Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,613)

Search Parameters:
Keywords = brain damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 624 KB  
Article
Predictors of Parent-Reported Health-Related Quality of Life in Young Children with Early Brain Damage and Severe Motor Dysfunction
by Siri Johnsen, Kristian Sørensen, Jon Sverre Skranes, Ida Eline Vestrheim, Mette Gro Modahl, Reidun Birgitta Jahnsen, Kristine Stadskleiv, Gry Hansen, Stian Lydersen and Rannei Sæther
J. Clin. Med. 2025, 14(19), 7054; https://doi.org/10.3390/jcm14197054 - 6 Oct 2025
Abstract
Background/Objectives: This cross-sectional study aimed to identify predictors of parent-reported health-related quality of life (HRQOL) in young children with early brain damage and severe motor dysfunction. It used baseline data from the PIH Multi Study, a randomized controlled trial evaluating an intensive, [...] Read more.
Background/Objectives: This cross-sectional study aimed to identify predictors of parent-reported health-related quality of life (HRQOL) in young children with early brain damage and severe motor dysfunction. It used baseline data from the PIH Multi Study, a randomized controlled trial evaluating an intensive, family-centered habilitation program for preschool children and their parents. Methods: Parent-reported HRQOL were measured using the CPCHILD questionnaire. Potential predictors included adaptive function (PEDI-CAT), gross motor function (GMFM-66), postural control and balance (ECAB), and communication function (FOCUS). These were selected to reflect the domains of the ICF-CY framework. Data were collected by professionals and by parents. Linear regression analyses were conducted to identify significant predictors. Results: Analyses included 65 children. Better adaptive skills, gross motor function, postural control, and communication all predicted higher parent-reported HRQOL. Adaptive skills—particularly in self-care and mobility—and gross motor function emerged as the strongest predictors. Conclusions: The study highlights the importance of targeting basic functional skills in early habilitation efforts for children with severe disabilities. The findings support a multidimensional understanding of health in line with the ICF-CY framework and underline the value of early, individualized, and family-centered interventions. Future research should investigate these predictors longitudinally and explore ways to integrate children’s own perspectives in assessment of HRQOL. Full article
Show Figures

Figure 1

20 pages, 1381 KB  
Article
Glia Cells Are Selectively Sensitive to Nanosized Titanium Dioxide Mineral Forms
by Eszter Geiszelhardt, Erika Tóth, Károly Bóka, Norbert Bencsik, Katalin Schlett and Krisztián Tárnok
Int. J. Mol. Sci. 2025, 26(19), 9684; https://doi.org/10.3390/ijms26199684 - 4 Oct 2025
Abstract
Nanosized titanium dioxide is widely used by the industry, e.g., in pigments, suncreams, and food colors. Its environmental and biological effects have been investigated in the past; however, few studiesd have focused on its crystal structure-specific effects. In our experiments, the toxicity of [...] Read more.
Nanosized titanium dioxide is widely used by the industry, e.g., in pigments, suncreams, and food colors. Its environmental and biological effects have been investigated in the past; however, few studiesd have focused on its crystal structure-specific effects. In our experiments, the toxicity of two types of synthetic nanoparticles was examined on primary neural cultures with different cell compositions using MTT and LDH assays. Primary murine cell cultures containing only astroglia cells originated from two brain regions, as well as mixed neurons and glia cells or microglia cells exclusively, were treated with anatase (15.8 ± 1.7 nm average diameter) and rutile (46.7 ± 2.2 nm average length and 13.7 ± 0.7 nm average diameter) TiO2 nanoparticles at varying concentrations for 24 or 48 h. Our results show that neither anatase nor rutile nanoparticles reduced viability in cell cultures containing a mixture of neurons and glial cells, independently of the applied concentration and treatment time. Rutile but not anatase form induced cell death in cortical astroglia cultures already at 24 h of treatment above 10 µg/mL, while hippocampus-derived glial cultures were much less sensitive to rutile. The rutile form also damaged microglia. These findings suggest that products containing rutile-form nano-titanium particles may pose a targeted risk to astroglia and microglial cells in the central nervous system. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

