Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation
Abstract
1. Introduction
2. Landau-Type Quantization Induced by the LSV
2.1. Space-like Background Vector Field
2.2. Space-like Plus Time-like Background Vector Field
3. Landau-Type Quantization Induced by the LSV in the Presence of a Hard-Wall Potential in System
3.1. Space-like Background Vector Field
3.2. Space-like Plus Time-like Background Vector Field
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weinberg, S. Cosmology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Pohl, R.; Nez, F.; Fernandes, L.M.P.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Diepold, M.; et al. Laser spectroscopy of muonic deuterium. Science 2016, 353, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Songaila, A.; Cowie, L.L. Astronomy: Fine-structure variable? Nature 1999, 398, 667. [Google Scholar] [CrossRef]
- Songaila, A.; Cowie, L.L. Astrophysics: The inconstant constant? Nature 2004, 428, 132. [Google Scholar]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Müller-Kirsten, H.J.W.; Wiedemann, A. Introduction to Supersymmetry, 2nd ed.; Word Scientific: River Edge, NJ, USA, 2010. [Google Scholar]
- Douglas, M.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977. [Google Scholar] [CrossRef]
- Becker, K.; Becker, M.; Schwarz, J. String Theory and M-Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Santos, M.A.; Orlando, M.T.D. Violação da simetria de Lorentz. Rev. Bras. Ensino Fís. 2007, 29, 1. [Google Scholar]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz-and parity-violating modification of electrodynamics. Phys. Rev. D 1990, 41, 1231. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Cross sections and lorentz violation. Phys. Lett. B 2001, 511, 209. [Google Scholar] [CrossRef]
- Lehnert, R. Threshold analyses and Lorentz violation. Phys. Rev. D 2003, 68, 085003. [Google Scholar] [CrossRef]
- Lehnert, R. Dirac theory within the Standard-Model Extension. J. Math. Phys. 2004, 45, 3399. [Google Scholar] [CrossRef]
- Altschul, B. Compton scattering in the presence of Lorentz and CPT violation. Phys. Rev. D 2004, 70, 056005. [Google Scholar] [CrossRef]
- Shore, G.M. Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry. Nucl. Phys. B 2005, 717, 86. [Google Scholar] [CrossRef]
- Aghababaei, S.; Haghighat, M.; Motie, I. Muon anomalous magnetic moment in the standard model extension. Phys. Rev. D 2017, 96, 115028. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D. CPT and Lorentz Tests with Muons. Phys. Rev. Lett. 2000, 84, 1098. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Clock-Comparison Tests of Lorentz and CPT Symmetry in Space. Phys. Rev. Lett. 2002, 88, 090801. [Google Scholar] [CrossRef]
- Andrianov, A.A.; Espriu, D.; Giacconi, P.; Soldati, R. Anomalous positron excess from Lorentz-violating QED. High Energy Phys. 2009, 0909, 057. [Google Scholar] [CrossRef]
- Alfaro, J.; Andrianov, A.A.; Cambiaso, M.; Giacconi, P.; Soldati, R. Bare and Induced Lorentz and CPT invariance Violations in QED. Int. J. Mod. Phys. A 2010, 25, 3271. [Google Scholar] [CrossRef]
- Gomes, Y.M.P.; Malta, P.C. Laboratory-based limits on the Carroll-Field-Jackiw Lorentz-violating electrodynamics. Phys. Rev. D 2016, 94, 025031. [Google Scholar] [CrossRef]
- Martín-Ruiz, A.; Escobar, C.A. Local effects of the quantum vacuum in Lorentz-violating electrodynamics. Phys. Rev. D 2017, 95, 036011. [Google Scholar] [CrossRef]
- Lehnert, R.; Potting, R. Vacuum Cerenkov Radiation. Phys. Rev. Lett. 2004, 93, 110402. [Google Scholar] [CrossRef]
- Lehnert, R.; Potting, R. Cerenkov effect in Lorentz-violating vacua. Phys. Rev. D 2004, 70, 125010. [Google Scholar] [CrossRef]
- Kaufhold, C.; Klinkhamer, F.R. Vacuum Cherenkov radiation and photon triple-splitting in a Lorentz-noninvariant extension of quantum electrodynamics. Nucl. Phys. B 2006, 734, 1. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. On the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects on the harmonic oscillator. Eur. Phys. J. Plus 2012, 127, 102. [Google Scholar] [CrossRef]
- Belich, H.; Silva, E.O.; Ferreira, M.M., Jr.; Orlando, M.T.D. Aharonov-Bohm-Casher problem with a nonminimal Lorentz-violating coupling. Phys. Rev. D 2011, 83, 125025. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Quantum holonomies based on the Lorentz-violating tensor background. Phys. G Nucl. Part. Phys. 2013, 40, 065002. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Abelian geometric phase for a Dirac neutral particle in a Lorentz symmetry violation environment. Phys. G Nucl. Part. Phys. 2012, 39, 085001. [Google Scholar] [CrossRef]
- Bakke, K.; Silva, E.O.; Belich, H. He-McKellar-Wilkens effect and scalar Aharonov-Bohm effect for a neutral particle based on the Lorentz symmetry violation. J. Phys. G Nucl. Part. Phys. 2012, 39, 055004. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H.; Bakke, K. On the effects of the Lorentz symmetry violation yielded by a tensor field on the interaction of a scalar particle and a Coulomb-type field. Ann. Phys. 2018, 399, 117. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. Effects of a linear central potential induced by the Lorentz symmetry violation on the Klein–Gordon oscillator. Eur. Phys. J. C. 2018, 78, 999. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. On the Dirac oscillator subject to a Coulomb-type central potential induced by the Lorentz symmetry violation. Eur. Phys. J. Plus 2020, 135, 247. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. On a massive scalar field subject to the relativistic Landau quantization in an environment of aether-like Lorentz symmetry violation. Eur. Phys. J. Plus 2020, 135, 123. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. Effects of a Landau-Type Quantization Induced by the Lorentz Symmetry Violation on a Dirac Field. Adv. High Energy Phys. 2020, 2020, 4208161. [Google Scholar] [CrossRef]
