Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,149)

Search Parameters:
Keywords = breaking news

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 620 KiB  
Article
Revisiting the Leontief Paradox in the Digital Era: Technological Specialization and Sustainable Development of Digital Service Trade
by Lin Zhang, Siyuan Chen and Ei Thinzar Min
Sustainability 2025, 17(15), 7163; https://doi.org/10.3390/su17157163 (registering DOI) - 7 Aug 2025
Abstract
To address the new challenges of sustainable international trade under the digital transformation, this study aims to explore the relevance and mechanism of the relationship between technological specialization and the sustainable development of digital service trade (focusing on economic sustainability). Based on panel [...] Read more.
To address the new challenges of sustainable international trade under the digital transformation, this study aims to explore the relevance and mechanism of the relationship between technological specialization and the sustainable development of digital service trade (focusing on economic sustainability). Based on panel data from 50 economies from 2006 to 2022, the core hypothesis of “whether technological specialization can enhance the sustainable competitiveness of digital service trade by optimizing the global value chain and industrial structure” is verified. An improved index of technological specialization is proposed, breaking through the limitations of traditional indicators, and for the first time introducing the dimension of “knowledge breadth,” reinterpreting the “Leontief Paradox” in the context of digital trade. The study finds that technological specialization significantly enhances the export of digital services, and the effect is more significant in countries with strict intellectual property protection, latecomers in technology, and the European region. Mechanically, this is achieved through improving the position in the global value chain and upgrading the industrial structure. This provides a theoretical breakthrough to solve the technology–trade paradox in the digital age and offers a path for latecomer economies to reconstruct competitive advantages and achieve sustainable development through technological specialization. Full article
Show Figures

Figure 1

22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Viewed by 4
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Biocontrol of Phage Resistance in Pseudomonas Infections: Insights into Directed Breaking of Spontaneous Evolutionary Selection in Phage Therapy
by Jumpei Fujiki, Daigo Yokoyama, Haruka Yamamoto, Nana Kimura, Manaho Shimizu, Hinatsu Kobayashi, Keisuke Nakamura and Hidetomo Iwano
Viruses 2025, 17(8), 1080; https://doi.org/10.3390/v17081080 - 4 Aug 2025
Viewed by 238
Abstract
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for [...] Read more.
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for innovative countermeasures to AMR, which will cause an estimated 10 million deaths annually by 2050. However, the emergence of phage-resistant variants presents challenges similar to AMR, thus necessitating a deeper understanding of phage resistance mechanisms and control strategies. The highest priority must be to prevent the emergence of phage resistance. Although phage cocktails targeting multiple receptors have demonstrated a certain level of phage resistance suppression, they cannot completely suppress resistance in clinical settings. This highlights the need for strategies beyond simple resistance suppression. Notably, recent studies examining fitness trade-offs associated with phage resistance have opened new avenues in phage therapy that offer the potential of restoring antibiotic susceptibility and attenuating pathogen virulence despite phage resistance. Thus, controlling phage resistance may rely on both its suppression and strategic redirection. This review summarizes key concepts in the control of phage resistance and explores evolutionary engineering as a means of optimizing phage therapy, with a particular focus on Pseudomonas infections. Harnessing evolutionary dynamics by intentionally breaking the spontaneous evolutionary trajectories of target bacterial pathogens could potentially reshape bacterial adaptation by acquisition of phage resistance, unlocking potential in the application of phage therapy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 1115 KiB  
Article
A Structured Causal Framework for Operational Risk Quantification: Bridging Subjective and Objective Uncertainty in Advanced Risk Models
by Guy Burstein and Inon Zuckerman
Mathematics 2025, 13(15), 2467; https://doi.org/10.3390/math13152467 - 31 Jul 2025
Viewed by 244
Abstract
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In [...] Read more.
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In this study, we propose a causality model that can improve the comprehension of risk levels by breaking down the risk factors and creating a layout of risk events and consequences in the system. To do so, the initial step is to define the risk event blocks, each comprising two distinct components: the agent and transfer mechanism. Next, we construct a causal map that outlines all risk event blocks and their logical connections, leading to the final consequential risk. Finally, we assess the overall risk based on the cause-and-effect structure. We conducted real-world illustrative examples comparing risk-level assessments with traditional experience-based auditor judgments to evaluate our proposed model. This new methodology offers several key benefits: it clarifies complex risk factors, reduces reliance on subjective judgment, and helps bridge the gap between subjective and objective uncertainty. The illustrative examples demonstrate the potential value of the model by revealing discrepancies in risk levels compared to traditional assessments. Full article
(This article belongs to the Special Issue Advances in Risk Models and Actuarial Science)
Show Figures