47 pages, 8140 KB  
Review
A Review on Low-Dimensional Nanoarchitectonics for Neurochemical Sensing and Modulation in Responsive Neurological Outcomes
by Mohammad Tabish, Iram Malik, Ali Akhtar and Mohd Afzal
Biomolecules 2025, 15(10), 1405; https://doi.org/10.3390/biom15101405 - 2 Oct 2025
Abstract
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. [...] Read more.
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. Utilizing stimuli-responsive characteristics, optical, thermal, magnetic, and electrochemical LDNHs provide real-time feedback-controlled manipulation of brain circuits. Their pliable and adaptable structures surpass the constraints of inflexible bioelectronics, improving the neuronal interface and reducing tissue damage. We also examined their use in less invasive neurological diagnostics, targeted therapy, and adaptive intervention systems. This review delineates recent breakthroughs, integration methodologies, and fundamental mechanisms, while addressing significant challenges such as long-term biocompatibility, deep-tissue accessibility, and scalable manufacturing. A strategic plan is provided to direct future research toward clinical use. Ultimately, LDNHs signify a transformative advancement in intelligent, tailored, and closed-loop neurotechnologies, integrating materials science, neurology, and artificial intelligence to facilitate the next era of precision medicine. Full article
Show Figures

Figure 1

14 pages, 2044 KB  
Article
Molecular Characterization of Wilson’s Disease in Liver Transplant Patients: A Five-Year Single-Center Experience in Iran
by Zahra Beyzaei, Melika Majed, Seyed Mohsen Dehghani, Mohammad Hadi Imanieh, Ali Khazaee, Bita Geramizadeh and Ralf Weiskirchen
Diagnostics 2025, 15(19), 2504; https://doi.org/10.3390/diagnostics15192504 - 1 Oct 2025
Abstract
Background/Objectives: Wilson’s disease (WD) is an autosomal recessive disorder characterized by pathological copper accumulation, primarily in the liver and brain. Severe hepatic involvement can be effectively treated with liver transplantation (LT). Geographic variation in ATP7B mutations suggests the presence of regional patterns [...] Read more.
Background/Objectives: Wilson’s disease (WD) is an autosomal recessive disorder characterized by pathological copper accumulation, primarily in the liver and brain. Severe hepatic involvement can be effectively treated with liver transplantation (LT). Geographic variation in ATP7B mutations suggests the presence of regional patterns that may impact disease presentation and management. This study aims to investigate the genetic basis of WD in patients from a major LT center in Iran. Methods: A retrospective analysis was conducted on clinical, biochemical, and pathological data from patients suspected of WD who underwent evaluation for LT between May 2020 and June 2025 at Shiraz University of Medical Sciences. Genetic testing was carried out on 20 patients at the Shiraz Transplant Research Center (STRC). Direct mutation analysis of ATP7B was performed for all patients, and the results correlated with clinical and demographic information. Results: In total, 20 WD patients who underwent liver transplantation (15 males, 5 females) carried 25 pathogenic or likely pathogenic ATP7B variants, 21 of which were previously unreported. Fifteen patients were homozygous, and five were compound-heterozygous; all heterozygous combinations occurred in the offspring of second-degree consanguineous unions. Recurrent changes included p.L549V, p.V872E, and p.P992S/L, while two nonsense variants (p.E1293X, p.R1319X) predicted truncated proteins. Variants were distributed across copper-binding, transmembrane, phosphorylation, and ATP-binding domains, and in silico AlphaMissense scores indicate damaging effects for most novel substitutions. Post-LT follow-up showed biochemical normalization in the majority of recipients, with five deaths recorded during the study period. Conclusions: This single-center Iranian study reveals a highly heterogeneous ATP7B mutational landscape with a large proportion of novel population-specific variants and underscores the benefit of comprehensive gene sequencing for timely WD diagnosis and family counseling, particularly in regions with prevalent consanguinity. Full article
Show Figures

