Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = bud differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2931 KB  
Article
The Anthocyanin Composition and Key Regulatory Genes Underlying the Color Variation Between Potato Tuber Bud Eyes and Periderm
by Xijuan Zhao, Chenxi Li, Shengxuan Liu, Zhuang Xiong, Xiaojian Zhang, Qian Li, Botao Song, Huiling Zhang and Xinxi Hu
Plants 2026, 15(2), 226; https://doi.org/10.3390/plants15020226 - 11 Jan 2026
Viewed by 282
Abstract
The pigmentation patterns of potato tubers are complex and diverse, often exhibiting significant tissue specificity. This study was conducted to elucidate the molecular mechanisms underlying the differential pigmentation in different parts of potato tubers using two cultivars, ‘Huashu 12’ and 15EM36-26, which exhibit [...] Read more.
The pigmentation patterns of potato tubers are complex and diverse, often exhibiting significant tissue specificity. This study was conducted to elucidate the molecular mechanisms underlying the differential pigmentation in different parts of potato tubers using two cultivars, ‘Huashu 12’ and 15EM36-26, which exhibit opposite pigmentation patterns between the bud eyes and the tuber periderm. Metabolomic analysis revealed that cyanidin, pelargonidin, and malvidin are the key anthocyanin components responsible for the observed pigmentation differences. A total of 118 common differentially expressed genes in the differentially pigmented tissues of both cultivars were identified in transcriptomic analysis, including key structural genes of the anthocyanin biosynthesis pathway (such as StPAL, StCHS, and StDFR). Weighted gene co-expression network analysis was further employed to screen modules significantly correlated with pigmentation phenotypes, and 28 candidate genes associated with anthocyanin biosynthesis were identified. Expression validation demonstrated that the expression of StbHLH14 was significantly higher in non-pigmented tissues compared to pigmented tissues. Functional analysis revealed that StbHLH14 can inhibit the activation of structural gene promoters (such as StCHS and StDFR) via the MYB transcription factor StAN2, thereby negatively regulating anthocyanin biosynthesis. This study unveils the metabolic and transcriptional basis of tissue-specific pigmentation in potato tubers and clarifies the negative regulatory role of StbHLH14. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

