Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = bounded orbit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 289 KiB  
Article
Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation
by R. L. L. Vitória
Symmetry 2025, 17(7), 1070; https://doi.org/10.3390/sym17071070 - 5 Jul 2025
Viewed by 172
Abstract
In this article, we approach a scalar particle in a background characterized by the Lorentz symmetry violation through a non-minimal coupling in the mathematical structure of the Klein–Gordon equation, where the Lorentz symmetry violation is governed by a background vector field. For an [...] Read more.
In this article, we approach a scalar particle in a background characterized by the Lorentz symmetry violation through a non-minimal coupling in the mathematical structure of the Klein–Gordon equation, where the Lorentz symmetry violation is governed by a background vector field. For an electric field configuration and in the search for solutions of bound states, we determine the relativistic energy profile of the system, which is characterized by quantized orbits, that is, a relativistic Landau-type quantization. Then, we particularize our system and analyze it in the presence of a hard-wall potential, from which, we analytically determine its relativistic energy profile in this confining type. Full article
20 pages, 2178 KiB  
Article
Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems
by Mauro Leonardi, Gheorghe Sirbu, Mattia Carosi, Cosimo Stallo and Carmine Di Lauro
Sensors 2025, 25(12), 3675; https://doi.org/10.3390/s25123675 - 12 Jun 2025
Viewed by 472
Abstract
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives [...] Read more.
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives such as Moonlight (by ESA) and the Cislunar Autonomous Positioning System project (by NASA) are underway to address this challenge. The aim is to use ranging signals transmitted by satellites, similar to Earth’s GNSS, for lunar user positioning. This paper proposes a solution that involves local sensors deployed on the Moon surface to enhance the performance of the satellite system. These sensors can serve as differential reference stations, correcting satellite pseudorange measurements obtained by lunar surface receivers. The local sensor can also be used as a pseudolite, transmitting satellite-like signals to improve system availability and accuracy in obstructed areas. Additionally, the local sensor can act as an independent beacon that provides range and angle measurements. Higher navigation performance can be achieved by increasing the complexity of the system, depending on the implemented solution. This paper proposes and shows the concept, the intial design, and a preliminary definition of the protocol for the third solution. The three different solutions are compared in terms of position accuracy by exploiting the Cramér–Rao Lower-Bound formulation and Monte Carlo simulations. Finally, possible implementations for future use on the Moon are discussed. Full article
Show Figures

Figure 1

27 pages, 75388 KiB  
Article
High-Fidelity 3D Gaussian Splatting for Exposure-Bracketing Space Target Reconstruction: OBB-Guided Regional Densification with Sobel Edge Regularization
by Yijin Jiang, Xiaoyuan Ren, Huanyu Yin, Libing Jiang, Canyu Wang and Zhuang Wang
Remote Sens. 2025, 17(12), 2020; https://doi.org/10.3390/rs17122020 - 11 Jun 2025
Viewed by 1594
Abstract
In this paper, a novel optimization framework based on 3D Gaussian splatting (3DGS) for high-fidelity 3D reconstruction of space targets under exposure bracketing conditions is studied. In the considered scenario, multi-view optical imagery captures space targets under complex and dynamic illumination, where severe [...] Read more.
In this paper, a novel optimization framework based on 3D Gaussian splatting (3DGS) for high-fidelity 3D reconstruction of space targets under exposure bracketing conditions is studied. In the considered scenario, multi-view optical imagery captures space targets under complex and dynamic illumination, where severe inter-frame brightness variations degrade reconstruction quality by introducing photometric inconsistencies and blurring fine geometric details. Unlike existing methods, we explicitly address these challenges by integrating exposure-aware adaptive refinement and edge-preserving regularization into the 3DGS pipeline. Specifically, we propose an exposure bracketing-oriented bounding box (OBB) regional densification strategy to dynamically identify and refine under-reconstructed regions. In addition, we introduce a Sobel edge regularization mechanism to guide the learning of sharp geometric features and improve texture fidelity. To validate the framework, experiments are conducted on both a custom OBR-ST dataset and the public SHIRT dataset, demonstrating that our method significantly outperforms state-of-the-art techniques in geometric accuracy and visual quality under exposure-bracketing scenarios. The results highlight the effectiveness of our approach in enabling robust in-orbit perception for space applications. Full article
(This article belongs to the Special Issue Advances in 3D Reconstruction with High-Resolution Satellite Data)
Show Figures