Figure 1

22 pages, 6944 KB  
Article
FAD012, a Ferulic Acid Derivative, Preserves Cerebral Blood Flow and Blood–Brain Barrier Integrity in the Rat Photothrombotic Stroke Model
by Hiroshi Sugoh, Hirokazu Matsuzaki, Jun Takayama, Naohiro Iwata, Meiyan Xuan, Bo Yuan, Takeshi Sakamoto and Mari Okazaki
Biomedicines 2025, 13(10), 2403; https://doi.org/10.3390/biomedicines13102403 - 30 Sep 2025
Abstract
Background/Objectives: The rapid progression of stroke often results in irreversible brain damage and poor outcomes when treatment is delayed. Prophylactic administration of FAD012 (3,5-dimethyl-4-hydroxycinnamic acid), a synthetic derivative of ferulic acid (FA), has demonstrated cerebroprotective effects in ischemic models through antioxidant and endothelial [...] Read more.
Background/Objectives: The rapid progression of stroke often results in irreversible brain damage and poor outcomes when treatment is delayed. Prophylactic administration of FAD012 (3,5-dimethyl-4-hydroxycinnamic acid), a synthetic derivative of ferulic acid (FA), has demonstrated cerebroprotective effects in ischemic models through antioxidant and endothelial protective mechanisms. This study investigated the effects of FAD012 on cerebral infarction and blood–brain barrier (BBB) integrity using a photothrombotic stroke model in rats. Methods: Male Sprague Dawley rats received a single intraperitoneal injection of FAD012 or FA (100 or 300 mg/kg) 60 min prior to stroke induction. Under isoflurane anesthesia, the middle cerebral artery was exposed, and stroke was induced by intravenous administration of Rose Bengal followed by green laser irradiation. Cerebral blood flow (CBF) was monitored by laser Doppler flowmetry. BBB disruption was evaluated by Evans Blue extravasation and immunohistochemistry for tight junction (TJ) proteins. Results: Control rats exhibited extensive infarction, BBB disruption, and reduced expression of claudin-5, occludin, and ZO-1, along with fragmented collagen IV. In contrast, FAD012 (300 mg/kg) significantly attenuated CBF reduction, reduced infarct size, preserved BBB integrity, and maintained TJ protein expression, with greater efficacy than an equivalent dose of FA. FAD012 also preserved the expression and phosphorylation of endothelial nitric oxide synthase (eNOS), a key marker of vascular integrity. The CBF-preserving effect of FAD012 was completely abolished by NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor. Conclusions: These findings suggest that FAD012 protects endothelial function, thereby contributing to the maintenance of CBF and BBB integrity, supporting its potential as a prophylactic therapeutic agent for ischemic stroke. Full article
Show Figures

Graphical abstract

16 pages, 4297 KB  
Communication
Clomipramine Induced Oxidative Stress and Morphological Alterations in the Prefrontal Cortex and Limbic System of Neonatal Rats
by Norma Angélica Labra-Ruíz, Julieta Griselda Mendoza-Torreblanca, Norma Osnaya-Brizuela, Armando Valenzuela-Peraza, Maribel Ortiz-Herrera, Gerardo Barragán-Mejía, Noemí Cárdenas-Rodríguez and Daniel Santamaría-Del Ángel
Brain Sci. 2025, 15(10), 1068; https://doi.org/10.3390/brainsci15101068 - 30 Sep 2025
Abstract
Although clomipramine (CLO) is widely used as a serotonin reuptake inhibitor, its subchronic administration during the early stages of brain development leads to depressive-like behaviors in adulthood. High doses of CLO have been linked to mitochondrial impairment and increased reactive oxygen species in [...] Read more.
Although clomipramine (CLO) is widely used as a serotonin reuptake inhibitor, its subchronic administration during the early stages of brain development leads to depressive-like behaviors in adulthood. High doses of CLO have been linked to mitochondrial impairment and increased reactive oxygen species in cells and adult animals. It is unknown whether subchronic administration of this drug at early ages can induce oxidative stress (OS) in adulthood. The objective of this study was to evaluate OS and cellular damage in the prefrontal cortex and limbic system (hippocampus and amygdala) of rats exposed to CLO neonatally. Methods: Forty male Wistar rats were divided into experimental (EXP) and control (CTRL) groups. The EXP animals received CLO (15 mg/kg, twice daily, subcutaneously, postnatal days 5–35); the CTRL animals received saline. At 55 and 85 days of age, the brains were collected for biochemical assays and histological analysis. Results: Rats exposed to neonatal CLO presented significant reductions in reduced glutathione (GSH) and increases in oxidized glutathione (GSSG) and malondialdehyde in both studied regions, especially on day 85. The GSH/GSSG ratio decreased, indicating persistent OS. Histology revealed neuronal degeneration, pyknotic nuclei, cell shrinkage, and disorganized tissue, which progressed from days 55 to 85. Conclusions: Early exposure to CLO can cause long-lasting neurochemical and structural alterations in the brain regions associated with the regulation of emotions and some behavioral responses that can persist over time and affect behavior in adulthood. Full article
Show Figures

