Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States
Abstract
1. Introduction
2. Research Question and Objectives
- How does the Arctic cryosphere change in warm climates?
- What drives Arctic cryosphere change?
- What are the impacts of cryosphere change in a warm Arctic?
- Quantify Arctic cryosphere (sea ice and land ice) change during different past warm climate intervals with different atmospheric carbon dioxide (pCO2) levels and boundary conditions via the collection and analysis of novel Arctic geological archives;
- Understand the dynamics of a warm Arctic cryosphere and ocean through new simulations using the latest ESM/ISM;
- Determine the impact of cryosphere change in a warm Arctic on ocean biosphere, climate extremes, and society by integrating novel empirical data and ESM/ISM modelling outputs.
3. Current State of Scientific Knowledge
4. Research Strategy and Tasks
4.1. Task 1—Quantifying a Warm Arctic in a Low, Medium, and High pCO2 World
4.2. Task 2—Understanding the Dynamics of a Warm Arctic Cryosphere and Ocean
4.3. Task 3—The Impacts of a Changed Arctic on Ocean Biosphere and Society
5. Implementation Strategy
5.1. Arctic Field Work
5.2. Laboratory Facilities
5.3. Numerical Modelling
6. Expected Outcomes and Impact
- Into the Blue will document a blue Arctic under warmer background conditions than today thereby expanding horizons beyond scientific relevance on the impact of climate extremes, such as an ice-free Arctic Ocean and reduced Greenland Ice Sheet for nature and society.
- Into the Blue will use marine sedaDNA for sea ice, biodiversity, and ecosystem reconstructions in past warm intervals. It will allow to understand how a blue Arctic impacts the ecosystem and the biological pump, information crucial for Arctic habitat conservation and potential ecosystem services.
- Into the Blue is a concerted research project for the Arctic that provides solutions on the processes and dynamics that connect ocean, ice, life, and climate in a high pCO2 world, information essential to underpin cryosphere-inclusive IPCC assessment.
- Into the Blue will be first in explicitly representing essential polar processes for the warm past and potential warm future. Our eddy- and storm-resolving model is expected to open new frontiers on how the system responds to human activities in a high CO2 world by evaluating the impact on past and future climate and environmental extremes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Heuzé, C.; Jahn, A. The first ice-free day in the Arctic Ocean could occur before 2030. Nat. Commun. 2024, 15, 10101. [Google Scholar] [CrossRef]
- Ford, J.D.; Pearce, T.; Canosa, I.V.; Harper, S. The rapidly changing Arctic and its societal implications. WIREs Clim. Change 2021, 12, e735. [Google Scholar] [CrossRef]
- Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.J.; Stein, R.; et al. Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 2006, 441, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Brinkhuis, H.; Schouten, S.; Collinson, M.E.; Sluijs, A.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Cronin, T.M.; Onodera, J.; Takahashi, K.; et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 2006, 441, 606–609. [Google Scholar] [CrossRef]
- Moran, K.; Backman, J.; Brinkhuis, H.; Clemens, S.C.; Cronin, T.; Dickens, G.R.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.W.; et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 2006, 441, 601–605. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.; Bhatt, U.; Chen, H.; Coumou, D. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Shu, Q.; Wang, Q.; Arthun, M.; Wang, S.; Song, Z.; Zhang, M.; Qiao, F. Arctic Ocean Amplification in a warming climate in CMIP6 models. Sci. Adv. 2022, 8, eabn9755. [Google Scholar] [CrossRef]
