Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (662)

Search Parameters:
Keywords = bounded degree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2723 KiB  
Article
Upper Bound Solution for Stability Analysis of Deep Underground Cavities Under the Influence of Varying Saturation
by Shaoxiang Xie, Daobing Zhang, Jiahua Zhang, Biao Zhang, Huadong Yin, Anmin Jiang and Qi Li
Appl. Sci. 2025, 15(17), 9295; https://doi.org/10.3390/app15179295 (registering DOI) - 24 Aug 2025
Abstract
In order to study the influence of rock mechanical behavior under different saturation conditions on the stability of deep caverns, this paper establishes a mechanical model for bottom drum failure in deep chambers based on Pratt’s pressure arch theory and the upper bound [...] Read more.
In order to study the influence of rock mechanical behavior under different saturation conditions on the stability of deep caverns, this paper establishes a mechanical model for bottom drum failure in deep chambers based on Pratt’s pressure arch theory and the upper bound theorem of limit analysis, comprehensively considering the effect of rock saturation. An analytical solution for the surrounding rock pressure under the nonlinear Hoek–Brown criterion is derived, and the optimal upper bound solution is obtained. The study systematically investigates the influence of rock saturation, geostress, and Hoek–Brown parameters (GSI, σc0, σc100, mi, D) on the surrounding rock pressure and the characteristics of potential failure surfaces. The results indicate that the surrounding rock pressure exhibits two-stage variation with saturation degree (Sr): when Sr = 0~0.6, the surrounding rock pressure increases significantly, and the growth rate slows and tends to stabilize when Sr exceeds 0.6. Increases in ground stress field parameters (σv, λ) significantly raise the surrounding rock pressure and expand the potential failure zone. Among the Hoek–Brown parameters, increases in GSI, σc0, σc100, and mi enhance the stability of the surrounding rock, while an increase in the disturbance factor D reduces its bearing capacity. The results of this paper can provide theoretical guidance for the stability evaluation of deep underground chambers. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

