
- Rippon, J.A.; Evans, D.J. Improving the properties of natural fibres by chemical treatments. In Handbook of Natural Fibres; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 245–321. [Google Scholar]
- Popescu, C.; Höcker, H. Hair—The most sophisticated biological composite material. Chem. Soc. Rev. 2007, 36, 1282–1291. [Google Scholar] [CrossRef]
- Leeder, J.D. Wool: Nature’s Wonder Fibre; Australasian Textiles Publishers: Victoria, Australia, 1984. [Google Scholar]
- Rishikaysh, P.; Dev, K.; Diaz, D.; Qureshi, W.M.; Filip, S.; Mokry, J. Signaling involved in hair follicle morphogenesis and development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Jia, K.; Xu, X.; Li, Y.; Zhao, Y.; Zhang, X.; Zhang, J.; Liu, G.; Deng, S.; et al. Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep. Cell Death Dis. 2020, 11, 407. [Google Scholar] [CrossRef]
- Xu, X.L.; Wu, S.J.; Qi, S.Y.; Chen, M.M.; Liu, Z.M.; Zhang, R.; Zhao, Y.; Liu, S.Q.; Zhou, W.D.; Zhang, J.L.; et al. Increasing GSH-Px activity and activating Wnt pathway promote fine wool growth in FGF5-edited sheep. Cells 2024, 13, 985. [Google Scholar] [CrossRef]
- Lv, X.; Chen, L.; He, S.; Liu, C.; Han, B.; Liu, Z.; Yusupu, M.; Blair, H.; Kenyon, P.; Morris, S.; et al. Effect of nutritional restriction on the hair follicles development and skin transcriptome of Chinese Merino sheep. Animals 2020, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Xavier, S.P.; Gordon-Thomson, C.; Wynn, P.C.; McCullagh, P.; Thomson, P.C.; Tomkins, L.; Mason, R.S.; Moore, G.P. Evidence that Notch and Delta expressions have a role in dermal condensate aggregation during wool follicle initiation. Exp. Dermatol. 2013, 22, 659–662. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.; Ma, G.; Fu, S.; Chen, M.; Zhang, W.; Li, J. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus. BMC Genom. 2022, 23, 140. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, K.; Wang, Y.; Wang, Y.; Pan, C.; Sun, H.; Wang, J.; Li, X. Unlocking the genetic secrets of Dorper sheep: Insights into wool shedding and hair follicle development. Front. Vet. Sci. 2024, 11, 1489379. [Google Scholar] [CrossRef]
- Fraser, R.B.; Parry, D.A. Structural hierarchy of trichocyte keratin intermediate filaments. Adv. Exp. Med. Biol. 2018, 1054, 57–70. [Google Scholar]
- Powell, B.; Crocker, L.; Rogers, G. Hair follicle differentiation: Expression, structure and evolutionary conservation of the hair type II keratin intermediate filament gene family. Development 1992, 114, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.C.; Crocker, L.A.; Rogers, G.E. Complete sequence of a hair-like intermediate filament type II keratin gene. DNA Seq. 1993, 3, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.W.; Edwards, K.J.; Sleigh, M.J.; Byrne, C.R.; Ward, K.A. Complete sequence of a type-I microfibrillar wool keratin gene. Gene 1988, 73, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wildermoth, J.E.; Wallace, O.A.; Gordon, S.W.; Maqbool, N.J.; Maclean, P.H.; Nixon, A.J.; Pearson, A.J. Annotation of sheep keratin intermediate filament genes and their patterns of expression. Exp. Dermatol. 2011, 20, 582–588. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Gong, H.; Hickford, J.G. Variation in the ovine KRT34 promoter region affects wool traits. Small Rumin. Res. 2022, 206, 106586. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Gong, H.; Wang, J.; Luo, Y.; Hickford, J.G. Nucleotide variation in the ovine KRT31 promoter region and its association with variation in wool traits in Merino-cross lambs. J. Agric. Sci. 2019, 157, 182–188. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, F.; He, Z.; Sun, H.; Xi, Q.; Yu, X.; Ding, Y.; An, Z.; Wang, J.; Liu, X. Expression localization of the KRT32 gene and its association of genetic variation with wool traits. Curr. Issues Mol. Biol. 2024, 46, 2961–2974. [Google Scholar] [CrossRef]
- Sulayman, A.; Tursun, M.; Sulaiman, Y.; Huang, X.; Tian, K.; Tian, Y.; Xu, X.; Fu, X.; Mamat, A.; Tulafu, H. Association analysis of polymorphisms in six keratin genes with wool traits in sheep. Asian-Australas. J. Anim. Sci. 2018, 31, 775. [Google Scholar] [CrossRef]