- Lohmann, G.; Butzin, M.; Eissner, N.; Shi, X.; Stepanek, C. Abrupt climate and weather changes across time scales. Paleoceanogr. Paleoclimatol. 2020, 35, e2019PA003782. [Google Scholar] [CrossRef]
- Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H. A model–data comparison of the Holocene global sea surface temperature evolution. Clim. Past 2013, 9, 1807–1839. [Google Scholar] [CrossRef]
- Ackermann, L.; Danek, C.; Gierz, P.; Lohmann, G. AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model. Geophys. Res. Lett. 2020, 47, e2019GL086810. [Google Scholar] [CrossRef]
- Patton, H.; Hubbard, A.; Bradwell, T.; Schomacker, A. The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet. Earth-Sci. Rev. 2017, 166, 223–245. [Google Scholar] [CrossRef]
- Lucchi, R.G.; St. John, K.E.K.; Ronge, T.A.; The Expedition 403 Scientists. Expedition 403 Preliminary Report: Eastern Fram Strait Paleo-Archive; International Ocean Discovery Program: College Station, TX, USA, 2024. [Google Scholar]
- Slater, T.; Lawrence, I.R.; Otosaka, I.N.; Shepherd, A.; Gourmelen, N.; Jakob, L.; Tepes, P.; Gilbert, L.; Nienow, P. Review article: Earth’s ice imbalance. Cryosphere 2021, 15, 233–246. [Google Scholar] [CrossRef]
- Stein, R. The Late Mesozoic-Cenozoic Arctic Ocean Climate and Sea Ice History: A Challenge for Past and Future Scientific Ocean Drilling. Paleoceanogr. Paleoclimatol. 2019, 34, 1851–1894. [Google Scholar] [CrossRef]
- Knies, J.; Cabedo-Sanz, P.; Belt, S.T.; Baranwal, S.; Fietz, S.; Rosell-Mele, A. The emergence of modern sea ice cover in the Arctic Ocean. Nat. Commun. 2014, 5, 5608. [Google Scholar] [CrossRef]
- Kinnard, C.; Zdanowicz, C.M.; Fisher, D.A.; Isaksson, E.; de Vernal, A.; Thompson, L.G. Reconstructed changes in Arctic sea ice over the past 1450 years. Nature 2011, 479, 509–512. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, X.B.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Change 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Notz, D.; Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 2016, 354, 747–750. [Google Scholar] [CrossRef]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; p. 179. [Google Scholar]
- Huang, Y.; Xia, Y.; Tan, X. On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos. 2017, 122, 10578–10593. [Google Scholar] [CrossRef]
- Asbjørnsen, H.; Årthun, M.; Skagseth, Ø.; Eldevik, T. Mechanisms Underlying Recent Arctic Atlantification. Geophys. Res. Lett. 2020, 47, e2020GL088036. [Google Scholar] [CrossRef]
- Brown, K.A.; Holding, J.M.; Carmack, E.C. Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening. Front. Mar. Sci. 2020, 7, 606. [Google Scholar] [CrossRef]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 2018, 8, 634–639. [Google Scholar] [CrossRef]
- Spielhagen, R.F.; Werner, K.; Sorensen, S.A.; Zamelczyk, K.; Kandiano, E.; Budeus, G.; Husum, K.; Marchitto, T.M.; Hald, M. Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water. Science 2011, 331, 450–453. [Google Scholar] [CrossRef]
- Rahaman, W.; Smik, L.; Koseoglu, D.; Lathika, N.; Tarique, M.; Thamban, M.; Haywood, A.; Belt, S.T.; Knies, J. Reduced Arctic sea ice extent during the mid-Pliocene Warm Period concurrent with increased Atlantic-climate regime. Earth Planet. Sci. Lett. 2020, 550, 116535. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Pnyushkov, A.V.; Alkire, M.B.; Ashik, I.M.; Baumann, T.M.; Carmack, E.C.; Goszczko, I.; Guthrie, J.; Ivanov, V.V.; Kanzow, T. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 2017, 356, 285–291. [Google Scholar] [CrossRef]