20 pages, 1156 KiB  
Article
Reactivity of Autologous Serum IgG to Gut Microbes in Pediatric Ulcerative Colitis
by Nafisa Tabassum, Haruyuki Nakayama-Imaohji, Emmanuel Munyeshyaka, Ayano Tada, Takeo Kondo, Sonoko Kondo, Takashi Kusaka and Tomomi Kuwahara
Int. J. Mol. Sci. 2025, 26(17), 8196; https://doi.org/10.3390/ijms26178196 - 23 Aug 2025
Abstract
Ulcerative colitis (UC) is caused by an excessive immune response to gut microbiota. A recent study reported that the population of IgG-coated gut microbes increases with disease severity in patients with UC, but the role of these IgG-coated microbes in UC pathology is [...] Read more.
Ulcerative colitis (UC) is caused by an excessive immune response to gut microbiota. A recent study reported that the population of IgG-coated gut microbes increases with disease severity in patients with UC, but the role of these IgG-coated microbes in UC pathology is unclear. Serum, feces and colonoscopic lavage fluids (CLFs) were collected from pediatric UC (n = 13) and non-inflammatory bowel disease (IBD) patients (n = 15). Gut microbes were isolated from feces. Serum IgG reactivity to microbial cells and CLF-derived proteins was evaluated by Western blotting. Complement activation by the bacteria–IgG complexes was also assessed. Serum IgG reactivity to gut microbial extracts was highly variable in patients with active UC and increased with mucosal inflammation. IgG reactivity and clinical condition were inversely associated depending on disease activity. Non-IBD patients showed a similar degree of serum IgG response as that seen for patients whose UC was in remission. Lactobacillaceae bound higher amounts of IgG than other gut microbes tested and absorbed IgG to other bacteria. Lacticaseibacillus paracasei suppressed complement activation by Escherichia coli–IgG immune complexes. Appropriate IgG responses to luminal microbes might play a key role in gut microbiota stability by reducing excessive mucosal inflammation. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
16 pages, 253 KiB  
Article
An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial
by Robert Gardner and Luke Herrell
Axioms 2025, 14(9), 651; https://doi.org/10.3390/axioms14090651 - 22 Aug 2025
Abstract
The classical Eneström–Kakeya theorem states that an n-degree polynomial p(z)=k=0nakzk with real coefficients satisfying 0a0a1an has all of [...] Read more.
The classical Eneström–Kakeya theorem states that an n-degree polynomial p(z)=k=0nakzk with real coefficients satisfying 0a0a1an has all of its zeros in |z|1 in the complex plane. Numerous generalizations of this result exist, many of them weakening the condition on the coefficients in order to be applicable to a larger class of polynomials. In this paper, a monotonicity condition on the real and imaginary parts of the even- and odd-indexed coefficients is imposed and bounds on the location of the zeros are established. Full article
16 pages, 1879 KiB  
Article
Parameter-Gain Accelerated ZNN Model for Solving Time-Variant Nonlinear Inequality-Equation Systems and Application on Tracking Symmetrical Trajectory
by Yihui Lei, Longyi Xu and Jialiang Chen
Symmetry 2025, 17(8), 1342; https://doi.org/10.3390/sym17081342 - 17 Aug 2025
Viewed by 244
Abstract
Time-variant nonlinear problems have always been a kind of complex research object in the field of control. The accuracy and efficiency of settling time-variant nonlinear inequality-equation (NIE) systems are often affected by the nonlinearity degree of the systems, and there are currently no [...] Read more.
Time-variant nonlinear problems have always been a kind of complex research object in the field of control. The accuracy and efficiency of settling time-variant nonlinear inequality-equation (NIE) systems are often affected by the nonlinearity degree of the systems, and there are currently no complete algorithms to settle the time-variant NIE systems effectively. To settle this class of complex systems effectively, time-variant NIE systems are first equivalently transformed into a time-variant equation by introducing a nonnegative variable. Then, through the idea of zeroing neural network (ZNN) and the role of time-variant parameter-gain functions, a parameter-gain accelerated ZNN (PGAZNN) model is proposed to solve time-variant NIE systems. Theoretically, the stability of the proposed PGAZNN model is proved by strict mathematical analysis. In addition, the PGAZNN model can achieve fixed-time convergence, and the upper-bound of convergence time is estimated. Finally, numerical simulation example and symmetry trajectory tracking are given to verify the validity and correctness of the proposed PGAZNN model. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Intelligent Control and Computing)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
Three-Dimensional Trajectory Tracking Control Strategy for Underactuated UUVs Based on Improved ADRC
by Xuelong Geng, Zhengpeng Yang and Chao Ming
Symmetry 2025, 17(8), 1339; https://doi.org/10.3390/sym17081339 - 16 Aug 2025
Viewed by 291
Abstract
To address the challenge of low trajectory tracking accuracy for underactuated unmanned underwater vehicles (UUVs) under external disturbances, this study proposes a method integrating backstepping control with improved active disturbance rejection control (IADRC), which enhances high-precision trajectory tracking performance for UUV systems. Firstly, [...] Read more.
To address the challenge of low trajectory tracking accuracy for underactuated unmanned underwater vehicles (UUVs) under external disturbances, this study proposes a method integrating backstepping control with improved active disturbance rejection control (IADRC), which enhances high-precision trajectory tracking performance for UUV systems. Firstly, a five-degree-of-freedom dynamic model is established according to the symmetrical structure characteristics of an underactuated UUV, and virtual control inputs are designed using the backstepping method to address the underactuated characteristics. To improve convergence speed and tracking accuracy, a nonsingular terminal sliding mode control (NTSMC) is incorporated into the ADRC framework. Additionally, a parameter-adaptive tracking differentiator (PATD) is developed to mitigate the “differential explosion” problem inherent in backstepping virtual control inputs. A model-assisted extended state observer (ESO) is also designed to accurately estimate system disturbances. Stability analysis, grounded in Lyapunov theory, rigorously proves that all tracking errors converge asymptotically to a small bounded neighborhood of the origin. Simulation results demonstrate the effectiveness and superiority of the proposed control strategy. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 1622 KiB  
Article
Pitch Invariance Reveals Skill-Specific Coordination in Human Movement: A Screw-Theoretic Reanalysis of Golf Swing Dynamics
by Wangdo Kim
J. Funct. Morphol. Kinesiol. 2025, 10(3), 315; https://doi.org/10.3390/jfmk10030315 - 15 Aug 2025
Viewed by 328
Abstract
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor [...] Read more.
Background: Skilled human movement, such as the golf swing, emerges from coordinated rotational and translational dynamics. This study investigates pitch—a screw-theoretic invariant defined as the ratio of linear to angular velocity along the instantaneous screw axis (ISA)—as a compact metric for quantifying motor coordination. Methods: We reanalyzed a validated motion capture dataset involving a proficient and a novice female golfer. ISA trajectories and pitch values were computed from 3D marker data, and synchronized with vertical ground reaction force (GRF) signals collected via force plate. Results: The proficient golfer exhibited tightly bounded pitch oscillations (approximately ±0.0025 cm/rad) that were temporally aligned with a single, well-defined GRF peak. In contrast, the novice showed irregular pitch fluctuations (−0.025 to +0.01 cm/rad) and asynchronous GRF patterns with multiple peaks. Conclusions: These findings demonstrate that pitch can serve as a biomechanical indicator of skilled performance, reflecting the degree of intersegmental coordination and force timing. Screw theory thus offers a rigorous framework for evaluating movement efficiency in sport and rehabilitation contexts. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