21 pages, 13341 KB  
Article
Metabolomics and Transcriptomics Analyses Explore the Genes Related to the Biosynthesis of Antioxidant Active Ingredient Isoquercetin
by Liyan Cui, Jiaoli Yang, Rui Yuan, Shuting Wang, Zhennan Ma, Defu Wang and Yanbing Niu
Foods 2026, 15(2), 218; https://doi.org/10.3390/foods15020218 - 8 Jan 2026
Viewed by 209
Abstract
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems [...] Read more.
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems and leaves at different growth stages (flowerless stage, flower bud stage, flowering stage, green fruit stage, mature fruit staged, and withering stage), and a regulation analysis was conducted on its differentially expressed genes and differentially accumulated metabolites. The results showed that five hub genes, PAL, CHI, AMIE, CAD, and PRX, were found to play a central regulatory role in flavonoid biosynthesis. The combined analysis of transcriptomics and metabolomics constructed a flavonoid metabolic regulatory network during the growth and development of A. membranaceus stems and leaves. At the same time, based on the significant antioxidant activity of isoquercitrin, three genes that may be related to isoquercitrin biosynthesis were screened, namely IF7MAT, FG3, and UGT78D2. The results of this study provide insights into the biosynthesis and comprehensive development and utilization of flavonoids in A. membranaceus. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 3648 KB  
Article
Functional Characterization of Floral Gene Network Reveals a Critical FT1–AP1 Interaction in Flowering Regulation in Longan
by Yuru Tang, Yating Xu, Haoming Mao, Yawen Xu, Jianling Pan, Shaoquan Zheng, Guochun Zhao, Wenshun Hu and Ray Ming
Plants 2026, 15(1), 106; https://doi.org/10.3390/plants15010106 - 30 Dec 2025
Viewed by 383
Abstract
Longan (Dimocarpus longan Lour.) is a commercially valuable tropical fruit crop that contains two antagonistic FLOWERING LOCUS T (FT) homologs involved in regulating flowering time. However, how these FT genes interact with flowering regulators FLOWERING LOCUS D (FD) [...] Read more.
Longan (Dimocarpus longan Lour.) is a commercially valuable tropical fruit crop that contains two antagonistic FLOWERING LOCUS T (FT) homologs involved in regulating flowering time. However, how these FT genes interact with flowering regulators FLOWERING LOCUS D (FD) and APETALA1 (AP1) remains unknown. Four flowering-related genes in longan, DlFT1, DlFT2, DlAP1 and DlFD, were successfully isolated. Expression profiling revealed that all four genes were expressed in leaves and buds across different stages of natural and KClO3-induced floral bud differentiation. Functional characterization through heterologous overexpression in Arabidopsis thaliana showed that DlAP1 significantly promotes early flowering under long-day conditions and induced morphological changes in floral organs and leaves. In contrast, DlFD overexpression had no effect on flowering time. Subcellular localization assays revealed that DlFT1 and DlFT2 localized to both the nucleus and the plasma membrane, while DlAP1 and DlFD localized exclusively to the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses revealed a novel regulatory node: DlFT1 directly interacts with DlAP1, a finding that expands the classical FT-FD-AP1 flowering model. Additionally, DlFD interacts more strongly with DlFT1 than with DlFT2, whereas DlFT1 only interacts with DlAP1, but not DlFT2. These results demonstrate that DlFT1 promotes flowering not only via the conserved FD-dependent pathway but also through direct association with AP1. These findings advance our understanding of the regulatory mechanisms of flowering in longan and provide valuable insights into flowering pathways of perennial woody species. Full article
(This article belongs to the Special Issue Unraveling Complex Traits and Developmental Pathways of Forest Trees)
Show Figures

Figure 1

14 pages, 5312 KB  
Article
Heavy Fruit Load Inhibits the Development of Citrus Summer Shoots Primarily Through Competing for Carbohydrates
by Yin Luo, Yu-Jia Li, Yong-Zhong Liu, Yan-Mei Xiao, Hui-Fen Li and Shariq Mahmood Alam
Horticulturae 2026, 12(1), 14; https://doi.org/10.3390/horticulturae12010014 - 24 Dec 2025
Viewed by 325
Abstract
The excessive and random production of summer shoots poses significant challenges to pest and disease management and the improvement of fruit quality in citrus orchards. Although heavy fruit load has been observed to reduce summer shoot numbers, the mechanism is not well understood. [...] Read more.
The excessive and random production of summer shoots poses significant challenges to pest and disease management and the improvement of fruit quality in citrus orchards. Although heavy fruit load has been observed to reduce summer shoot numbers, the mechanism is not well understood. This study combined a field investigation with a de-fruiting experiment to demonstrate that significant negative correlation exists between fruit load and summer shoot numbers in citrus orchard. Metabolomic analysis further indicated that fruits at the cell expansion stage function as dominant carbohydrate sinks, attracting more soluble sugars. De-fruiting significantly elevated sugar content and upregulated the transcript levels of sink strength-related genes (Sucrose synthase, CsSUS4/5/6) by more than 3.0-fold in the axillary buds. Additionally, exogenous application of sugar-related DAMs (differentially accumulated metabolites), such as sucrose, significantly promoted axillary bud outgrowth. Taken together, our findings confirm that heavy fruit load suppresses shoot branching, primarily through competing for soluble sugars. This provides a physiological basis for managing summer shoots by regulating fruit load, offering a practical strategy to enhance citrus orchard management and the effectiveness of pest and disease control programs. Full article
Show Figures