Figure 1

14 pages, 1859 KiB  
Article
Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States
by Jochen Knies, Gerrit Lohmann, Stijn De Schepper, Monica Winsborrow, Juliane Müller, Mohamed M. Ezat and Petra M. Langebroek
Challenges 2025, 16(3), 36; https://doi.org/10.3390/challe16030036 - 30 Jul 2025
Viewed by 257
Abstract
The Arctic Ocean is turning blue. Abrupt Arctic warming and amplification is driving rapid sea ice decline and irreversible deglaciation of Greenland. The already emerging, substantial consequences for the planet and society are intensifying and yet, model-based projections lack validatory consensus. To date, [...] Read more.
The Arctic Ocean is turning blue. Abrupt Arctic warming and amplification is driving rapid sea ice decline and irreversible deglaciation of Greenland. The already emerging, substantial consequences for the planet and society are intensifying and yet, model-based projections lack validatory consensus. To date, we cannot anticipate how a blue Arctic will respond to and amplify an increasingly warmer future climate, nor how it will impact the wider planet and society. Climate projections are inconclusive as we critically lack key Arctic geological archives that preserved the answers. This “Arctic Challenge” of global significance can only be addressed by investigating the processes, consequences, and impacts of past “greenhouse” (warmer-than-present) climate states. To address this challenge, the ERC Synergy Grant project Into the Blue (i2B) is undertaking a program of research focused on retrieving new Arctic geological archives of past warmth and key breakthroughs in climate model performance to deliver a ground-breaking, synergistic framework to answer the central question: “Why and what were the global ramifications of a “blue” (ice-free) Arctic during past warmer-than-present climates?” Here, we present the proposed research plan that will be conducted as part of this program. Into the Blue will quantify cryosphere (sea ice and land ice) change in a warmer world that will form the scientific basis for understanding the dynamics of Arctic cryosphere and ocean changes to enable the quantitative assessment of the impact of Arctic change on ocean biosphere, climate extremes, and society that will underpin future cryosphere-inclusive IPCC assessments. Full article
Show Figures

Figure 1

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 340
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

14 pages, 3767 KiB  
Article
Unveiling Replication Timing-Dependent Mutational Biases: Mechanistic Insights from Gene Knockouts and Genotoxins Exposures
by Hadas Gross-Samuels, Amnon Koren and Itamar Simon
Int. J. Mol. Sci. 2025, 26(15), 7307; https://doi.org/10.3390/ijms26157307 - 29 Jul 2025
Viewed by 260
Abstract
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in [...] Read more.
Replication timing (RT), the temporal order of DNA replication during S phase, influences regional mutation rates, yet the mechanistic basis for RT-associated mutagenesis remains incompletely defined. To identify drivers of RT-dependent mutation biases, we analyzed whole-genome sequencing data from cells with disruptions in DNA replication/repair genes or exposed to mutagenic compounds. Mutation distributions between early- and late-replicating regions were compared using bootstrapping and statistical modeling. We identified 14 genes that exhibit differential effects in early- or late-replicating regions, encompassing multiple DNA repair pathways, including mismatch repair (MLH1, MSH2, MSH6, PMS1, and PMS2), trans-lesion DNA synthesis (REV1) and double-strand break repair (DCLRE1A and PRKDC), DNA polymerases (POLB, POLE3, and POLE4), and other genes central to genomic instability (PARP1 and TP53). Similar analyses of mutagenic compounds revealed 19 compounds with differential effects on replication timing. These results establish replication timing as a critical modulator of mutagenesis, with distinct DNA repair pathways and exogenous agents exhibiting replication timing-specific effects on genomic instability. Our systematic bioinformatics approach identifies new DNA repair genes and mutagens that exhibit differential activity during the S phase. These findings pave the way for further investigation of factors that contribute to genome instability during cancer transformation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