Figure 1

35 pages, 2417 KB  
Review
Insights into Persistent SARS-CoV-2 Reservoirs in Chronic Long COVID
by Swayam Prakash, Sweta Karan, Yassir Lekbach, Delia F. Tifrea, Cesar J. Figueroa, Jeffrey B. Ulmer, James F. Young, Greg Glenn, Daniel Gil, Trevor M. Jones, Robert R. Redfield and Lbachir BenMohamed
Viruses 2025, 17(10), 1310; https://doi.org/10.3390/v17101310 - 27 Sep 2025
Abstract
Long COVID (LC), also known as post-acute sequelae of COVID-19 infection (PASC), is a heterogeneous and debilitating chronic disease that currently affects 10 to 20 million people in the U.S. and over 420 million people globally. With no approved treatments, the long-term global [...] Read more.
Long COVID (LC), also known as post-acute sequelae of COVID-19 infection (PASC), is a heterogeneous and debilitating chronic disease that currently affects 10 to 20 million people in the U.S. and over 420 million people globally. With no approved treatments, the long-term global health and economic impact of chronic LC remains high and growing. LC affects children, adolescents, and healthy adults and is characterized by over 200 diverse symptoms that persist for months to years after the acute COVID-19 infection is resolved. These symptoms target twelve major organ systems, causing dyspnea, vascular damage, cognitive impairments (“brain fog”), physical and mental fatigue, anxiety, and depression. This heterogeneity of LC symptoms, along with the lack of specific biomarkers and diagnostic tests, presents a significant challenge to the development of LC treatments. While several biological abnormalities have emerged as potential drivers of LC, a causative factor in a large subset of patients with LC, involves reservoirs of virus and/or viral RNA (vRNA) that persist months to years in multiple organs driving chronic inflammation, respiratory, muscular, cognitive, and cardiovascular damages, and provide continuous viral antigenic stimuli that overstimulate and exhaust CD4+ and CD8+ T cells. In this review, we (i) shed light on persisting virus and vRNA reservoirs detected, either directly (from biopsy, blood, stool, and autopsy samples) or indirectly through virus-specific B and T cell responses, in patients with LC and their association with the chronic symptomatology of LC; (ii) explore potential mechanisms of inflammation, immune evasion, and immune overstimulation in LC; (iii) review animal models of virus reservoirs in LC; (iv) discuss potential T cell immunotherapeutic strategies to reduce or eliminate persistent virus reservoirs, which would mitigate chronic inflammation and alleviate symptom severity in patients with LC. Full article
(This article belongs to the Special Issue SARS-CoV-2, COVID-19 Pathologies, Long COVID, and Anti-COVID Vaccines)
Show Figures