Figure 1

24 pages, 4809 KB  
Article
Transcriptomics and Hormone-Targeted Metabolomics Reveal the Mechanisms Underlying Special Branching in Loquat
by Xinyu Li, Chaoyue Feng, Rong Su, Panhui Song, Xuemei Peng, Jiayun Zhou, Yuxing Li and Qunxian Deng
Agronomy 2026, 16(1), 37; https://doi.org/10.3390/agronomy16010037 - 22 Dec 2025
Viewed by 329
Abstract
Branching traits play a critical role in shaping the tree structure of fruit crops and directly influence both yield and fruit quality. Effective and well-managed branching is crucial for maximizing productivity. However, loquat trees typically exhibit weak branching ability, characterized by fewer and [...] Read more.
Branching traits play a critical role in shaping the tree structure of fruit crops and directly influence both yield and fruit quality. Effective and well-managed branching is crucial for maximizing productivity. However, loquat trees typically exhibit weak branching ability, characterized by fewer and longer bearing shoots, along with terminal flower buds, which collectively result in lower yields per unit area. Despite their significance, research on branching characteristics in loquat remains limited. To clarify the factors influencing branching and to provide a rational and effective direction for improving the inherently weak branching performance of current loquat cultivars, we selected the loquat varieties ‘Dawuxing’ and ‘Chunhua 1’, which exhibit significant differences in leaf and branch growth. Compared to ‘Dawuxing’, ‘Chunhua 1’ has longer branches, wider stem and leaf angles, fewer lateral branches, and a looser leaf cell structure. Transcriptome analysis of terminal buds at different developmental stages revealed that differentially expressed genes in the terminal buds of central branches from the spring and summer shoots of the two cultivars were enriched in the plant hormone signal transduction pathway. Hormone-targeted metabolomics identified significant differences in the levels of abscisic acid, auxins, cytokinins, gibberellins, jasmonic acid, and strigolactones in the terminal buds of both cultivars. Through integrated analysis, two candidate genes were identified as potential regulators of branching differences between the two cultivars: EVM0025028 (EjSAPK1), SnRK2 gene a core component of the abscisic acid signaling pathway, and EVM0040331 (EjRMS3), a D14 gene involved in encoding a strigolactone receptor. These findings provide valuable genetic resources for future research on branching regulation in Eriobotrya species and offer a theoretical foundation for enhancing branching management in loquat cultivation. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis of Horticultural Crop Resilience)
Show Figures

Figure 1

25 pages, 3827 KB  
Article
Unraveling the Formation Mechanism of Wax Powder on Broccoli Curds: An Integrated Physiological, Transcriptomic and Targeted Metabolomic Approach
by Qingqing Shao, Jianting Liu, Mindong Chen, Huangfang Lin, Saichuan Cheng, Biying Lin, Boyin Qiu, Honghui Lin and Haisheng Zhu
Horticulturae 2026, 12(1), 5; https://doi.org/10.3390/horticulturae12010005 - 19 Dec 2025
Viewed by 401
Abstract
As a vital appearance quality trait of broccoli, curd-surface wax powder not only affects its commercial value but also plays a key role in plant resistance to abiotic stresses. However, its formation mechanism remains unclear. Using low-wax variety CK (‘QH18’) and high-wax variety [...] Read more.
As a vital appearance quality trait of broccoli, curd-surface wax powder not only affects its commercial value but also plays a key role in plant resistance to abiotic stresses. However, its formation mechanism remains unclear. Using low-wax variety CK (‘QH18’) and high-wax variety T1 (‘QHMS4’) as materials, this study systematically elucidated the molecular mechanism of wax powder formation via physiological indexes, scanning electron microscopy (SEM), targeted metabolomics, and transcriptomics. Determination of fatty acid (FA) content in broccoli flower bud tissue showed a close association between FA content and wax deposition. SEM observation revealed that T1 had significantly denser wax crystals, mainly granular, than CK. Targeted metabolomics identified 25 fatty acids in the two varieties. And the linolenic and palmitic acids, with high content and significant differences, may be key metabolites regulating wax synthesis. Integrated transcriptomics and metabolomics indicated that BolfabG, BolLACS, BolKCS1, BolKCS2 and BolMAH1 genes are involved in wax biosynthesis. Moreover, AP2/ERF-ERF transcription factor (TF)-encoding genes (BolERF018, BolERF1F.1, BolERF1F.2 and BolERF1C) played the primary role in regulating wax biosynthesis, followed by NAC (BolNAC62.1), MYB (BolMYB44), and MADS-MIKC(BolPISTILLATA). These TFs may regulate BolfabG, BolLACS, BolKCS1, BolACOX2 and BolACAA1 to affect linolenic and palmitic acid balance, altering wax precursor synthesis and accumulation, and finally leading to differences in wax morphology and content. This study reveals a “Transcription Factors–Differentially Expressed Genes–Differentially Accumulated Metabolites–Fatty Acids” (TFs-DEGs-DAMs-FA) network, providing a basis for understanding broccoli wax formation. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