31 pages, 1632 KiB  
Article
Climate Risks and Common Prosperity for Corporate Employees: The Role of Environment Governance in Promoting Social Equity in China
by Yi Zhang, Pan Xia and Xinjie Zheng
Sustainability 2025, 17(15), 6823; https://doi.org/10.3390/su17156823 - 27 Jul 2025
Viewed by 427
Abstract
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the [...] Read more.
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the coordinated development of climate governance and social equity. Employing data from companies listed on the Shanghai and Shenzhen stock exchanges from 2016 to 2023, a fixed-effects model analysis was conducted, and the results showed the following: (1) Climate risks are positively associated with the common prosperity of corporate employees in a significant way, and this effect is mainly achieved through employee guarantees, rather than employee remuneration or employment. (2) Climate risk will increase corporate financing constraints, but it will also force companies to improve their ESG performance. (3) The mechanism tests show that climate risks indirectly promote improvements in employee rights and interests by forcing companies to improve the quality of internal controls and audits. (4) The results of the moderating effect analysis show that corporate size and performance have a positive moderating effect on the relationship between climate risk and the common prosperity of corporate employees. This finding may indicate the transmission path of “climate pressure—governance upgrade—social equity” and suggest that climate governance may be transformed into social value through institutional changes in enterprises. This study breaks through the limitations of traditional research on the financial perspective of the economic consequences of climate risks, incorporates employee welfare into the climate governance assessment framework for the first time, expands the micro research dimension of common prosperity, provides a new paradigm for cross-research on ESG and social equity, and offers recommendations and references for different stakeholders. Full article
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Micro-Gas Flow Sensor Utilizing Surface Network Density Regulation for Humidity-Modulated Ion Transport
by Chuanjie Liu and Zhihong Liu
Gels 2025, 11(8), 570; https://doi.org/10.3390/gels11080570 - 23 Jul 2025
Viewed by 260
Abstract
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow [...] Read more.
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow sensor. Prepared by one-pot polymerization, PAA/Fe3+ forms a three-dimensional network through the entanglement of crosslinked and uncrosslinked PAA chains, where the coordination between Fe3+ and carboxyl groups endows the material with excellent mechanical properties (tensile strength of 80 kPa and elongation at break of 1100%). Experiments show that when a gas flow acts on the hydrogel surface, changes in surface humidity alter the density of the network structure, thereby regulating ion migration rates: the network loosens to promote ion transport during water absorption, while it tightens to hinder transport during water loss. This mechanism enables the sensor to exhibit significant resistance responses (ΔR/R0 up to 0.55) to gentle breezes (0–13 m/s), with a response time of approximately 166 ms and a sensitivity 40 times higher than that of bulk deformation. The surface ion transport model proposed in this study provides a new strategy for ultrasensitive gas flow sensing, showing potential application values in intelligent robotics, electronic skin, and other fields. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

19 pages, 5629 KiB  
Article
Achieving Net-Zero in Canada: Sectoral GHG Reductions Through Provincial Clustering and the Carbon Mitigation Initiative’s Stabilization Wedges Concept
by Alaba Boluwade
Sustainability 2025, 17(15), 6665; https://doi.org/10.3390/su17156665 - 22 Jul 2025
Viewed by 359
Abstract
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic [...] Read more.
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic sectors. A time series analysis was performed to understand the trajectory of the emissions profile from 1990 to 2023. Using the 2023 emissions as the baseline, a linear reduction, based on the GHG proportions from each jurisdiction, was performed and projected to 2050 (except for Prince Edward Island (PEI), where net zero was targeted for 2040). Moreover, a machine learning technique (k-means unsupervised algorithm) was used to group all the jurisdictions into homogeneous regions for national strategic climate policy initiatives. The within-cluster sum of squares identified the following clusters: Cluster 1: Manitoba (MB), New Brunswick, Nova Scotia, and Newfoundland and Labrador; Cluster 2: Alberta (AB); Cluster 3: Quebec (QC) and Saskatchewan; Cluster 4: Ontario (ON); and Cluster 5: PEI, Northwest Territories, Nunavut, and Northwest Territories. Considering the maximum GHG reductions needed per cluster (Clusters 1–5), the results show that 0.309 Mt CO2 eq/year, 5.447 Mt CO2 eq/year, 1.293 Mt CO2 eq/year, 2.217 Mt CO2 eq/year, and 0.04 Mt CO2 eq/year must be targeted from MB (transportation), AB (stationary combustion), QC (transportation), ON (stationary combustion) and PEI (transportation), respectively. The concept of climate stabilization wedges, which provides a practical framework for addressing the monumental challenge of mitigating climate change, was introduced to each derived region to cut GHG emissions in Canada through tangible, measurable actions that is specific to each sector/cluster. The clustering-based method breaks climate mitigation problems down into manageable pieces by grouping the jurisdictions into efficient regions that can be managed effectively by fostering collaboration across jurisdictions and economic sectors. Actionable and strategic recommendations were made within each province to reach the goal of net-zero. The implications of this study for policy and climate action include the fact that actionable strategies and tailored policies are applied to each cluster’s emission profile and economic sector, ensuring equitable and effective climate mitigation strategies in Canada. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 348
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