Figure 1

13 pages, 251 KB  
Review
The Effect of Bacteria Modulation with Probiotic Consumption in Neurodegeneration During Aging: A Narrative Review of the Literature
by Nayeli Valdez Gayosso, Arianna Omaña Covarrubias, Ana Teresa Nez Castro, Lydia López Pontigo, María del Refugio Acuña Gurrola and Bertha Maribel Pimentel Pérez
Diseases 2025, 13(10), 317; https://doi.org/10.3390/diseases13100317 - 26 Sep 2025
Abstract
Aging is the result of the accumulation of a great variety of molecular and cellular damage over time. During aging, the brain undergoes changes and diseases such as depression, dementia, anxiety, Alzheimer’s, delirium, behavioral disorders and aggression, and prolonged mourning, among others, appear. [...] Read more.
Aging is the result of the accumulation of a great variety of molecular and cellular damage over time. During aging, the brain undergoes changes and diseases such as depression, dementia, anxiety, Alzheimer’s, delirium, behavioral disorders and aggression, and prolonged mourning, among others, appear. The gut–brain axis suggests that the gut and the brain have a bidirectional communication, so it is important to maintain proper intestinal health to strengthen the neurological changes of this age group. The intestinal microbiota is a dynamic and highly complex ecosystem of microorganisms residing in the gastrointestinal tract. The bidirectional and dynamic communication between the homeostatic systems, such as the endocrine and immune systems, as well as the nervous system, allow us to face problems associated with several diseases. Probiotics are defined as non-pathogenic live microorganisms that provide beneficial effects to the organism and participate in the prevention and treatment of diseases, which is the reason why it is important to promote interventions that keep intestinal microbiota in eubiosis (microbiota balance). The concentration and balance of the intestinal microbiota depend on several conditions, such as diet, antibiotic consumption, and lifestyle, to mentioned a few. However, interventions with probiotics have shown improvements in both cognitive function and processes that promote neurodegeneration. It is such that the research has been directed on designing strategies that improve not only oral bioavailability but also intestinal adhesion and retention, to clarify the frequency and dosage that should be consumed. Full article
(This article belongs to the Section Clinical Nutrition)
46 pages, 2889 KB  
Review
Neuronutrition and Nrf2 Brain Resilience Signaling: Epigenomics and Metabolomics for Personalized Medicine in Nervous System Disorders from Bench to Clinic
by Maria Concetta Scuto, Carmelina Daniela Anfuso, Cinzia Lombardo, Eleonora Di Fatta, Raffaele Ferri, Nicolò Musso, Giulia Zerbo, Morena Terrana, Miroslava Majzúnová, Gabriella Lupo and Angela Trovato Salinaro
Int. J. Mol. Sci. 2025, 26(19), 9391; https://doi.org/10.3390/ijms26199391 - 25 Sep 2025
Abstract
Neuronutrition to improve brain resilience to stress and human health has received considerable attention. The use of specific nutrients is effective in preventing and slowing neurodegenerative and neuropsychiatric disorders. Selective neuronutrients, including polyphenols, short-chain fatty acids (SCFAs), tryptophan, tyrosine, and sulfur metabolites, can [...] Read more.
Neuronutrition to improve brain resilience to stress and human health has received considerable attention. The use of specific nutrients is effective in preventing and slowing neurodegenerative and neuropsychiatric disorders. Selective neuronutrients, including polyphenols, short-chain fatty acids (SCFAs), tryptophan, tyrosine, and sulfur metabolites, can modulate the dysregulated nuclear factor erythroid 2 (Nrf2) pathway through neuroepigenetic modifications and altered levels of neurotransmitters such as serotonin, melatonin, and dopamine. In particular, abnormal epigenetic alterations in the promoter function of the NFE2L2/Nrf2 gene may contribute to the onset and progression of various diseases by disrupting cellular homeostasis. Recent evidence has documented that polyphenols are capable of modulating Nrf2 signaling; to do this, they must reverse hypermethylation in the CpG islands of the NFE2L2 gene. This process is achieved by modifying the activity of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Furthermore, a diverse group of polyphenolic metabolites can be identified and quantified using innovative mass spectrometry platforms in both in vitro models and human urine samples to investigate redox metabolic homeostasis under physiological and pathophysiological conditions. This review aims to deepen the current understanding of the role of nutrient-derived secondary metabolites. It highlights innovative strategies to effectively prevent, slow, or potentially reverse neuroinflammation and oxidative stress, key drivers of neuronal damage. The targeted application of these metabolites can be considered a novel, personalized neuronutritional approach to promote brain health and neuronal adaptation. Full article
Show Figures

Graphical abstract

33 pages, 2366 KB  
Review
Calpains at the Crossroads of Spinal Cord Physiology, Plasticity, and Pathology
by Frédéric Brocard and Nejada Dingu
Cells 2025, 14(19), 1503; https://doi.org/10.3390/cells14191503 - 25 Sep 2025
Abstract
Calcium-dependent cysteine proteases, known as calpains, emerge as important regulators of spinal cord physiology, plasticity, and pathology. First characterized in the brain, they influence a wide range of processes in the spinal cord, maintaining neuronal homeostasis, shaping both synaptic and intrinsic plasticity, and [...] Read more.
Calcium-dependent cysteine proteases, known as calpains, emerge as important regulators of spinal cord physiology, plasticity, and pathology. First characterized in the brain, they influence a wide range of processes in the spinal cord, maintaining neuronal homeostasis, shaping both synaptic and intrinsic plasticity, and modulating glial responses. When dysregulated, calpains contribute to the pathophysiology of traumatic and neurodegenerative spinal cord disorders, as well as to their associated motor and sensory complications, including spasticity and neuropathic pain. A recurring feature of these conditions is calpain-mediated proteolysis of ion channels, transporters, and cytoskeletal proteins, which promotes disinhibition and neuronal hyperexcitability. The resultant protein fragments are examined as prospective biomarkers for damage and disease progression. Meanwhile, promising strategies for neuroprotection and functional recovery in the clinic emerge as a result of innovative pharmacological and genetic approaches to modulate calpain activity. In this review, we present the current state of knowledge regarding the functions and regulation of calpains in the spinal cord and assess their translational potential as both therapeutic targets and effectors in spinal cord disorders. Full article
(This article belongs to the Special Issue Role of Calpains in Health and Diseases)
Show Figures