- Schaffer, J.; Kanzow, T.; von Appen, W.-J.; von Albedyll, L.; Arndt, J.E.; Roberts, D.H. Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue. Nat. Geosci. 2020, 13, 227–231. [Google Scholar] [CrossRef]
- Holland, D.M.; Thomas, R.H.; De Young, B.; Ribergaard, M.H.; Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 2008, 1, 659–664. [Google Scholar] [CrossRef]
- Cowton, T.; Sole, A.; Nienow, P.; Slater, D.; Wilton, D.; Hanna, E. Controls on the transport of oceanic heat to Kangerdlugssuaq Glacier, East Greenland. J. Glaciol. 2016, 62, 1167–1180. [Google Scholar] [CrossRef]
- Straneo, F.; Hamilton, G.S.; Stearns, L.A.; Sutherland, D.A. Connecting the Greenland Ice Sheet and the Ocean: A case study of Helheim glacier and Sermlik Fjord. Oceanography 2016, 29, 34–45. [Google Scholar] [CrossRef]
- Wood, M.; Rignot, E.; Fenty, I.; An, L.; Bjørk, A.; van den Broeke, M.; Cai, C.; Kane, E.; Menemenlis, D.; Millan, R.; et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 2021, 7, eaba7282. [Google Scholar] [CrossRef] [PubMed]
- Hanna, E.; Fettweis, X.; Mernild, S.H.; Cappelen, J.; Ribergaard, M.H.; Shuman, C.A.; Steffen, K.; Wood, L.; Mote, T.L. Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol. 2014, 34, 1022–1037. [Google Scholar] [CrossRef]
- Delhasse, A.; Fettweis, X.; Kittel, C.; Amory, C.; Agosta, C. Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 2018, 12, 3409–3418. [Google Scholar] [CrossRef]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.J.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef]
- Berends, C.J.; de Boer, B.; Dolan, A.M.; Hill, D.J.; van de Wal, R.S.W. Modelling ice sheet evolution and atmospheric CO2 during the Late Pliocene. Clim. Past 2019, 15, 1603–1619. [Google Scholar] [CrossRef]
- Rae, J.W.B.; Zhang, Y.G.; Liu, X.; Foster, G.L.; Stoll, H.M.; Whiteford, R.D.M. Atmospheric CO2 over the Past 66 Million Years from Marine Archives. Annu. Rev. Earth Planet. Sci. 2021, 49, 609–641. [Google Scholar] [CrossRef]
- Pedersen, R.A.; Langen, P.L.; Vinther, B.M. The last interglacial climate: Comparing direct and indirect impacts of insolation changes. Clim. Dyn. 2017, 48, 3391–3407. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; Hodell, D.A.; Nehrbass-Ahles, C.; Mitsui, T.; Wolff, E.W. Marine Isotope Stage 11c: An unusual interglacial. Quat. Sci. Rev. 2022, 284, 107493. [Google Scholar] [CrossRef]
- Members, C.-L.I.P. Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 2006, 25, 1383–1400. [Google Scholar] [CrossRef]
- Cronin, T.M.; Keller, K.J.; Farmer, J.R.; Schaller, M.F.; O’Regan, M.; Poirier, R.; Coxall, H.; Dwyer, G.S.; Bauch, H.; Kindstedt, I.G.; et al. Interglacial Paleoclimate in the Arctic. Paleoceanogr. Paleoclimatol. 2019, 34, 1959–1979. [Google Scholar] [CrossRef]
- Zhuravleva, A.; Bauch, H.A.; Spielhagen, R.F. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial. Glob. Planet. Change 2017, 157, 232–243. [Google Scholar] [CrossRef]
- Stein, R.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Seki, O.; Foster, G.L.; Schmidt, D.N.; Mackensen, A.; Kawamura, K.; Pancost, R.D. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 2010, 292, 201–211. [Google Scholar] [CrossRef]