16 pages, 450 KB  
Review
From Genes to Malformations: Molecular Mechanisms Driving the Pathogenesis of Congenital Anomalies of the Kidney and Urinary Tract
by Maria Fourikou and John Dotis
Int. J. Mol. Sci. 2026, 27(1), 17; https://doi.org/10.3390/ijms27010017 - 19 Dec 2025
Viewed by 381
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are among the most common congenital malformations and the leading cause of chronic kidney disease in children. They arise when key steps in kidney development are disrupted, including ureteric bud induction, branching morphogenesis and [...] Read more.
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are among the most common congenital malformations and the leading cause of chronic kidney disease in children. They arise when key steps in kidney development are disrupted, including ureteric bud induction, branching morphogenesis and nephron progenitor differentiation. These processes depend on coordinated transcriptional programs, signaling pathways, ciliary function and proper extracellular matrix (ECM) organization. Advances in whole exome and whole genome sequencing, as well as copy number variation analysis, have expanded the spectrum of known monogenic causes. Pathogenic variants have now been identified in major transcriptional regulators and multiple ciliopathy-related genes. Evidence also points to defects in central signaling pathways and changes in ECM composition as contributors to CAKUT pathogenesis. Clinical presentations vary widely, shaped by modifying effects of genetic background, epigenetic regulation and environmental influences such as maternal diabetes and fetal hypoxia. Emerging tools, including human kidney organoids, gene-editing approaches and single-cell or spatial transcriptomics, allow detailed exploration of developmental mechanisms and validation of candidate pathways. Overall, CAKUT reflects a multifactorial condition shaped by interacting genetic, epigenetic and environmental determinants. Integrating genomic data with experimental models is essential for improving diagnosis, deepening biological insight and supporting the development of targeted therapeutic strategies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

15 pages, 3835 KB  
Article
High Temperature-Induced Suppression of Flower Bud Formation in Passion Fruit (Passiflora edulis f. flavicarpa)
by Xiuqing Wei, Yajun Tang, Weijie Huang, Ping Zhou, Liang Li, Dong Yu, Xujia Tang and Jiahui Xu
Horticulturae 2025, 11(12), 1526; https://doi.org/10.3390/horticulturae11121526 - 16 Dec 2025
Viewed by 417
Abstract
High temperature is a major environmental stress that severely limits passionfruit (Passiflora edulis) productivity by impairing floral initiation. However, the physiological and molecular mechanisms underlying this process remain poorly understood. In this study, we investigated the effects of varying durations and [...] Read more.
High temperature is a major environmental stress that severely limits passionfruit (Passiflora edulis) productivity by impairing floral initiation. However, the physiological and molecular mechanisms underlying this process remain poorly understood. In this study, we investigated the effects of varying durations and intensities of heat stress on flower bud differentiation in passionfruit. Our results showed that prolonged exposure to temperatures above 35 °C significantly delayed or completely inhibited bud formation, accompanied by altered carbohydrate and nitrogen metabolism, accumulation of osmolytes (soluble protein and proline), and dynamic changes in antioxidant enzyme activities (SOD, POD, CAT). Notably, short-term heat stress induced a transient increase in salicylic acid (SA) levels and upregulation of SA biosynthesis genes (PeEDS1.2, PeICS1) and WRKY transcription factors (PeWRKY11/15), which were associated with sustained floral initiation. In contrast, prolonged stress suppressed SA accumulation and signaling, leading to bud abortion. Comparative transcriptomic analysis further revealed enrichment of pathways related to secondary metabolite biosynthesis, plant hormone signal transduction, and phenylpropanoid biosynthesis under heat stress. These findings highlight the critical role of SA in balancing heat tolerance and reproductive development and provide candidate gene resources for the molecular breeding of heat-resistant passionfruit varieties. This study offers new insights into the thermotolerance mechanisms of fruit crops under sustained high-temperature stress. Full article
Show Figures