Figure 1

49 pages, 1461 KB  
Review
Kidneys on the Frontline: Nephrologists Tackling the Wilds of Acute Kidney Injury in Trauma Patients—From Pathophysiology to Early Biomarkers
by Merita Rroji, Marsida Kasa, Nereida Spahia, Saimir Kuci, Alfred Ibrahimi and Hektor Sula
Diagnostics 2025, 15(19), 2438; https://doi.org/10.3390/diagnostics15192438 - 25 Sep 2025
Viewed by 65
Abstract
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, [...] Read more.
Acute kidney injury (AKI) is a frequent and severe complication in trauma patients, affecting up to 28% of intensive care unit (ICU) admissions and contributing significantly to morbidity, mortality, and long-term renal impairment. Trauma-related AKI (TRAKI) arises from diverse mechanisms, including hemorrhagic shock, ischemia–reperfusion injury, systemic inflammation, rhabdomyolysis, nephrotoxicity, and complex organ crosstalk involving the brain, lungs, and abdomen. Pathophysiologically, TRAKI involves early disruption of the glomerular filtration barrier, tubular epithelial injury, and renal microvascular dysfunction. Inflammatory cascades, oxidative stress, immune thrombosis, and maladaptive repair mechanisms mediate these injuries. Trauma-related rhabdomyolysis and exposure to contrast agents or nephrotoxic drugs further exacerbate renal stress, particularly in patients with pre-existing comorbidities. Traditional markers such as serum creatinine (sCr) are late indicators of kidney damage and lack specificity. Emerging structural and stress response biomarkers—such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), interleukin-18 (IL-18), C-C motif chemokine ligand 14 (CCL14), Dickkopf-3 (DKK3), and the U.S. Food and Drug Administration (FDA)-approved tissue inhibitor of metalloproteinases-2 × insulin-like growth factor-binding protein 7 (TIMP-2 × IGFBP-7)—allow earlier detection of subclinical AKI and better predict progression and the need for renal replacement therapy. Together, functional indices like urinary sodium and fractional potassium excretion reflect early microcirculatory stress and add clinical value. In parallel, risk stratification tools, including the Renal Angina Index (RAI), the McMahon score, and the Haines model, enable the early identification of high-risk patients and help tailor nephroprotective strategies. Together, these biomarkers and risk models shift from passive AKI recognition to proactive, personalized management. A new paradigm that integrates biomarker-guided diagnostics and dynamic clinical scoring into trauma care promises to reduce AKI burden and improve renal outcomes in this critically ill population. Full article
(This article belongs to the Special Issue Advances in Nephrology)
Show Figures

Graphical abstract

28 pages, 4876 KB  
Article
Evaluating the Molecular Basis of Nanocalcium-Induced Health Regulation in Zebra Fish (Danio rerio)
by Madhubala Kumari, Aastha Tiwary, Rishav Sheel, Arnab Roy Chowdhury, Biplab Sarkar, Koel Mukherjee and Dipak Maity
Bioengineering 2025, 12(10), 1016; https://doi.org/10.3390/bioengineering12101016 - 24 Sep 2025
Viewed by 12
Abstract
The present study aimed to evaluate the impact of varying dietary concentrations of calcium oxide nanoparticles (CaO-NPs) on important health regulators in Zebra fish (Danio rerio) using integrative physiological, histopathological, and computational approaches. The co-precipitation method was used to synthesize NPs and [...] Read more.
The present study aimed to evaluate the impact of varying dietary concentrations of calcium oxide nanoparticles (CaO-NPs) on important health regulators in Zebra fish (Danio rerio) using integrative physiological, histopathological, and computational approaches. The co-precipitation method was used to synthesize NPs and characterization was performed through DLS, XRD, FESEM, EDX, and FTIR depicting spherical-shaped CaO-NPs with a hydrodynamic diameter of 91.2 nm. Adult Danio rerio were administered with three different feed regimes enriched with 2.4 (T1), 1.6 (T2), and 0.8 (T3) mg CaO-NPs/kg for 30 days. Growth, survival, NP accumulation, and histological assessments, and bioinformatic studies, were performed to understand interactions of NPs with fish metabolic proteins. The T3 group demonstrated the highest survival (75%) and weight gain (+39.31%), and exhibited the lowest accumulation of CaO-NPs in the brain (0.133 mg/L), liver (0.642 mg/L), and intestine (0.773 mg/L) with no evident histological alterations, whereas T1 group exhibited major liver and intestinal damage. Molecular docking targeting the NRF-2 oxidative stress pathway revealed strong binding affinities of NPs with catalase (−3.7), keap1a (−3.5), keap1b (−3.3), and mafk (−2.4), highlighting potential modulation of redox homeostasis. Hence, a 0.8mg CaO-NPs/kg feed dose is recommended to promote potential health benefits in Danio rerio, which can be further applicable to commercial aquaculture for enhanced fish health while minimizing toxicity. Full article
(This article belongs to the Special Issue Nano–Bio Interface—Second Edition)
Show Figures