25 pages, 54500 KiB  
Article
Parking Pattern Guided Vehicle and Aircraft Detection in Aligned SAR-EO Aerial View Images
by Zhe Geng, Shiyu Zhang, Yu Zhang, Chongqi Xu, Linyi Wu and Daiyin Zhu
Remote Sens. 2025, 17(16), 2808; https://doi.org/10.3390/rs17162808 - 13 Aug 2025
Viewed by 324
Abstract
Although SAR systems can provide high-resolution aerial view images all-day, all-weather, the aspect and pose-sensitivity of the SAR target signatures, which defies the Gestalt perceptual principles, sets a frustrating performance upper bound for SAR Automatic Target Recognition (ATR). Therefore, we propose a network [...] Read more.
Although SAR systems can provide high-resolution aerial view images all-day, all-weather, the aspect and pose-sensitivity of the SAR target signatures, which defies the Gestalt perceptual principles, sets a frustrating performance upper bound for SAR Automatic Target Recognition (ATR). Therefore, we propose a network to support context-guided ATR by using aligned Electro-Optical (EO)-SAR image pairs. To realize EO-SAR image scene grammar alignment, the stable context features highly correlated to the parking patterns of the vehicle and aircraft targets are extracted from the EO images as prior knowledge, which is used to assist SAR-ATR. The proposed network consists of a Scene Recognition Module (SRM) and an instance-level Cross-modality ATR Module (CATRM). The SRM is based on a novel light-condition-driven adaptive EO-SAR decision weighting scheme, and the Outlier Exposure (OE) approach is employed for SRM training to realize Out-of-Distribution (OOD) scene detection. Once the scene depicted in the cut of interest is identified with the SRM, the image cut is sent to the CATRM for ATR. Considering that the EO-SAR images acquired from diverse observation angles often feature unbalanced quality, a novel class-incremental learning method based on the Context-Guided Re-Identification (ReID)-based Key-view (CGRID-Key) exemplar selection strategy is devised so that the network is capable of continuous learning in the open-world deployment environment. Vehicle ATR experimental results based on the UNICORN dataset, which consists of 360-degree EO-SAR images of an army base, show that the CGRID-Key exemplar strategy offers a classification accuracy 29.3% higher than the baseline model for the incremental vehicle category, SUV. Moreover, aircraft ATR experimental results based on the aligned EO-SAR images collected over several representative airports and the Arizona aircraft boneyard show that the proposed network achieves an F1 score of 0.987, which is 9% higher than YOLOv8. Full article
(This article belongs to the Special Issue Applications of SAR for Environment Observation Analysis)
Show Figures