Figure 1

24 pages, 1671 KB  
Review
Authentication of Propolis: Integrating Chemical Profiling, Data Analysis and International Standardization—A Review
by Kristian Pastor, Slobodan Dolašević and Nataša Nastić
Foods 2025, 14(24), 4259; https://doi.org/10.3390/foods14244259 - 10 Dec 2025
Viewed by 683
Abstract
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis [...] Read more.
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis resins. This review synthesizes the latest primary studies and reviews addressing chemical markers identified through analytical platforms, such as TLC, HPTLC, HPLC, LC-MS, GC-MS, NMR, FTIR and ICP, often integrated with chemometrics and machine learning for authentication and standardization. Marker panels are linked to regional chemotypes, including poplar-type, Brazilian green, red and brown, Cuban variants, and stingless bee propolis. Fraud detection strategies using marker-based screening and spectral pattern recognition are also summarized. Multi-marker and chemometric approaches consistently differentiate botanical types, origins and commercial extracts. Common marker families include flavonoids (pinocembrin, chrysin, galangin), phenolic esters (CAPE, benzyl/allyl caffeates), prenylated cinnamates like artepillin C, lignans, and volatile terpenoids or benzenoids. Rapid screening by ATR-FTIR and NMR is often complemented with LC-MS for confirmatory quantitation. Propolis quality control is moving toward harmonized workflows combining FTIR/NMR/HPTLC screening with LC-MS verification and optional elemental or volatile profiling, paving the way for shared marker sets and international standards similar to those for honey. Full article
Show Figures

Figure 1

21 pages, 3116 KB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Metabolic Heterosis in Hybrid Tea Plants (Camellia sinensis)
by Yu Lei, Jihua Duan, Feiyi Huang, Ding Ding, Yankai Kang, Yi Luo, Yingyu Chen, Nianci Xie and Saijun Li
Genes 2025, 16(12), 1457; https://doi.org/10.3390/genes16121457 - 5 Dec 2025
Viewed by 477
Abstract
Background: Heterosis (hybrid vigor) is a fundamental phenomenon in plant breeding, but its molecular basis remains poorly understood in perennial crops such as tea (Camellia sinensis). This study aimed to elucidate the molecular mechanisms underlying heterosis in tea and its hybrids [...] Read more.
Background: Heterosis (hybrid vigor) is a fundamental phenomenon in plant breeding, but its molecular basis remains poorly understood in perennial crops such as tea (Camellia sinensis). This study aimed to elucidate the molecular mechanisms underlying heterosis in tea and its hybrids by performing integrated transcriptomic and metabolomic analyses of F1 hybrids derived from two elite cultivars, Fuding Dabaicha (FD) and Baojing Huangjincha 1 (HJC). Methods: Comprehensive RNA sequencing and widely targeted metabolomic profiling were conducted on the parental lines and F1 hybrids at the one-bud-one-leaf stage. Primary metabolites (including amino acids, nucleotides, saccharides, and fatty acids) were quantified, and gene expression profiles were obtained. Transcriptomic and metabolomic datasets were integrated using KEGG pathway enrichment and co-expression network analysis to identify coordinated molecular changes underlying heterosis. Results: Metabolomic profiling detected 977 primary metabolites, many of which displayed non-additive accumulation patterns. Notably, linoleic acid derivatives (9(S)-HODE, 13(S)-HODE) and nucleotides (guanosine, uridine) exhibited significant positive mid-parent heterosis. Transcriptomic analysis revealed extensive non-additive gene expression in F1 hybrids, and upregulated genes were enriched in fatty acid metabolism, nucleotide biosynthesis, and stress signaling pathways. Integrated analysis demonstrated strong coordination between differential gene expression and metabolite accumulation, especially in linoleic acid metabolism, cutin/suberine biosynthesis, and pyrimidine metabolism. Positive correlations between elevated fatty acid levels and transcript abundance of lipid metabolism genes suggest that the transcriptional remodeling of lipid pathways contributes to heterosis. Conclusions: These findings provide novel insights into tea plant heterosis and identify potential molecular targets for breeding high-quality cultivars. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement: 2025–2026)
Show Figures