- Sumner, R.; Forrest, R.; Zhou, H.; Henderson, H.; Hickford, J.G. Association of the KRT33A (formerly KRT1.2) gene with live-weight and wool characteristics in yearling Perendale sheep. Proc. N. Z. Soc. Anim. Prod. 2013, 73, 158–164. [Google Scholar]
- Chai, W.; Zhou, H.; Forrest, R.H.; Gong, H.; Hodge, S.; Hickford, J.G. Polymorphism of KRT83 and its association with selected wool traits in Merino-cross lambs. Small Rumin. Res. 2017, 155, 6–11. [Google Scholar] [CrossRef]
- Chai, W.; Zhou, H.; Gong, H.; Wang, C.; Hickford, J.G. Variation in the exon 3-4 region of ovine KRT85 and its effect on wool traits. Animals 2024, 14, 2272. [Google Scholar] [CrossRef]
- Li, W.; Bai, L.; Zhou, H.; Zhang, Z.; Ma, Z.; Wu, G.; Luo, Y.; Tanner, J.; Hickford, J.G. Ovine KRT81 variants and their influence on selected wool traits of commercial value. Genes 2024, 15, 681. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, S.; Zhou, H.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Li, M.; Zhao, Z.; Hao, Z. Spatiotemporal expression and haplotypes identification of KRT84 gene and their association with wool traits in Gansu Alpine Fine-Wool sheep. Genes 2024, 15, 248. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.A.; Schweizer, J. Human KAP genes, only the half of it? Extensive size polymorphisms in hair keratin-associated protein genes. J. Investig. Dermatol. 2005, 124, vii–ix. [Google Scholar] [CrossRef]
- Rogers, M.A.; Winter, H.; Langbein, L.; Wollschläger, A.; Praetzel-Wunder, S.; Jave-Suarez, L.F.; Schweizer, J. Characterization of human KAP24.1, a cuticular hair keratin-associated protein with unusual amino-acid composition and repeat structure. J. Investig. Dermatol. 2007, 127, 1197–1204. [Google Scholar] [CrossRef]
- Rogers, M.A.; Langbein, L.; Praetzel Wunder, S.; Giehl, K. Characterization and expression analysis of the hair keratin associated protein KAP26.1. Brit. J. Dermatol. 2008, 159, 725–729. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Dyer, J.; Hickford, J.G.H. The sheep KAP8-2 gene, a new KAP8 family member that is absent in humans. SpringerPlus 2014, 3, 528. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G. Characterisation of an ovine keratin associated protein (KAP) gene, which would produce a protein rich in glycine and tyrosine, but lacking in cysteine. Genes 2019, 10, 848. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G. Identification of four new gene members of the KAP6 gene family in sheep. Sci. Rep. 2016, 6, 24074. [Google Scholar] [CrossRef]
- Zhou, H.; Li, W.; Bai, L.; Wang, J.; Luo, Y.; Li, S.; Hickford, J.G. Ovine KRTAP36-2: A new keratin-associated protein gene related to variation in wool yield. Genes 2023, 14, 2045. [Google Scholar] [CrossRef] [PubMed]
- Fratini, A.; Powell, B.C.; Hynd, P.I.; Keough, R.A.; Rogers, G.E. Dietary cysteine regulates the levels of messenger-rnas encoding a family of cysteine-rich proteins of wool. J. Investig. Dermatol. 1994, 102, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.J.; Powell, B.C. Differential expression of genes encoding a cysteine-rich keratin family in the hair cuticle. J. Investig. Dermatol. 1994, 103, 310–317. [Google Scholar] [CrossRef]
- MacKinnon, P.; Powell, B.; Rogers, G. Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. J. Cell Biol. 1990, 111, 2587–2600. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Wang, J.; Luo, Y.; Li, S.; Tao, J.; Hickford, J.G. The complexity of the ovine and caprine keratin-associated protein genes. Int. J. Mol. Sci. 2021, 22, 12838. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Zhou, H.; Gong, H.; Tao, J.; Hickford, J.G. Identification of ovine KRTAP28-1 and its association with wool fibre diameter. Animals 2019, 9, 142. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Li, S.; Luo, Y.; Hickford, J.G.H. A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. J. Anim. Breed. Genet. 2015, 132, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Luo, Y.; Hickford, J.G. Variation in the ovine KAP6-3 gene (KRTAP6-3) is associated with variation in mean fibre diameter-associated wool traits. Genes 2017, 8, 204. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Li, W.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G.H. Variation in ovine KRTAP8-1 is associated with variation in wool fibre staple strength and curvature. J. Agric. Sci. 2019, 157, 550–554. [Google Scholar] [CrossRef]