Graphical abstract

26 pages, 22304 KiB  
Article
Optimal Low-Thrust Transfers Between Relative Planar and Spatial Quasi-Satellite Orbits in the Earth–Moon System
by Nishanth Pushparaj, Naoki Hiraiwa, Yuta Hayashi and Mai Bando
Aerospace 2025, 12(6), 524; https://doi.org/10.3390/aerospace12060524 - 10 Jun 2025
Viewed by 416
Abstract
This paper investigates the design of optimal low-thrust transfers between relative planar and spatial quasi-satellite orbits (QSOs) in the Earth–Moon system under the Circular Restricted Three-Body Problem (CR3BP). A key contribution is the adaptation of a trajectory optimization framework, previously applied to halo [...] Read more.
This paper investigates the design of optimal low-thrust transfers between relative planar and spatial quasi-satellite orbits (QSOs) in the Earth–Moon system under the Circular Restricted Three-Body Problem (CR3BP). A key contribution is the adaptation of a trajectory optimization framework, previously applied to halo orbit transfers, to accommodate the unique challenges of QSO families, especially the transition between planar and spatial configurations. The method employs a refined beam search strategy to construct diverse initial guess chains, which are then optimized via a successive convexification algorithm tailored for the spatial dynamics of QSOs. Additionally, a linear–quadratic regulator (LQR)-based control scheme is implemented to ensure long-term station-keeping of the final 3D-QSO. Simulation results demonstrate the feasibility of connecting planar and spatial QSOs with minimum-fuel trajectories while maintaining bounded terminal deviations, offering new tools for future Earth–Moon logistics and navigation infrastructure. Key findings include the successful design of low-thrust transfer trajectories between planar QSOs and 1:5 3D-QSOs, with a minimum total ΔV of 195.576 m/s over a time of flight (ToF) of 261 days, and a minimum ToF of 41 days with a total ΔV of 270.507 m/s. Additionally, the application of LQR control demonstrated the ability to maintain 1:5 3D-QSO families around the Moon with less than 12 mm/s ΔV over two months. This research provides valuable insights into the optimization of low-thrust transfer trajectories and the application of advanced control techniques for space missions, particularly those targeting lunar and planetary satellite exploration. Full article
(This article belongs to the Special Issue Spacecraft Trajectory Design)
Show Figures