- de Nooijer, W.; Zhang, Q.; Li, Q.; Zhang, Q.; Li, X.; Zhang, Z.; Guo, C.; Nisancioglu, K.H.; Haywood, A.M.; Tindall, J.C.; et al. Evaluation of Arctic warming in mid-Pliocene climate simulations. Clim. Past 2020, 16, 2325–2341. [Google Scholar] [CrossRef]
- McClymont, E.L.; Ford, H.L.; Ho, S.L.; Tindall, J.C.; Haywood, A.M.; Alonso-Garcia, M.; Bailey, I.; Berke, M.A.; Littler, K.; Patterson, M.O.; et al. Lessons from a high-CO2 world: An ocean view from ~3 million years ago. Clim. Past 2020, 16, 1599–1615. [Google Scholar] [CrossRef]
- Dowsett, H.J.; Robinson, M.M.; Haywood, A.M.; Hill, D.J.; Dolan, A.M.; Stoll, D.K.; Chan, W.-L.; Abe-Ouchi, A.; Chandler, M.A.; Rosenbloom, N.A.; et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat. Clim. Change 2012, 2, 365–371. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Coxall, H.K.; de Boer, A.M.; Huber, M.; Barbolini, N.; Bradshaw, C.D.; Burls, N.J.; Feakins, S.J.; Gasson, E.; Henderiks, J.; et al. The Miocene: The Future of the Past. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004037. [Google Scholar] [CrossRef]
- Ford, H.L.; Sosdian, S.; McClymont, E.; Ho, S.L.; Modestou, S.; Burls, N.; Dolan, A. Expanding PlioVAR to PlioMioVAR. Past Glob. Changes Mag. 2022, 30, 55. [Google Scholar]
- Knorr, G.; Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nat. Geosci. 2014, 7, 376–381. [Google Scholar] [CrossRef]
- Herold, N.; Huber, M.; Müller, R.D.; Seton, M. Modeling the Miocene climatic optimum: Ocean circulation. Paleoceanography 2012, 27, PA1209-22. [Google Scholar] [CrossRef]
- Goldner, A.; Herold, N.; Huber, M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Clim. Past 2014, 10, 523–536. [Google Scholar] [CrossRef]
- Lohmann, G.; Knorr, G.; Hossain, A.; Stepanek, C. Effects of CO2 and ocean mixing on Miocene and Pliocene temperature gradients. Paleoceanogr. Paleoclimatol. 2022, 37, e2020PA003953. [Google Scholar] [CrossRef]
- Starz, M.; Jokat, W.; Knorr, G.; Lohmann, G. Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge. Nat. Commun. 2017, 8, 15681. [Google Scholar] [CrossRef]
- Hall, A.M.; Barfod, D.N.; Gilg, H.A.; Stuart, F.M.; Sarala, P.; Al-Ani, T. Intensive chemical weathering in the Arctic during the Miocene Climatic Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 634, 111927. [Google Scholar] [CrossRef]
- Stein, R.; Fahl, K.; Schreck, M.; Knorr, G.; Niessen, F.; Forwick, M.; Gebhardt, C.; Jensen, L.; Kaminski, M.; Kopf, A.; et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat. Commun. 2016, 7, 11148. [Google Scholar] [CrossRef]
- Krylov, A.A.; Andreeva, I.A.; Vogt, C.; Backman, J.; Krupskaya, V.V.; Grikurov, G.E.; Moran, K.; Shoji, H. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 2008, 23. [Google Scholar] [CrossRef]
- Streffing, J.; Sidorenko, D.; Semmler, T.; Zampieri, L.; Scholz, P.; Andrés-Martínez, M.; Koldunov, N.; Rackow, T.; Kjellsson, J.; Goessling, H. AWI-CM3 coupled climate model: Description and evaluation experiments for a prototype post-CMIP6 model. Geosci. Model Dev. 2022, 15, 6399–6427. [Google Scholar] [CrossRef]
- Sidorenko, D.; Goessling, H.F.; Koldunov, N.; Scholz, P.; Danilov, S.; Barbi, D.; Cabos, W.; Gurses, O.; Harig, S.; Hinrichs, C.; et al. Evaluation of FESOM2.0 coupled to ECHAM6.3: Preindustrial and HighResMIP simulations. J. Adv. Model. Earth Syst. 2019, 11, 3794–3815. [Google Scholar] [CrossRef]
- Vaideanu, P.; Stepanek, C.; Dima, M.; Schrepfer, J.; Matos, F.; Ionita, M.; Lohmann, G. Large-scale sea ice–Surface temperature variability linked to Atlantic meridional overturning circulation. PLoS ONE 2023, 18, e0290437. [Google Scholar] [CrossRef] [PubMed]