- Li, W.; Gong, H.; Zhou, H.; Wang, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G.H. Variation in the ovine keratin-associated protein 15-1 gene affects wool yield. J. Agric. Sci. 2018, 156, 922–928. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Liu, X.; Hu, J.; Luo, Y.; Hickford, J.G. Identification of the ovine keratin-associated protein 21-1 gene and its association with variation in wool traits. Animals 2019, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, H.; Gong, H.; Zhao, F.; Wang, J.; Liu, X.; Hu, J.; Luo, Y.; Hickford, J.G. The mean staple length of wool fibre is associated with variation in the ovine keratin-associated protein 21-2 gene. Genes 2020, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhou, H.; He, J.; Tao, J.; Hickford, J.G. Characterisation of three ovine KRTAP13 family genes and their association with wool traits in Chinese Tan sheep. Animals 2024, 14, 2862. [Google Scholar] [CrossRef] [PubMed]
- Itenge, T.; Hickford, J.; Forrest, R.; McKenzie, G.; Frampton, C. Association of variation in the ovine KAP1.1, KAP1.3 and K33 genes with wool traits. Int. J. Sheep Wool Sci. 2010, 58, 1. [Google Scholar]
- Farag, I.; Darwish, H.; Darwish, A.; Eshak, M.; Ahmed, R. Genetic polymorphism of KRT1.2 gene and its association with improving of some wool characteristics in Egyptian sheep. Asian J. Sci. Res. 2018, 11, 295–300. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Bai, L.; Li, W.; Li, S.; Wang, J.; Luo, Y.; Hickford, J.G. Associations between variation in the ovine high glycine-tyrosine keratin-associated protein gene KRTAP20-1 and wool traits. J. Anim. Sci. 2019, 97, 587–595. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, H.; Tao, J.; Hickford, J.G. Effects of KRTAP20-1 gene variation on wool traits in Chinese Tan sheep. Genes 2024, 15, 1060. [Google Scholar] [CrossRef]
- Rogers, G.R.; Hickford, J.G.H.; Bickerstaffe, R. Polymorphism in two genes for B2 high sulfur proteins of wool. Anim. Genet. 1994, 25, 407–415. [Google Scholar] [CrossRef]
- Zhou, H.; Visnovska, T.; Gong, H.; Schmeier, S.; Hickford, J.; Ganley, A.R. Contrasting patterns of coding and flanking region evolution in mammalian keratin associated protein-1 genes. Mol. Phylogenet. Evol. 2019, 133, 352–361. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, J.; Zhao, F.; He, Z.; Sun, H.; Wang, J.; Liu, X.; Li, S. Identification of the keratin-associated protein 22-2 gene in the Capra hircus and association of its variation with cashmere traits. Animals 2023, 13, 2806. [Google Scholar] [CrossRef]
- Li, S.; Xi, Q.; Zhao, F.; Wang, J.; He, Z.; Hu, J.; Liu, X.; Luo, Y. A highly polymorphic caprine keratin-associated protein gene identified and its effect on cashmere traits. J. Anim. Sci. 2021, 99, skab233. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J.; Zhou, H.; Hu, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G. Sequence variation in caprine kRTAP6-2 affects cashmere fiber diameter. Animals 2022, 12, 2040. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Hickford, J.G.; Zhao, M.; Gong, H.; Hao, Z.; Shen, J.; Hu, J.; Liu, X.; Li, S. Identification of caprine KRTAP28-1 and its effect on cashmere fiber diameter. Genes 2020, 11, 121. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Luo, Y.; Zhao, M.; Gong, H.; Hao, Z.; Hu, J.; Hickford, J.G. Variation in the caprine KAP24-1 gene affects cashmere fibre diameter. Animals 2019, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, S.I.; Atkins, K. Genetic evaluation of production traits between and within flocks of Merino sheep. I. Hogget fleece weights, body weight and wool quality. Crop Pasture Sci. 1989, 40, 433–443. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.; Gilmour, A. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Sheep Genetics. MERINOSELECT. Available online: https://www.sheepgenetics.org.au/resources/merinoselect/ (accessed on 4 August 2025).
- Australian Wool Innovation. MERINOSELECT ASBVs by Fibre Diameter and Their Genetic Trends; Beyond the Bale. Issue 101. Australian Wool Innovation Limited: Sydney, Australia, 2024; pp. 20–21. Available online: https://www.wool.com/globalassets/wool/beyond-the-bale/issue-101-december-2024/btb-2024_december_web.pdf (accessed on 18 September 2025).