Figure 1

24 pages, 5557 KB  
Article
The Antidepressant Effect of Targeted Release of Ketamine-Loaded Nanodroplets Stimulated by Low-Intensity Focused Ultrasound
by Bailing Wu, Yu Xu, Yuhang Xie, Youzhuo Li, Yue Huang, Yuran Feng and Mei Zhu
Pharmaceutics 2025, 17(10), 1251; https://doi.org/10.3390/pharmaceutics17101251 - 24 Sep 2025
Viewed by 91
Abstract
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose [...] Read more.
Objectives: Ketamine has demonstrated rapid and sustained antidepressant effects; however, its clinical utility is limited by the risk of addiction and systemic side effects. This study aimed to develop ketamine-loaded nanodroplets (Ket-NDs) with high encapsulation efficiency (EE) and stability for targeted low-dose intravenous (IV) administration in a mice model of depression. Low-intensity focused ultrasound (LIFU) was employed to induce transcranial, region-specific drug release in the lateral habenula (LHb). Methods: Ket-NDs were synthesized using a thin-film hydration method with sonication and emulsification, incorporating perfluoropentane as the core material. Characterization was performed using light microscopy, cryogenic scanning electron microscopy (cryo-SEM), transmission electron microscopy, and dynamic light scattering (DLS). Drug EE and loading efficiency (LE) were quantified by reversed-phase high-performance liquid chromatography. A chronic restraint stress model was established, and Ket-NDs were administered intravenously followed by LIFU targeting the LHb. Antidepressant efficacy and biosafety were systematically evaluated. Results: (1) Ket-NDs exhibited uniform spherical morphology and a narrow size distribution, as confirmed by DLS (particle size: 139.75 ± 9.43 nm; Polydispersity index: 0.225 ± 0.025) and cryo-SEM analysis (number-average diameter: 109.5 ± 10.4 nm). The zeta potential was −15.93 ± 5.906 mV, and the formulation remained stable under 4 °C storage. (2) Ket-NDs demonstrated high EE (78.25 ± 16.13%) and LE (15.55 ± 4.49%). (3) In depressive mice, IV administration of Ket-NDs followed by LIFU targeting the LHb significantly improved behavioral outcomes: increased locomotor activity in the open field test, elevated sucrose preference index, and reduced immobility time in the tail suspension test. (4) Safety assessments revealed no significant organ toxicity or brain tissue damage in ultrasound-exposed regions. Conclusions: In summary, this study developed stable Ket-NDs. When combined with LIFU, they enable precise regional drug delivery to the brain, showcasing a promising treatment strategy for depression with reduced systemic side effects. Full article
Show Figures