Figure 1

22 pages, 2905 KiB  
Review
The Electronic Structure and Bonding in Some Small Molecules
by George B. Bacskay
Molecules 2025, 30(5), 1154; https://doi.org/10.3390/molecules30051154 - 4 Mar 2025
Viewed by 1104
Abstract
The electronic structures of the first- and second-row homonuclear diatomics, XeF2, and the weakly bound dimers of nitric oxide and nitrogen dioxide molecules in their ground states are discussed in terms of molecular orbital (MO) theory and, where possible, valence bond [...] Read more.
The electronic structures of the first- and second-row homonuclear diatomics, XeF2, and the weakly bound dimers of nitric oxide and nitrogen dioxide molecules in their ground states are discussed in terms of molecular orbital (MO) theory and, where possible, valence bond theories. The current work is extended and supported by restricted and unrestricted Hartree–Fock (RHF and UHF) self-consistent field (SCF), complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI), coupled cluster CCSD(T), and unrestricted Kohn–Sham (UKS) density functional calculations using a polarized triple-zeta basis. The dicarbon (C2) molecule is especially poorly described by RHF theory, and it is argued that the current MO theories taught in most undergraduate courses should be extended in recognition of the fact that the molecule requires at least a two-configuration treatment. Full article
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Estimation of Hardness of Single-Phase Metallic Alloys
by Ottó K. Temesi, Nguyen Q. Chinh, Levente Vitos and Lajos K. Varga
Crystals 2025, 15(2), 156; https://doi.org/10.3390/cryst15020156 - 2 Feb 2025
Cited by 1 | Viewed by 901
Abstract
First, we discuss a common feature of single-phase pure metals and amorphous and high-entropy alloys: the maximum value of hardness corresponding to a valence electron count (VEC) value of around 6.5–7. This correlation is explained by the coincidence that by subtracting the number [...] Read more.
First, we discuss a common feature of single-phase pure metals and amorphous and high-entropy alloys: the maximum value of hardness corresponding to a valence electron count (VEC) value of around 6.5–7. This correlation is explained by the coincidence that by subtracting the number of sp valence electrons (Nsp = 2) from the VEC we obtain the maximal number of unpaired d electrons, Nd = 4.5–5 in the 3d, 4d, and 5d rows of transition elements. These unpaired d electrons form orbital overlap bonding, which is stronger than the isotropic metallic bonds of a delocalized electron cloud. The more unpaired d electrons there are, the higher the bonding strength. Second, we will discuss the hardness formulas derived from cohesion energy and shear modulus. We will demonstrate that both types of formulas originate in the electrostatic energy density of metallic bonds, expressing a 1/R4 dependence. Finally, we show that only two parameters are sufficient to estimate hardness: the atomic radius and the cohesion-based valence. In the case of alloys, our formula gives a lower bound on the hardness only. It is not suitable for calculation of the hardness increase caused by solid solution, grain size, precipitation, and phase mixture. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys)
Show Figures

Figure 1

24 pages, 333 KiB  
Article
Discrete-Time Retrial Queuing Systems with Last-Come-First-Served (LCFS) and First-Come-First-Served (FCFS) Disciplines: Negative Customer Impact and Stochastic Analysis
by Iván Atencia-Mckillop, Sixto Sánchez-Merino, Inmaculada Fortes-Ruiz and José Luis Galán-García
Mathematics 2025, 13(1), 107; https://doi.org/10.3390/math13010107 - 30 Dec 2024
Viewed by 634
Abstract
This paper examines a discrete-time retrial queuing system that incorporates negative customers, system breakdowns, and repairs. In this model, an arriving customer has the option to go directly to the server, pushing the currently served customer, if any, to the front of the [...] Read more.
This paper examines a discrete-time retrial queuing system that incorporates negative customers, system breakdowns, and repairs. In this model, an arriving customer has the option to go directly to the server, pushing the currently served customer, if any, to the front of the orbit queue, or to join the orbit based on a First-Come-First-Served (FCFS) discipline. The study also considers negative customers who not only remove the customer currently being served but also cause a server breakdown. An in-depth analysis of the model is conducted using a generating function approach, leading to the determination of the distribution and expected values of the number of customers in the orbit and the entire system. The paper explores the stochastic decomposition law and provides bounds for the difference between the steady-state distribution of this system and a comparable standard system. Recursive formulas for the steady-state distributions of the orbit and the system are developed. Additionally, it is shown that the studied discrete-time system can approximate the M/G/1 continuous-time version of the model. The research includes a detailed examination of the customer’s sojourn time distribution in the orbit and the system, utilizing the busy period of an auxiliary system. The paper concludes with numerical examples that highlight how different system parameters affect various performance characteristics, and a section summarizing the key research contributions. Full article
(This article belongs to the Special Issue Recent Research in Queuing Theory and Stochastic Models, 2nd Edition)
Show Figures