- Powell, B.C.; Rogers, G.E. Cyclic hair-loss and regrowth in transgenic mice overexpressing an intermediate filament gene. EMBO J. 1990, 9, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.C.; Nesci, A.; Rogers, G.E. Regulation of keratin gene expression in hair follicle differentiation. Ann. N. Y. Acad. Sci. 1991, 642, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.E.; Powell, B.C. Organization and expression of hair follicle genes. J. Investig. Dermatol. 1993, 101, 50S–55S. [Google Scholar] [CrossRef]
- Keough, R.; Powell, B.; Rogers, G. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype. J. Cell Sci. 1995, 108, 957–966. [Google Scholar] [CrossRef]
- Powell, B.; Walker, S.; Bawden, C.; Sivaprasad, A.; Rogers, G. Transgenic sheep and wool growth: Possibilities and current status. Reprod. Fertil. Dev. 1994, 6, 615–623. [Google Scholar] [CrossRef]
- Bawden, C.S.; Powell, B.C.; Walker, S.K.; Rogers, G.E. Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure. Transgenic Res. 1998, 7, 273–287. [Google Scholar] [CrossRef]
- Bawden, C.; Penno, N.; Walker, S.; Hynd, P.; Rogers, G. Genetic manipulation to modify wool properties and fibre growth rates. Proc. New Zealand Soc. Anim. Prod. 2000, 60, 147–154. [Google Scholar]
- Damak, S.; Su, H.Y.; Jay, N.P.; Bullock, D.W. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology 1996, 14, 185–188. [Google Scholar] [CrossRef]
- Su, H.Y.; Jay, N.; Gourley, T.; Kay, G.; Damak, S. Wool production in transgenic sheep: Results from first-generation adults and second-generation lambs. Anim. Biotech. 1998, 9, 135–147. [Google Scholar] [CrossRef]
- Adams, N.; Briegel, J. Multiple effects of an additional growth hormone gene in adult sheep. J. Anim. Sci. 2005, 83, 1868–1874. [Google Scholar] [CrossRef]
- Andl, T.; Reddy, S.T.; Gaddapara, T.; Millar, S.E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2002, 2, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Celso, C.L.; Prowse, D.M.; Watt, F.M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 2004, 131, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Jackson, B.; Schneider, P.; Overbeek, P.A.; Headon, D.J. Generation of the primary hair follicle pattern. Proc. Natl. Acad. Sci. USA 2006, 103, 9075–9080. [Google Scholar] [CrossRef]
- Sick, S.; Reinker, S.; Timmer, J.; Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 2006, 314, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Liu, C.X.; Zhang, X.M.; Chen, L.; Peng, X.R.; He, S.G.; Lin, J.P.; Han, B.; Wang, L.Q.; Huang, J.C.; et al. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J. 2017, 284, 2764–2773. [Google Scholar] [CrossRef]
- He, D.; Chen, L.; Luo, F.; Zhou, H.; Wang, J.; Zhang, Q.; Lu, T.; Wu, S.; Hickford, J.G.; Tao, J. Differentially phosphorylated proteins in the crimped and straight wool of Chinese Tan sheep. J. Proteomics 2021, 235, 104115. [Google Scholar] [CrossRef]
- Soller, M. Marker assisted selection—An overview. Anim. Biotech. 1994, 5, 193–207. [Google Scholar] [CrossRef]
- Gutierrez-Reinoso, M.A.; Aponte, P.M.; Garcia-Herreros, M. Genomic analysis, progress and future perspectives in dairy cattle selection: A review. Animals 2021, 11, 599. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sharma, N.; Kour, S.; Sodhi, S.S.; Gupta, M.K.; Lee, S.J.; Son, Y.O. Applications of omics technology for livestock selection and improvement. Front. Genet. 2022, 13, 774113. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B.; Dutt, T.; Mishra, B.P. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest. Sci. 2021, 243, 104367. [Google Scholar] [CrossRef]
- Sunnucks, P.; Wilson, A.C.; Beheregaray, L.B.; Zenger, K.; French, J.; Taylor, A.C. SSCP is not so difficult: The application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Ecol. 2000, 9, 1699–1710. [Google Scholar] [CrossRef]
- Sheep Genetics, University of New England, Armidale NSW. Available online: https://www.sheepgenetics.org.au/about-us/ (accessed on 18 September 2025).
- Lincoln University Gene-Marker Laboratory, Canterbury, New Zealand. Available online: https://research.lincoln.ac.nz/testing-analytical-services/gene-marker-lab (accessed on 18 September 2025).