Figure 1

32 pages, 1113 KiB  
Article
Interval Power Integration-Based Nonlinear Suppression Control for Uncertain Systems and Its Application to Superheated Steam Temperature Control
by Gang Zhao, Hongxia Zhu and Hang Yi
Energies 2025, 18(16), 4242; https://doi.org/10.3390/en18164242 - 9 Aug 2025
Viewed by 206
Abstract
The control of many industrial processes, such as superheated steam temperature control, exhibits poor robustness and degraded accuracy in the presence of model parameter uncertainties. This paper addresses this issue by developing a novel interval power integration-based nonlinear suppression scheme for a class [...] Read more.
The control of many industrial processes, such as superheated steam temperature control, exhibits poor robustness and degraded accuracy in the presence of model parameter uncertainties. This paper addresses this issue by developing a novel interval power integration-based nonlinear suppression scheme for a class of uncertain nonlinear systems with unknown but bounded parameters. The efficacy of this approach is specifically demonstrated for the superheated steam temperature control in thermal power plants. By integrating Lyapunov stability theory and homogeneous system theory, this method extends the traditional homogeneous degree theory to the interval domain, establishes interval boundary conditions for time-varying parameters, and constructs a Lyapunov function with interval numbers to recursively design the controller. Furthermore, the interval monotonic homogeneous degree and an admissibility index are introduced to ensure system stability under parameter uncertainties. The effectiveness of the proposed method is verified through numerical simulations of superheated steam temperature control. Simulation results demonstrate that the method effectively suppresses nonlinearities and achieves robust asymptotic stability, even when model parameters vary within bounded intervals. In the varying-exponent scenario, the proposed controller achieved an Integral of Absolute Error (IAE) of 70.78 and a convergence time of 37s for the superheated steam temperature control. This represents a performance improvement of 42.79% in IAE and 53.16% in convergence time compared to a conventional PID controller, offering a promising solution for complex thermal processes with inherent uncertainties. Full article
Show Figures

Figure 1

28 pages, 3266 KiB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Viewed by 220
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 308
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

51 pages, 7255 KiB  
Article
Existence and Phase Structure of Random Inverse Limit Measures
by B. J. K. Kleijn
Mathematics 2025, 13(14), 2309; https://doi.org/10.3390/math13142309 - 19 Jul 2025
Viewed by 202
Abstract
Analogous to Kolmogorov’s theorem for the existence of stochastic processes describing random functions, we consider theorems for the existence of stochastic processes describing random measures as limits of inverse measure systems. Specifically, given a coherent inverse system of random (bounded/signed/positive/probability) histograms on refining [...] Read more.
Analogous to Kolmogorov’s theorem for the existence of stochastic processes describing random functions, we consider theorems for the existence of stochastic processes describing random measures as limits of inverse measure systems. Specifically, given a coherent inverse system of random (bounded/signed/positive/probability) histograms on refining partitions, we study conditions for the existence and uniqueness of a corresponding random inverse limit, a Radon probability measure on the space of (bounded/signed/positive/probability) measures. Depending on the topology (vague/tight/weak/total-variational) and Kingman’s notion of complete randomness, the limiting random measure is in one of four phases, distinguished by their degrees of concentration (support/domination/discreteness). The results are applied in the well-known Dirichlet and Polya tree families of random probability measures and a new Gaussian family of signed inverse limit measures. In these three families, examples of all four phases occur, and we describe the corresponding conditions of defining parameters. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