Figure 1

15 pages, 2466 KiB  
Article
DFT Investigation of the Mechanism of Methoxycarbonylation of Styrene by Palladium Chloride
by Shanti Gopal Patra, Aritra Saha and Pratim Kumar Chattaraj
Chemistry 2024, 6(6), 1593-1607; https://doi.org/10.3390/chemistry6060096 - 5 Dec 2024
Viewed by 2393
Abstract
The alkoxycarbonylation of styrene by palladium chloride is studied employing the density functional theory (DFT). Initially, [PdCl3] reacts with methanol to form the methoxy-bound intermediate, which undergoes β-hydride elimination to form the key intermediate [PdCl2H]. [...] Read more.
The alkoxycarbonylation of styrene by palladium chloride is studied employing the density functional theory (DFT). Initially, [PdCl3] reacts with methanol to form the methoxy-bound intermediate, which undergoes β-hydride elimination to form the key intermediate [PdCl2H]. Then, a 1,2-insertion reaction to styrene takes place to form linear and branched alkyl coordinated with the PdII. Then, CO coordination followed by a 1,1-insertion reaction leads to the formation of acyl intermediate. Next, the methanolysis leads to the formation of esters. Previous reports with other catalysts suggested the intermolecular/intramolecular transition state (TS) formation with a high activation barrier, and this step was the bottleneck. To the best of our knowledge, this is the first time we have considered a two-step mechanism for the alcoholysis of the ester formation mechanism. After coordination with the metal, the methanol undergoes oxidative addition to form the PdIV square pyramidal intermediate, followed by reductive elimination to form the ester with regeneration of the metal hydride active intermediate. Deeper insight into the nature of bonding at the TSs is obtained through energy decomposition with natural orbital for chemical valence (EDA-NOCV) and quantum theory of atoms in molecules (QTAIM). Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

15 pages, 4411 KiB  
Article
Spectroscopic and Quantum Chemical Evidence of Amine–CO2 and Alcohol–CO2 Interactions: Confirming an Intriguing Affinity of CO2 to Monoethanolamine (MEA)
by Sahar Hafizi Yazdabadi, Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(23), 5521; https://doi.org/10.3390/molecules29235521 - 22 Nov 2024
Viewed by 1244
Abstract
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy [...] Read more.
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy group. These findings have triggered the present systematic vibrational spectroscopic exploration of weakly bound amine··CO2 and alcohol··CO2 van der Waals cluster molecules embedded in inert “quantum” matrices of neon at 4.2 K complemented by high-level quantum chemical conformational analyses. The non-covalent interactions formed between the amino and hydroxy groups and the electron-deficient carbon atom of CO2 are demonstrated to lift the degeneracy of the doubly degenerate intramolecular CO2-bending fundamental significantly with characteristic observed spectral splittings for the amine··CO2 (≈35–45 cm−1) and alcohol··CO2 (≈20–25 cm−1) interactions, respectively, despite the almost identically predicted total association energies (≈12–14 kJ·mol−1) for these van der Waals contacts, as revealed by benchmark Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory. These high-level theoretical predictions reveal significantly higher “geometry preparation energies” for the amine··CO2 systems leading to a more severe distortion of the CO2 linearity upon complexation in agreement with the infrared spectroscopic findings. The systematic combined spectroscopic and quantum chemical evidences for cross-association between CO2 and amines/alcohols in the present work unambiguously confirm an intriguing binding preference of CO2 to the hydroxy group of the important carbon capture agent MEA, with an accurate vibrational zero-point energy corrected association energy (D0) of 13.5 kJ·mol−1 at the benchmark DLPNO-CCSD(T)/aug-cc-pV5Z level of theory. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

13 pages, 3139 KiB  
Review
Computational Studies of Molybdenum-Containing Metal–Sulfur and Metal–Hydride Clusters
by Nishshanka M. Lakshan, Dinesh C. Aluthge and W. M. C. Sameera
Catalysts 2024, 14(11), 816; https://doi.org/10.3390/catal14110816 - 13 Nov 2024
Cited by 2 | Viewed by 1375
Abstract
The development of transition metal clusters is an active area of research in inorganic chemistry, as they can be used as catalysts to perform chemically or biologically relevant reactions. Computational chemistry, employing density functional theory (DFT), plays a key role in rationalizing the [...] Read more.
The development of transition metal clusters is an active area of research in inorganic chemistry, as they can be used as catalysts to perform chemically or biologically relevant reactions. Computational chemistry, employing density functional theory (DFT), plays a key role in rationalizing the electronic structure and properties of transition metal clusters. This article reviews recent quantum chemical studies of Mo3S4M clusters (M = Fe, Co, Ni), their CO- or N2-bound variants, and metal–hydride clusters. The ground state of the cluster systems was computed, and properties such as metal–metal bonding, orbital interactions, fluxional behavior of ligands, spectroscopy, and reaction mechanisms were rationalized and compared with available experimental results. Our research findings evidence that computational studies employing quantum chemical methods can guide experimental researchers to develop novel transition metal clusters for potential applications in catalysis. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