- National Research Council. Changes in the Sheep Industry in the United States: Making the Transition from Tradition; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Wuliji, T.; Dodds, K.; Land, J.; Andrews, R.; Turner, P. Selection for ultrafine Merino sheep in New Zealand: Heritability, phenotypic and genetic correlations of live weight, fleece weight and wool characteristics in yearlings. Anim. Sci. 2001, 72, 241–250. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.; Gilmour, A.; Atkins, K.; Mortimer, S.; Swan, A.; Brien, F.; Greeff, J.; Van Der Werf, J. Genetic correlations among and between wool, growth and reproduction traits in Merino sheep. J. Anim. Breed. Genet. 2007, 124, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Huisman, A.; Brown, D. Genetic parameters for bodyweight, wool, and disease resistance and reproduction traits in Merino sheep. 3. Genetic relationships between ultrasound scan traits and other traits. Anim. Prod. Sci. 2009, 49, 283–288. [Google Scholar] [CrossRef]
- Mortimer, S.; Taylor, P.; Atkins, K.; Pope, C. The Trangie QPLU $ selection lines: Responses in clean fleece weight and fibre diameter on completion of ten rounds of selection. In Trangie QPLUS Merinos, Proceedings of the Trangie QPLUS Open Day, Trangie Agricultural Research Centre, Trangie, Australia, 11 May 2006; NSW Department of Primary Industries: Orange, Australia, 2006; pp. 7–11. [Google Scholar]
- Ramos, Z.; Blair, H.T.; De Barbieri, I.; Ciappesoni, G.; Montossi, F.; Kenyon, P.R. Productivity and reproductive performance of mixed-age ewes across 20 years of selection for ultrafine wool in Uruguay. Agriculture 2021, 11, 712. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Hodge, S.; Dyer, J.M.; Hickford, J.G. Association of wool traits with variation in the ovine KAP1-2 gene in Merino cross lambs. Small Rumin. Res. 2015, 124, 24–29. [Google Scholar] [CrossRef]
- Mortimer, S.; Hatcher, S.; Fogarty, N.; van der Werf, J.; Brown, D.; Swan, A.; Jacob, R.; Geesink, G.; Hopkins, D.; Edwards, J.H. Genetic correlations between wool traits and carcass traits in Merino sheep. J. Anim. Sci. 2017, 95, 2385–2398. [Google Scholar] [CrossRef]
- Mortimer, S.; Hatcher, S.; Fogarty, N.; Van Der Werf, J.; Brown, D.; Swan, A.; Greeff, J.; Refshauge, G.; Edwards, J.H.; Gaunt, G. Genetic parameters for wool traits, live weight, and ultrasound carcass traits in Merino sheep. J. Anim. Sci. 2017, 95, 1879–1891. [Google Scholar]
- Hanford, K.J.; Van Vleck, L.D.; Snowder, G. Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Columbia sheep. J. Anim. Sci. 2002, 80, 3086–3098. [Google Scholar] [CrossRef]
- Hanford, K.J.; Van Vleck, L.D.; Snowder, G. Estimates of genetic parameters and genetic change for reproduction, weight, and wool characteristics of Targhee sheep. J. Anim. Sci. 2003, 81, 630–640. [Google Scholar] [CrossRef]
- Mortimer, S.; Hatcher, S.; Fogarty, N.; Van Der Werf, J.; Brown, D.; Swan, A.; Jacob, R.; Geesink, G.; Hopkins, D.; Edwards, J.H. Genetic correlations between wool traits and meat quality traits in Merino sheep. J. Anim. Sci. 2017, 95, 4260–4273. [Google Scholar] [CrossRef]
- Sheep Central. Research Shows Good Eating Quality and Wool is Possible. 2023. Available online: https://www.sheepcentral.com/research-shows-good-eating-quality-and-wool-is-possible/ (accessed on 23 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Bai, L.; Li, S.; Wang, J.; Hickford, J.G.H. Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies. Animals 2025, 15, 2790. https://doi.org/10.3390/ani15192790
Zhou H, Bai L, Li S, Wang J, Hickford JGH. Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies. Animals. 2025; 15(19):2790. https://doi.org/10.3390/ani15192790
Chicago/Turabian StyleZhou, Huitong, Lingrong Bai, Shaobin Li, Jiqing Wang, and Jon G. H. Hickford. 2025. "Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies" Animals 15, no. 19: 2790. https://doi.org/10.3390/ani15192790
APA StyleZhou, H., Bai, L., Li, S., Wang, J., & Hickford, J. G. H. (2025). Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies. Animals, 15(19), 2790. https://doi.org/10.3390/ani15192790