- Contzen, J.; Dickhaus, T.; Lohmann, G. Long-term temporal evolution of extreme temperature in a warming Earth. PLoS ONE 2023, 18, e0280503. [Google Scholar] [CrossRef]
- Müller, J.; Stein, R. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts. Earth Planet. Sci. Lett. 2014, 403, 446–455. [Google Scholar] [CrossRef]
- Larkin, C.S.; Ezat, M.M.; Roberts, N.L.; Bauch, H.A.; Spielhagen, R.F.; Noormets, R.; Polyak, L.; Moreton, S.G.; Rasmussen, T.L.; Sarnthein, M. Active Nordic Seas deep-water formation during the last glacial maximum. Nat. Geosci. 2022, 15, 925–931. [Google Scholar] [CrossRef]
- Patton, H.; Hubbard, A.; Andreassen, K.; Auriac, A.; Whitehouse, P.L.; Stroeven, A.P.; Shackleton, C.; Winsborrow, M.; Heyman, J.; Hall, A.M. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 2017, 169, 148–172. [Google Scholar] [CrossRef]
- Hossain, A.; Knorr, G.; Jokat, W.; Lohmann, G. Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene. arktos 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Hossain, A.; Knorr, G.; Lohmann, G.; Stärz, M.; Jokat, W. Simulated thermohaline fingerprints in response to different Greenland-Scotland Ridge and Fram Strait subsidence histories. Paleoceanogr. Paleoclimatol. 2020, 35, e2019PA003842. [Google Scholar] [CrossRef]
- Niu, L.; Lohmann, G.; Gierz, P.; Gowan, E.J.; Knorr, G. Coupled climate-ice sheet modelling of MIS-13 reveals a sensitive Cordilleran Ice Sheet. Glob. Planet. Change 2021, 200, 103474. [Google Scholar] [CrossRef]
- Chen, Y.; Song, P.; Chen, X.; Lohmann, G. Glacial AMOC shoaling despite vigorous tidal dissipation: Vertical stratification matters. Clim. Past 2024, 20, 2001–2015. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Danilov, S.; Koldunov, N.; Liu, C.; Müller, V.; Sidorenko, D.; Jung, T. Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Change 2024, 14, 156–162. [Google Scholar] [CrossRef]
- Gou, R.; Wolf, K.K.; Hoppe, C.J.; Wu, L.; Lohmann, G. The changing nature of future Arctic marine heatwaves and its potential impacts on the ecosystem. Nat. Clim. Change 2025, 15, 162–170. [Google Scholar] [CrossRef]
- Geibert, W.; Matthiessen, J.; Stimac, I.; Wollenburg, J.; Stein, R. Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature 2021, 590, 97–102. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Box, J.E.; Hubbard, A.; Bahr, D.B.; Colgan, W.T.; Fettweis, X.; Mankoff, K.D.; Wehrlé, A.; Noël, B.; van den Broeke, M.R.; Wouters, B.; et al. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nat. Clim. Change 2022, 12, 808–813. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knies, J.; Lohmann, G.; De Schepper, S.; Winsborrow, M.; Müller, J.; Ezat, M.M.; Langebroek, P.M. Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States. Challenges 2025, 16, 36. https://doi.org/10.3390/challe16030036
Knies J, Lohmann G, De Schepper S, Winsborrow M, Müller J, Ezat MM, Langebroek PM. Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States. Challenges. 2025; 16(3):36. https://doi.org/10.3390/challe16030036
Chicago/Turabian StyleKnies, Jochen, Gerrit Lohmann, Stijn De Schepper, Monica Winsborrow, Juliane Müller, Mohamed M. Ezat, and Petra M. Langebroek. 2025. "Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States" Challenges 16, no. 3: 36. https://doi.org/10.3390/challe16030036
APA StyleKnies, J., Lohmann, G., De Schepper, S., Winsborrow, M., Müller, J., Ezat, M. M., & Langebroek, P. M. (2025). Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States. Challenges, 16(3), 36. https://doi.org/10.3390/challe16030036