- Belich, H.; Costa-Soares, T.; Ferreira, M.M., Jr.; Helayël-Neto, J.A. Non-minimal coupling to a Lorentz-violating background and topological implications. Eur. Phys. J. C. 2005, 41, 421. [Google Scholar] [CrossRef]
- Medeiros, E.R.F.; de Mello, E.R.B. Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential. Eur. Phys. J. C. 2012, 72, 2051. [Google Scholar]
- Vitória, R.L.L.; Bakke, K. Aharonov–Bohm effect for bound states in relativistic scalar particle systems in a spacetime with a spacelike dislocation. Int. J. Mod. Phys. D 2018, 27, 1850005. [Google Scholar] [CrossRef]
- Vitória, R.L.L.; Belich, H. A Massive Scalar Field under the Effects of the Lorentz Symmetry Violation by a CPT-Odd Nonminimal Coupling. Adv. High Energy Phys. 2019, 2019, 8462973. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. CPT and Lorentz Tests in Hydrogen and Antihydrogen. Phys. Rev. Lett. 1999, 82, 2254. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Russell, N. Testing CPT with Anomalous Magnetic Moments. Phys. Rev. Lett. 1997, 79, 1432. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef]
- Minami, Y.; Komatsu, E. New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett. 2020, 125, 221301. [Google Scholar] [CrossRef]
- Nilsson, N.A. Le Poncin-Lafitte, Reexamining aspects of spacetime-symmetry breaking with CMB polarization. Phys. Rev. D 2024, 109, 015032. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B. Is There Evidence for Cosmic Anisotropy in the Polarization of Distant Radio Sources? Phys. Rev. Lett. 1997, 79, 2394. [Google Scholar] [CrossRef]
- Bakke, K.; Belich, H. Spontaneous Lorentz Symmetry Violation and Low Energy Scenarios; LAMBERT Academic Publishing: Saarbrücken, Germany, 2015. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier: New York, NY, USA, 2005. [Google Scholar]
- Furtado, C.; Moraes, F. Landau levels in the presence of a screw dislocation. Europhys. Lett. 1999, 45, 279. [Google Scholar] [CrossRef]
- Marques, G.A.; Furtado, C.; Bezerra, V.B.; Moraes, F. Landau levels in the presence of topological defects. J. Phys. A Math. Gen. 2001, 34, 5945. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 1984, 53, 319. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Furtado, C.; Nascimento, J.R. Landau levels analog to electric dipole. Phys. Lett. A 2006, 348, 135. [Google Scholar] [CrossRef]
- Furtado, C.; Nascimento, J.R.; Ribeiro, L.R. Landau quantization of neutral particles in an external field. Phys. Lett. A 2006, 358, 336. [Google Scholar] [CrossRef]
- Haouat, S.; Benzekka, M. On the quantum behavior of a neutral fermion in a pseudoscalar potential barrier. Phys. Lett. A 2013, 377, 2298. [Google Scholar] [CrossRef]
- Bragança, E.A.F.; Vitória, R.L.L.; Belich, H.; de Mello, E.R.B. Relativistic quantum oscillators in the global monopole spacetime. Eur. Phys. J. C. 2020, 80, 206. [Google Scholar] [CrossRef]
- Maia, A.V.D.M.; Bakke, K. Harmonic oscillator in an elastic medium with a spiral dislocation. Phys. B Condens. Matter. 2018, 531, 213. [Google Scholar] [CrossRef]
- Furtado, C.; Bezerra, V.B.; Moraes, F. Quantum scattering by a magnetic flux screw dislocation. Phys. Lett. A 2001, 289, 160. [Google Scholar] [CrossRef]
- Bakke, K. Relativistic bounds states for a neutral particle confined to a parabolic potential induced by noninertial effects. Phys. Lett. A 2010, 274, 4642. [Google Scholar] [CrossRef]
- Castro, L.B. Noninertial effects on the quantum dynamics of scalar bosons. Eur. Phys. J. C. 2016, 76, 61. [Google Scholar] [CrossRef]
- Santos, L.C.N.; Barros, C.C., Jr. Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime. Eur. Phys. J. C. 2018, 78, 13. [Google Scholar] [CrossRef]
- Vitória, R.L.L. Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation. Eur. Phys. J. C. 2019, 79, 844. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Hassanabadi, H. DKP equation in a rotating frame with magnetic cosmic string background. Eur. Phys. J. Plus 2015, 130, 236. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegum, I.A. Handbook of Mathematical Functions; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitória, R.L.L. Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation. Symmetry 2025, 17, 1070. https://doi.org/10.3390/sym17071070
Vitória RLL. Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation. Symmetry. 2025; 17(7):1070. https://doi.org/10.3390/sym17071070
Chicago/Turabian StyleVitória, R. L. L. 2025. "Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation" Symmetry 17, no. 7: 1070. https://doi.org/10.3390/sym17071070
APA StyleVitória, R. L. L. (2025). Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation. Symmetry, 17(7), 1070. https://doi.org/10.3390/sym17071070