Figure 1

28 pages, 3755 KB  
Article
Therapeutic Potential of Quercetin in the Treatment of Alzheimer’s Disease: In Silico, In Vitro and In Vivo Approach
by Franciane N. Souza, Nayana K. S. Oliveira, Henrique B. de Lima, Abraão G. Silva, Rodrigo A. S. Cruz, Fabio R. Oliveira, Leonardo B. Federico and Lorane I. S. Hage-Melim
Appl. Sci. 2025, 15(19), 10340; https://doi.org/10.3390/app151910340 - 24 Sep 2025
Viewed by 268
Abstract
Background: The pathophysiology of Alzheimer’s disease (AD) is strongly linked to damage to the cholinergic systems of the central nervous system (CNS), mainly due to the formation of β-amyloid peptide plaques, which trigger intense inflammatory responses and are currently the main cause [...] Read more.
Background: The pathophysiology of Alzheimer’s disease (AD) is strongly linked to damage to the cholinergic systems of the central nervous system (CNS), mainly due to the formation of β-amyloid peptide plaques, which trigger intense inflammatory responses and are currently the main cause of the symptoms of the disease. Among the therapeutic strategies under investigation, classes of natural products with immunomodulatory properties, action on the CNS, and potent antioxidant activity, which contribute to neuroprotection, stand out. Methods: We aimed to evaluate the flavonoid quercetin using in silico, in vitro, and in vivo methods for the treatment of AD. Initially, the compounds were selected, and molecular dynamics simulations were performed. The in vitro assays included tests of antioxidant activity (DPPH), enzymatic inhibition of acetylcholinesterase (AChE), and prediction of oral toxicity. The in vivo studies investigated the effects on scopolamine-induced learning deficits and conducted histopathological analysis of the brain. Results: Quercetin showed structural stability in the complex with (AChE), with no significant alterations in the Root Mean Square Deviation (RMSD), SASA and radius of gyration (Rg) parameters. Through the same method it was possible to predict stability between the quercetin and inducible nitric oxide synthase (iNOS) complex, a possible mechanism for quercetin immunomodulation in the CNS. In the AChE inhibition test, the IC50 obtained for quercetin was 59.15 μg mL−1, while in the antioxidant test with DPPH, the concentration of 33.1 µM exhibited 50% of the scavenging of reactive oxygen species. This corroborates the perspective of quercetin having neuroprotective activity. This activity was also corroborated in vivo, in a zebrafish model, in which quercetin reduced the cognitive deficit induced by scopolamine. Histopathological analysis revealed its ability to prevent atrophy, caused by scopolamine, in the nervous tissue of animals, reinforcing the potential of quercetin as a neuroprotective agent. Conclusions: The results of the tests carried out with quercetin suggest that this molecule has antioxidant, AChE inhibitory, and neuroprotective activities, making it a good candidate for use in future clinical trials to ensure its efficacy and safety. Full article
(This article belongs to the Special Issue Natural Products: Biological Activities and Applications)
Show Figures

Figure 1

14 pages, 3998 KB  
Article
Dysregulation of microRNAs in the Brains of Mice Infected with Powassan Virus
by Amany Elsharkawy, Komal Arora, Hamid Reza Jahantigh and Mukesh Kumar
Viruses 2025, 17(10), 1288; https://doi.org/10.3390/v17101288 - 23 Sep 2025
Viewed by 186
Abstract
microRNAs (miRNAs) are known to play critical roles in the regulation of gene expression during neurodegenerative diseases and neurotropic viral infections. However, their specific contribution to the pathogenesis of Powassan virus (POWV) infection in the brain remains poorly understood. Understanding miRNA dynamics in [...] Read more.
microRNAs (miRNAs) are known to play critical roles in the regulation of gene expression during neurodegenerative diseases and neurotropic viral infections. However, their specific contribution to the pathogenesis of Powassan virus (POWV) infection in the brain remains poorly understood. Understanding miRNA dynamics in the brain during POWV infection may reveal novel insights into viral neuropathogenesis and host antiviral responses. Therefore, in the present study, we analyzed miRNA expression profiles in the mouse brain at different time points following a peripheral POWV infection. A total of 599 miRNAs were examined at day 3, 6, and 9 post-infection. Infection with POWV resulted in the modulation of several miRNAs in the brain at all time points. There was a progressive increase in the number of dysregulated miRNAs over the course of infection. This correlated with POWV dissemination into the brain with a progressive increase in viral RNA levels that peaked at day 9 post-infection. There was an early upregulation of miR-1983, miR-19a, and miR-216b that persisted until day 9 post-infection. POWV infection also resulted in the downregulation of miR-500 at all examined time points. Using IPA, we determined the significant canonical pathways affected by miRNA dysregulation. POWV infection modulated the activation of the thyroid hormone receptor and retinoid X receptor (TR/RXR) and the regulation of the phosphatase and tensin homolog (PTEN). Additionally, macrophage classical activation and growth arrest and DNA damage-inducible 45 (GADD45) signaling were activated as early as day 3 post-infection and persisted until day 9 post-infection. Furthermore, our analysis revealed the activation of cell death pathways such as necrosis and apoptosis and the inhibition of cell cycle progression, as well as leukopoiesis. To our knowledge, this is the first study to evaluate the modulation of miRNAs in the brain following POWV infection. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

Back to TopTop