Figure 1

20 pages, 3944 KB  
Article
Effects of Light Quality on Flowering and Physiological Parameters of Cymbidium ensifolium ‘Longyan Su’
by Luyu Xue, Yanru Duan, Xiuling Li, Chenye Li, Xiuming Chen, Fei Wang, Yulu Ji, Jinliao Chen, Yu Jiang, Zifu Liu, Ning Liu and Donghui Peng
Plants 2025, 14(23), 3670; https://doi.org/10.3390/plants14233670 - 2 Dec 2025
Viewed by 487
Abstract
As a highly valued orchid species, Cymbidium ensifolium (C. ensifolium) exhibits a natural flowering period mainly from July to September, which does not align with the market demand and shows low flowering quality, thereby significantly constraining the development of the C. [...] Read more.
As a highly valued orchid species, Cymbidium ensifolium (C. ensifolium) exhibits a natural flowering period mainly from July to September, which does not align with the market demand and shows low flowering quality, thereby significantly constraining the development of the C. ensifolium floriculture industry. To address this key issue, the study used C. ensifolium ‘Longyan Su’ as the experimental material, with white light as the control and composite light with varying ratios of red and blue light as the treatments, and investigated the influence of light quality on flowering. The results showed that blue light could significantly advance the flowering time, while red light could markedly improve the flower quality. Blue light promoted the accumulation of soluble protein and soluble sugar during flower bud differentiation, while red light enhanced their accumulation during floral organ development. During the flower bud differentiation and development stage, blue light increased the synthesis of abscisic acid (ABA) in leaves, and red light promoted the production of gibberellic acid (GA3) and zeatin riboside (ZR). The study provides an important foundation and reference for further analysis of the flowering mechanism of C. ensifolium under different light quality treatments, and also provides technical support for flowering regulation of orchids in practical production. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

11 pages, 908 KB  
Communication
Molecular Mechanisms Underlying Flower Bud Differentiation in Osmanthus fragrans Lour.
by Qinghua Yang, Min Zhang, Lin Chen and Xianrong Wang
Plants 2025, 14(23), 3577; https://doi.org/10.3390/plants14233577 - 23 Nov 2025
Viewed by 669
Abstract
Osmanthus fragrans, an evergreen tree or shrub belonging to the Oleaceae family, is widely utilized in landscaping, food processing, and the fragrance industry for its unique aroma and ornamental values. Through natural and artificial selection, O. fragrans has diverged into two horticultural [...] Read more.
Osmanthus fragrans, an evergreen tree or shrub belonging to the Oleaceae family, is widely utilized in landscaping, food processing, and the fragrance industry for its unique aroma and ornamental values. Through natural and artificial selection, O. fragrans has diverged into two horticultural groups: the Asiaticus Group, which blooms year-round, and the Autumn Flowering Group, characterized by concentrated flowering in autumn. This phenotypic diversity is paramount importance for enhancing landscape value, extending the harvest periods, and meeting commercial demands. However, current research on flowering period differences among O. fragrans cultivars primarily focuses on physiological traits such as flower bud differentiation and phenological traits, with limited studies at the genetic and molecular levels. This article summarized the research progress in the classification characteristics, flower bud differentiation stages and processes, and the molecular mechanisms of flowering in O. fragrans, with a particular emphasis on the key genes that influence environmental factors such as high temperature, low temperature, and drought on the flowering period, and the regulatory mechanisms underlying the repeated flowering of the Asiaticus Group. The aim is to provide a theoretical foundation for breeding new cultivars with varied flowering times. Future research on O. fragrans will employ multi-omics technologies to systematically elucidate the key genes, signaling pathways, and epigenetic networks that regulate flower bud differentiation. A primary objective is to elucidate the synergistic interactions between environmental factors and endogenous hormones, thereby establishing precise models for flowering regulation and guiding practical production applications of O. fragrans. Full article
Show Figures