22 pages, 3599 KiB  
Article
A Framework for Synergy Measurement Between Transportation and Production–Living–Ecological Space Using Volume-to-Capacity Ratio, Accessibility, and Coordination
by Xiaoyi Ma, Mingmin Liu, Jingru Huang, Ruihua Hu and Hongjie He
Land 2025, 14(7), 1495; https://doi.org/10.3390/land14071495 - 18 Jul 2025
Viewed by 286
Abstract
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing [...] Read more.
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing an improved accessibility evaluation model and developing a coordination measurement algorithm, a three-dimensional evaluation mechanism covering development potential assessment, service efficiency diagnosis, and resource allocation optimization is established. Empirical research indicates that the improved accessibility indicators can precisely identify the transportation location value of regional functional cores, while the composite coordination indicators can deconstruct the spatiotemporal matching characteristics of “transportation facilities—spatial functions,” providing a dual decision-making basis for the redevelopment of existing space. This measurement system innovatively realizes the integration of planning transmission mechanisms with multi-scale application scenarios, guiding both overall spatial planning and urban renewal area re-optimization. The methodology, applied to the urban villages of Guangzhou, can significantly increase land utilization intensity and value. The research results offer a technical tool for cross-scale collaboration in land space planning reforms and provide theoretical innovations and practical guidance for the value reconstruction of existing spaces under the context of new urbanization. Full article
Show Figures

Figure 1

49 pages, 3444 KiB  
Article
A Design-Based Research Approach to Streamline the Integration of High-Tech Assistive Technologies in Speech and Language Therapy
by Anna Lekova, Paulina Tsvetkova, Anna Andreeva, Georgi Dimitrov, Tanio Tanev, Miglena Simonska, Tsvetelin Stefanov, Vaska Stancheva-Popkostadinova, Gergana Padareva, Katia Rasheva, Adelina Kremenska and Detelina Vitanova
Technologies 2025, 13(7), 306; https://doi.org/10.3390/technologies13070306 - 16 Jul 2025
Viewed by 546
Abstract
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face [...] Read more.
Currently, high-tech assistive technologies (ATs), particularly Socially Assistive Robots (SARs), virtual reality (VR) and conversational AI (ConvAI), are considered very useful in supporting professionals in Speech and Language Therapy (SLT) for children with communication disorders. However, despite a positive public perception, therapists face difficulties when integrating these technologies into practice due to technical challenges and a lack of user-friendly interfaces. To address this gap, a design-based research approach has been employed to streamline the integration of SARs, VR and ConvAI in SLT, and a new software platform called “ATLog” has been developed for designing interactive and playful learning scenarios with ATs. ATLog’s main features include visual-based programming with graphical interface, enabling therapists to intuitively create personalized interactive scenarios without advanced programming skills. The platform follows a subprocess-oriented design, breaking down SAR skills and VR scenarios into microskills represented by pre-programmed graphical blocks, tailored to specific treatment domains, therapy goals, and language skill levels. The ATLog platform was evaluated by 27 SLT experts using the Technology Acceptance Model (TAM) and System Usability Scale (SUS) questionnaires, extended with additional questions specifically focused on ATLog structure and functionalities. According to the SUS results, most of the experts (74%) evaluated ATLog with grades over 70, indicating high acceptance of its usability. Over half (52%) of the experts rated the additional questions focused on ATLog’s structure and functionalities in the A range (90–100), while 26% rated them in the B range (80–89), showing strong acceptance of the platform for creating and running personalized interactive scenarios with ATs. According to the TAM results, experts gave high grades for both perceived usefulness (44% in the A range) and perceived ease of use (63% in the A range). Full article
Show Figures