20 pages, 3825 KiB  
Article
Nonlinear Observer-Based Distributed Adaptive Fault-Tolerant Control for Vehicle Platoon with Actuator Faults, Saturation, and External Disturbances
by Anqing Tong, Yiguang Wang, Xiaojie Li, Xiaoyan Zhan, Minghao Yang and Yunpeng Ding
Electronics 2025, 14(14), 2879; https://doi.org/10.3390/electronics14142879 - 18 Jul 2025
Viewed by 257
Abstract
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to [...] Read more.
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to consider the actuator faults to be time-varying rather than constant. Considering a situation in which actuator faults may cause partial actuator effectiveness loss, a novel adaptive updating mechanism is developed to estimate this loss. A new nonlinear observer is proposed to estimate external disturbances without requiring us to know their upper bounds. Since non-zero initial spacing errors (ISEs) may cause instability of the vehicle platoon, a novel exponential spacing policy (ESP) is devised to mitigate the adverse effects of non-zero ISEs. Based on the developed nonlinear observer, adaptive updating mechanism, radial basis function neural network (RBFNN), and the ESP, a novel nonlinear observer-based distributed adaptive fault-tolerant control strategy is proposed to achieve the objectives of platoon control. Lyapunov theory is utilized to prove the vehicle platoon’s stability. The rightness and effectiveness of the developed control strategy are validated using a numerical example. Full article
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Periodic Oscillatory Solutions for a Nonlinear Model with Multiple Delays
by Chunhua Feng
Mathematics 2025, 13(14), 2275; https://doi.org/10.3390/math13142275 - 15 Jul 2025
Viewed by 259
Abstract
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system [...] Read more.
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system involves n separate delays, the equations for bifurcation become quite complex and difficult to deal with. In this paper, the existence of periodic oscillatory behavior was studied for a system consisting of n coupled equations with multiple delays. The method begins by rewriting the second-order system of differential equations as a larger first-order system. Then, the nonlinear system of first-order equations is linearized by disregarding higher-degree terms that are locally small. The instability of the trivial solution to the linearized equations implies the instability of the nonlinear equations. Periodic behavior often occurs when the system is unstable and bounded, so this paper also studied the boundedness here. It follows from previous work on the subject that the conditions here did result in periodic oscillatory behavior, and this is illustrated in the graphs of computer simulations. Full article
Show Figures

Figure 1

13 pages, 900 KiB  
Hypothesis
Beyond Classical Multipoles: The Magnetic Metapole as an Extended Field Source
by Angelo De Santis and Roberto Dini
Foundations 2025, 5(3), 25; https://doi.org/10.3390/foundations5030025 - 14 Jul 2025
Viewed by 243
Abstract
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial [...] Read more.
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial variation, the metapole yields a magnetic field that decays as 1/r and is oriented along spherical surfaces. Unlike classical multipoles, the metapole cannot be described as a point source; rather, it corresponds to an extended or filamentary magnetic distribution as derived from Maxwell’s equations. We demonstrate that pairs of oppositely oriented metapoles (up/down) can, at large distances, produce magnetic fields resembling those of classical monopoles. A regularized formulation of the potential resolves singularities for the potential and the field. When applied in a bounded region, it yields finite field energy, enabling practical modeling applications. We propose that the metapole can serve as a conceptual and computational framework for representing large-scale magnetic field structures particularly where standard dipole-based models fall short. This construct may have utility in both geophysical and astrophysical contexts, and it provides a new tool for equivalent source modeling and magnetic field decomposition. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

20 pages, 917 KiB  
Article
Numerical Investigation of Buckling Behavior of MWCNT-Reinforced Composite Plates
by Jitendra Singh, Ajay Kumar, Barbara Sadowska-Buraczewska, Wojciech Andrzejuk and Danuta Barnat-Hunek
Materials 2025, 18(14), 3304; https://doi.org/10.3390/ma18143304 - 14 Jul 2025
Viewed by 300
Abstract
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that [...] Read more.
The current study demonstrates the buckling properties of composite laminates reinforced with MWCNT fillers using a novel higher-order shear and normal deformation theory (HSNDT), which considers the effect of thickness in its mathematical formulation. The hybrid HSNDT combines polynomial and hyperbolic functions that ensure the parabolic shear stress profile and zero shear stress boundary condition at the upper and lower surface of the plate, hence removing the need for a shear correction factor. The plate is made up of carbon fiber bounded together with polymer resin matrix reinforced with MWCNT fibers. The mechanical properties are homogenized by a Halpin–Tsai scheme. The MATLAB R2019a code was developed in-house for a finite element model using C0 continuity nine-node Lagrangian isoparametric shape functions. The geometric nonlinear and linear stiffness matrices are derived using the principle of virtual work. The solution of the eigenvalue problem enables estimation of the critical buckling loads. A convergence study was carried out and model efficiency was corroborated with the existing literature. The model contains only seven degrees of freedom, which significantly reduces computation time, facilitating the comprehensive parametric studies for the buckling stability of the plate. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

Back to TopTop