Figure 1

27 pages, 7138 KB  
Article
Transcriptomics and Plant Hormone Analysis Reveal the Mechanism of Exogenous GA3 Promoting Reflowering of Phalaenopsis ‘Hatuyuki’
by Xiaohua Ma, Min Yang, Lei Feng, Qingdi Hu, Yaping Hu, Xule Zhang and Jian Zheng
Int. J. Mol. Sci. 2025, 26(22), 11069; https://doi.org/10.3390/ijms262211069 - 15 Nov 2025
Viewed by 569
Abstract
Phalaenopsis orchids are globally significant high-value ornamental flowers due to their strange flower shape, gorgeous color, and long flowering period. The successful implementation of reflowering technology is expected to double the economic value of the Phalaenopsis industry. This study selected the cultivated variety [...] Read more.
Phalaenopsis orchids are globally significant high-value ornamental flowers due to their strange flower shape, gorgeous color, and long flowering period. The successful implementation of reflowering technology is expected to double the economic value of the Phalaenopsis industry. This study selected the cultivated variety Phalaenopsis ‘Hatuyuki’ as the material to investigate the effects of exogenous gibberellin A3 (GA3) application (0, 50, 100, 150, and 200 mg/L) on its reflowering. Growth phenotype analysis indicates that exogenous GA3 significantly promotes the occurrence of reflowering in Phalaenopsis ‘Hatuyuki’ after the first flowering, specifically manifested in elongated leaves, flower bud differentiation, flower stalk growth, and an earlier onset of flowering. The application of exogenous GA3 significantly enhances the accumulation of starch, soluble sugars, and proteins in Phalaenopsis ‘Hatuyuki’, while inhibiting the synthesis of free fatty acids. Gibberellins (GA3, gibberellin A1 (GA1), and gibberellin A8 (GA8)), cytokinins (6-Benzyladenosine (BAPR) and Kinetin (K)), and indole-3-acetic acids (IAAs) (tryptamine (TRA), indole-3-acetic acid (IAA)) are the core endogenous hormones responding to exogenous GA3 spraying treatment. Transcriptome analysis identified a total of 3891 differentially expressed genes (DEGs). The KEGG enrichment analysis revealed that the most significantly enriched KEGG pathways included ‘Plant hormone signal transduction’. Key genes involved in the plant hormone signal transduction pathway (AUX, IAA, SAUR, DELLA, MYC2) were validated through qRT-PCR, suggesting that these genes may be crucial for the exogenous GA3 application that promotes the reflowering of Phalaenopsis ‘Hatuyuki’. Additionally, this study highlights 202 core DEGs responsive to exogenous GA3. Combined with the analysis of hormone signaling pathways, it provides a new perspective for uncovering the key molecular modules involved in GA3-regulated reflowering of Phalaenopsis ‘Hatuyuki’. Overall, the findings of this study indicate that exogenous GA3 application can promote the re-flowering of Phalaenopsis ‘Hatuyuki’. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 1930 KB  
Article
Comparative Transcriptome Analysis Provides Insight into the Effect of 6-BA on Flower Development and Flowering in Bougainvillea
by Xinggu Lin, Hong Chen, Miaomiao Sun, Xuelin Du, Sixian Zeng, Beiyi Guo, Seping Dai and Guofeng Liu
Plants 2025, 14(22), 3442; https://doi.org/10.3390/plants14223442 - 10 Nov 2025
Viewed by 693
Abstract
Bougainvillea spp. is a well-known ornamental plant that is widely applied in urban landscaping construction. The colorful bracts of Bougainvillea in full bloom become important for urban landscape during special festivals. Although flowering regulation measures of Bougainvillea attracted much attention, the underlying mechanism [...] Read more.
Bougainvillea spp. is a well-known ornamental plant that is widely applied in urban landscaping construction. The colorful bracts of Bougainvillea in full bloom become important for urban landscape during special festivals. Although flowering regulation measures of Bougainvillea attracted much attention, the underlying mechanism of flower bud differentiation and development remains poorly understood. Here, we induced flowering of Bougainvillea glabra ‘Sao Paulo’ under 6-BA treatment and conducted RNA sequencing data analysis to characterize the molecular regulatory mechanism of flower development in response to 6-BA. Transcriptome analysis indicated that a series of genes and transcription factors of cytokinin metabolism, flowering and floral development regulation, and photoperiod regulation were upregulated by the 6-BA treatment, including COL, AP2, FT, SOC1, LFY, SPL4, SPL9, and SPL13. Moreover, the expression of these important genes exhibited relatively high levels of thorns compared to apical buds, suggesting that flower bud differentiation probably starts with the thorns in Bougainvillea. This study confirms that 6-BA treatment at certain concentrations can promote flowering of Bougainvillea and provides insight into the regulatory mechanism of the growth regulator acting on early flowering of Bougainvillea. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