Figure 1

22 pages, 6500 KiB  
Article
The Effect of Bio-Based Polyamide 10.10 and Treated Fly Ash on Glass-Fiber-Reinforced Polyamide 6 Properties
by George-Mihail Teodorescu, Zina Vuluga, Toma Fistoș, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian-Andi Nicolae, Augusta Raluca Gabor, Marius Ghiurea, Cătălina Gîfu and Rodica Mariana Ion
Polymers 2025, 17(14), 1950; https://doi.org/10.3390/polym17141950 - 16 Jul 2025
Viewed by 267
Abstract
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the [...] Read more.
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the effects of treated fly ash (C) and bio-based polyamide 10.10 (PA10) on the thermal, morphological, and mechanical properties of glass fiber (GF)-reinforced polyamide 6 (PA6). Our main objective was to develop a composite that would allow for the partial replacement of glass fiber in reinforced polyamide 6 composites (PA6-30G) while maintaining a favorable balance of mechanical properties. Composites processed via melt processing demonstrated enhanced mechanical properties compared to PA6-30G. Notably, significant improvements were observed in impact strength and tensile strain at break. The addition of PA10 resulted in increases of 18% in impact strength and 35% in tensile strain relative to PA6-30G. Complementary, structural and morphological analyses confirmed strong interfacial interactions within the composite matrix. These findings indicate that a PA6/PA10 hybrid composite may represent a viable alternative material for potential automotive applications. Full article
Show Figures

Figure 1

19 pages, 3064 KiB  
Article
HR-pQCT and 3D Printing for Forensic and Orthopaedic Analysis of Gunshot-Induced Bone Damage
by Richard Andreas Lindtner, Lukas Kampik, Werner Schmölz, Mateus Enzenberg, David Putzer, Rohit Arora, Bettina Zelger, Claudia Wöss, Gerald Degenhart, Christian Kremser, Michaela Lackner, Anton Kasper Pallua, Michael Schirmer and Johannes Dominikus Pallua
Biomedicines 2025, 13(7), 1742; https://doi.org/10.3390/biomedicines13071742 - 16 Jul 2025
Viewed by 281
Abstract
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and [...] Read more.
Background/Objectives: Recent breakthroughs in three-dimensional (3D) printing and high-resolution imaging have opened up new possibilities in personalized medicine, surgical planning, and forensic reconstruction. This study breaks new ground by evaluating the integration of high-resolution peripheral quantitative computed tomography (HR-pQCT) with multimodal imaging and additive manufacturing to assess a chronic, infected gunshot injury in the knee joint of a red deer. This unique approach serves as a translational model for complex skeletal trauma. Methods: Multimodal imaging—including clinical CT, MRI, and HR-pQCT—was used to characterise the extent of osseous and soft tissue damage. Histopathological and molecular analyses were performed to confirm the infectious agent. HR-pQCT datasets were segmented and processed for 3D printing using PolyJet, stereolithography (SLA), and fused deposition modelling (FDM). Printed models were quantitatively benchmarked through 3D surface deviation analysis. Results: Imaging revealed comminuted fractures, cortical and trabecular degradation, and soft tissue involvement, consistent with chronic osteomyelitis. Sphingomonas sp., a bacterium that forms biofilms, was identified as the pathogen. Among the printing methods, PolyJet and SLA demonstrated the highest anatomical accuracy, whereas FDM exhibited greater geometric deviation. Conclusions: HR-pQCT-guided 3D printing provides a powerful tool for the anatomical visualisation and quantitative assessment of complex bone pathology. This approach not only enhances diagnostic precision but also supports applications in surgical rehearsal and forensic analysis. It illustrates the potential of digital imaging and additive manufacturing to advance orthopaedic and trauma care, inspiring future research and applications in the field. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

Back to TopTop