20 pages, 3583 KiB  
Article
Lunar Satellite Constellations in Frozen Low Orbits
by Mikhail Ovchinnikov, Maksim Shirobokov and Sergey Trofimov
Aerospace 2024, 11(11), 918; https://doi.org/10.3390/aerospace11110918 - 8 Nov 2024
Viewed by 1500
Abstract
This research studies the potential of frozen low lunar orbits to be used in the design of constellations for global and regional communication or navigation. We introduce a robust two-stage approach to the frozen low lunar orbit design based on the successive application [...] Read more.
This research studies the potential of frozen low lunar orbits to be used in the design of constellations for global and regional communication or navigation. We introduce a robust two-stage approach to the frozen low lunar orbit design based on the successive application of non-gradient techniques, the Bayesian optimization and the Nelder–Mead method. The developed methodology has a number of advantages over existing numerical design techniques and allows revealing orbits with the periodic behavior of the eccentricity vector over long propagation intervals in the full dynamical model. By leveraging a convenient nomogram with constellation visibility parameters and lower bound coverage curves, we have identified most suitable low-altitude orbital configurations of Walker type and then adjust them to be frozen. The frozenness condition can be achieved without changing the orientation of orbital planes. Visibility and coverage metrics (multiplicity of continuous coverage for specified sites, polar regions, or the whole lunar surface; position dilution of precision) of candidate constellations are analyzed. Several promising designs of frozen constellations in near-circular low lunar orbits are singled out. The frozen orbit stability and the station-keeping cost are discussed. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 3053 KiB  
Article
Bipedal Stepping Controller Design Considering Model Uncertainty: A Data-Driven Perspective
by Chao Song, Xizhe Zang, Boyang Chen, Shuai Heng, Changle Li, Yanhe Zhu and Jie Zhao
Biomimetics 2024, 9(11), 681; https://doi.org/10.3390/biomimetics9110681 - 7 Nov 2024
Viewed by 1056
Abstract
This article introduces a novel perspective on designing a stepping controller for bipedal robots. Typically, designing a state-feedback controller to stabilize a bipedal robot to a periodic orbit of step-to-step (S2S) dynamics based on a reduced-order model (ROM) can achieve stable walking. However, [...] Read more.
This article introduces a novel perspective on designing a stepping controller for bipedal robots. Typically, designing a state-feedback controller to stabilize a bipedal robot to a periodic orbit of step-to-step (S2S) dynamics based on a reduced-order model (ROM) can achieve stable walking. However, the model discrepancies between the ROM and the full-order dynamic system are often ignored. We introduce the latest results from behavioral systems theory by directly constructing a robust stepping controller using input-state data collected during flat-ground walking with a nominal controller in the simulation. The model uncertainty discrepancies are equivalently represented as bounded noise and over-approximated by bounded energy ellipsoids. We conducted extensive walking experiments in a simulation on a 22-degrees-of-freedom small humanoid robot, verifying that it demonstrates superior robustness in handling uncertain loads, various sloped terrains, and push recovery compared to the nominal S2S controller. Full article
(This article belongs to the Special Issue Bio-Inspired Locomotion and Manipulation of Legged Robot: 2nd Edition)
Show Figures