20 pages, 7183 KB  
Article
Differences in the Gene Regulatory Network for Floral Induction in Two Camellia Species
by Xiong Wang, Weixin Liu, Jiyuan Li, Hengfu Yin, Xinlei Li, Minyan Wang and Zhengqi Fan
Int. J. Mol. Sci. 2025, 26(22), 10854; https://doi.org/10.3390/ijms262210854 - 8 Nov 2025
Viewed by 458
Abstract
The formation of plant flower buds is regulated by various genes occurring upstream in floral induction pathways. However, the precise regulatory roles and underlying molecular mechanisms of these pathways in Camellia flower bud formation remain unclear. This study investigated the annual periodicity pattern [...] Read more.
The formation of plant flower buds is regulated by various genes occurring upstream in floral induction pathways. However, the precise regulatory roles and underlying molecular mechanisms of these pathways in Camellia flower bud formation remain unclear. This study investigated the annual periodicity pattern of flower bud formation in two Camellia species exhibiting distinct flowering phenotypes: Camellia azalea, which initiates flower buds continuously throughout the year, and Camellia japonica, which forms buds only between May and July. C. azalea helps address the lack of summer-flowering representatives within the Camellia genus. Elucidating its unique molecular mechanism of flowering regulation provides valuable guidance for breeding new cultivars with summer blooming traits. Comparative transcriptome analysis of mature leaves sampled annually from the two Camellia species revealed the highest number of differentially expressed genes (DEGs) in C. azalea between May and December, whereas in C. japonica, the peak number of DEGs occurred between June and December. Gene ontology analysis indicated that the most enriched category in the transcriptomes of both species was oxidoreductase activity, which was followed by cofactor binding in C. azalea, whereas in C. japonica, it was cellular amino acid metabolic process. Flowering-related genes were identified from the transcriptome database, yielding 248 transcripts in C. azalea and 257 in C. japonica. The transcriptome analysis also revealed that C. azalea lacks certain floral inhibitory pathways that are present in C. japonica, such as the photoperiod pathway genes including GI2, FKF1, and COL14 and the thermosensitive pathway gene SVP. The reliability of the transcriptome results was further validated by quantitative real-time PCR (qRT-PCR) analysis. These results suggest that differences in upstream regulatory mechanisms within the floral induction pathways of C. azalea and C. japonica may underlie the species-specific patterns in the annual distribution of flower bud formation. Full article
(This article belongs to the Special Issue Trees Genetics, Genomics, and Molecular Breeding)
Show Figures

Figure 1

Back to TopTop