Figure 1

19 pages, 6021 KiB  
Article
Electron Density and Molecular Orbital Analyses of the Nature of Bonding in the η3-CCH Agostic Rhodium Complexes Preceding the C–C and C–H Bond Cleavages
by Irena Efremenko
Molecules 2024, 29(20), 4788; https://doi.org/10.3390/molecules29204788 - 10 Oct 2024
Cited by 1 | Viewed by 1681
Abstract
In our recent work, we revisited C–H and C–C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η3-Csp2Csp3H agostic intermediate acts as a common precursor [...] Read more.
In our recent work, we revisited C–H and C–C bond activation in rhodium (I) complexes of pincer ligands PCP, PCN, PCO, POCOP, and SCS. Our findings indicated that an η3-Csp2Csp3H agostic intermediate acts as a common precursor to both C–C and C–H bond activation in these systems. We explore the electronic structure and bonding nature of these precleavage complexes using electron density and molecular orbital analyses. Using NBO, IBO, and ESI-3D methods, the bonding in the η3-CCH agostic moiety is depicted by two three-center agostic bonds: Rh–Csp2–Csp3 and Rh–Csp3–H, with all three atoms datively bound to Rh(I). IBO analysis specifically highlights the involvement of three orbitals (CC→Rh and CH→Rh σ donation, plus Rh→CCH π backdonation) in both C–C and C–H bond cleavages. NCIPLOT and QTAIM analyses highlight anagostic (Rh–H) or β-agostic (Rh–Csp2–H) interactions and the absence of Rh–Csp3 interactions. QTAIM molecular graphs suggest bond path instability under dynamic conditions due to the nearness of line and ring critical points. Several low-frequency and low-force vibrational modes interconvert various bonding patterns, reinforcing the dynamic η3-CCH agostic nature. The kinetic preference for C–H bond breaking is attributed to the smaller reduced mass of C–H vibrations compared to C–C vibrations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

14 pages, 1669 KiB  
Article
Bidentate Substrate Binding Mode in Oxalate Decarboxylase
by Alvaro Montoya, Megan Wisniewski, Justin L. Goodsell and Alexander Angerhofer
Molecules 2024, 29(18), 4414; https://doi.org/10.3390/molecules29184414 - 17 Sep 2024
Cited by 1 | Viewed by 1188
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH [...] Read more.
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO’) to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

26 pages, 14152 KiB  
Article
A Space Non-Cooperative Target Recognition Method for Multi-Satellite Cooperative Observation Systems
by Yue Zhang, Jianyuan Wang, Jinbao Chen, Donghao Shi and Xiaotong Chen
Remote Sens. 2024, 16(18), 3368; https://doi.org/10.3390/rs16183368 - 10 Sep 2024
Cited by 2 | Viewed by 2321
Abstract
Space non-cooperative target recognition is crucial for on-orbit servicing. Multi-satellite cooperation has great potential for broadening the observation scope and enhancing identification efficiency. However, there is currently a lack of research on recognition methods tailored for multi-satellite cooperative observation. In this paper, we [...] Read more.
Space non-cooperative target recognition is crucial for on-orbit servicing. Multi-satellite cooperation has great potential for broadening the observation scope and enhancing identification efficiency. However, there is currently a lack of research on recognition methods tailored for multi-satellite cooperative observation. In this paper, we propose a novel space non-cooperative target recognition method to identify satellites and debris in images from multi-satellite observations. Firstly, we design an image-stitching algorithm to generate space-wide-area images. Secondly, we propose a two-stage multi-target detection model, a lighter CNN model with distance merge threshold (LCNN-DMT). Specifically, in the first stage, we propose a novel foreground extraction model based on a minimum bounding rectangle with the threshold for distance merging (MBRT-D) to address redundant detection box extraction for satellite components. Then, in the second stage, we propose an improved SqueezeNet model by introducing separable convolution and attention mechanisms for target classification. Moreover, due to the absence of a public multi-target detection dataset containing satellites and debris, we construct two space datasets by introducing a randomized data augmentation strategy. Further experiments demonstrate that our method can achieve high-precision image stitching and superior recognition performance. Our LCNN-DMT model outperforms mainstream algorithms in target localization accuracy with only 0.928 M parameters and 0.464 GFLOPs, making it ideal for on-orbit deployment. Full article
Show Figures

Graphical abstract

Back to TopTop