Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (733)

Search Parameters:
Keywords = bottom reflectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 12910 KiB  
Article
Co-Creation, Co-Construction, and Co-Governance in Community Renewal: A Case Study of Civic Participation and Sustainable Mechanisms
by Yitong Shen, Ran Tan and Suhui Zhang
Land 2025, 14(8), 1577; https://doi.org/10.3390/land14081577 (registering DOI) - 1 Aug 2025
Abstract
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that [...] Read more.
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that many projects have experienced varying degrees of physical deterioration and a decline in spatial vitality due to insufficient maintenance, reflecting unsustainable outcomes. In response, this study examines a bottom-up community renewal project led by the research team, aiming to explore how broad civic participation can promote sustainable community renewal. A multidisciplinary approach incorporating perspectives from ecology, the humanities, economics, and sociology was used to guide citizen participation, while participatory observation methods recorded emotional shifts and maintenance behavior throughout the process. The results showed that civic participatory actions under the guidance of sustainability principles effectively enhanced citizens’ sense of community identity and responsibility, thereby facilitating the sustainable upkeep and operation of community spaces. However, the study also found that bottom-up efforts alone are insufficient. Sustainable community renewal also requires top-down policy support and institutional safeguards. At the end, the paper concludes by summarizing the practical outcomes and proposing strategies and mechanisms for broader application, aiming to provide a reference for related practices and research. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 111
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 160
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 4929 KiB  
Article
Public–Private Partnership for the Sustainable Development of Tourism Hospitality: Comparisons Between Italy and Saudi Arabia
by Sara Sampieri and Silvia Mazzetto
Sustainability 2025, 17(15), 6662; https://doi.org/10.3390/su17156662 - 22 Jul 2025
Viewed by 493
Abstract
This study examines the role of public–private partnerships in promoting the sustainable development of travel destinations through a comparative analysis of two emblematic heritage-based hospitality projects: Dar Tantora in Al Ula, Saudi Arabia, and Sextantio Le Grotte della Civita in Matera, Italy. These [...] Read more.
This study examines the role of public–private partnerships in promoting the sustainable development of travel destinations through a comparative analysis of two emblematic heritage-based hospitality projects: Dar Tantora in Al Ula, Saudi Arabia, and Sextantio Le Grotte della Civita in Matera, Italy. These case studies were analysed through both architectural–urban and economic–legal perspectives to highlight how public–private partnership models can support heritage conservation, community engagement, and responsible tourism development. A mixed-methods approach was employed, combining quantitative indicators—such as projected profitability, tourist volume, and employment—with qualitative insights from interviews with key stakeholders. The analysis reveals that while both models prioritise cultural authenticity and adaptive reuse, they differ significantly in funding structures, legal frameworks, and governance dynamics. Dar Tantora exemplifies a top-down, publicly funded model integrated into Saudi Arabia’s Vision 2030 strategy, whereas Sextantio reflects a bottom-up, private initiative rooted in social enterprise. The findings offer insights into how different public–private partnership configurations can foster sustainable tourism development, depending on local context, institutional frameworks, and strategic goals. The study contributes to the broader discourse on regenerative tourism, architectural conservation, and policy-driven heritage reuse. Full article
Show Figures

Figure 1

12 pages, 4677 KiB  
Article
Lap Welding of Nickel-Plated Steel and Copper Sheets Using Coaxial Laser Beams
by Kuan-Wei Su, Yi-Hsuan Chen, Hung-Yang Chu and Ren-Kae Shiue
Materials 2025, 18(14), 3407; https://doi.org/10.3390/ma18143407 - 21 Jul 2025
Viewed by 229
Abstract
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of [...] Read more.
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of the YAG laser beam. Incorporating a blue-light and fiber laser into the coaxial laser beam significantly improves the quality of the weld fusion zone. The fiber laser beam can penetrate the upper nickel-plated steel sheet, and the blue-light laser beam can melt the bottom copper sheet. Introducing the blue-light laser to the coaxial laser beams overcomes the low reflectivity of the bottom copper sheet. The fiber/blue-light coaxial laser continuous welding can achieve the best integrity and defect-free welding. It shows potential in the mass production of the next generation of lithium batteries. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Figure 1

28 pages, 22195 KiB  
Article
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Viewed by 569
Abstract
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and [...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma. Full article
Show Figures

Figure 1

17 pages, 15945 KiB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 389
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Graphical abstract

15 pages, 3298 KiB  
Article
Linkage Between Radar Reflectivity Slope and Raindrop Size Distribution in Precipitation with Bright Bands
by Qinghui Li, Xuejin Sun, Xichuan Liu and Haoran Li
Remote Sens. 2025, 17(14), 2393; https://doi.org/10.3390/rs17142393 - 11 Jul 2025
Viewed by 269
Abstract
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below [...] Read more.
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below the freezing level, revealing distinct microphysical regimes: Type 1 (K = 0 to −0.9) shows coalescence-dominated growth; Type 2 (|K| > 0.9) shows the balance between coalescence and evaporation/size sorting; and Type 3 (K = 0.9 to 0) demonstrates evaporation/size-sorting effects. Surface DSD analysis demonstrates distinct precipitation characteristics across classification types. Type 3 has the highest frequency of occurrence. A gradual decrease in the mean rain rates is observed from Type 1 to Type 3, with Type 3 exhibiting significantly lower rainfall intensities compared to Type 1. At equivalent rainfall rates, Type 2 exhibits unique microphysical signatures with larger mass-weighted mean diameters (Dm) compared to other types. These differences are due to Type 2 maintaining a high relative humidity above the freezing level (influencing initial Dm at bottom of melting layer) but experiencing limited Dm growth due to a dry warm rain layer and downdrafts. Type 1 shows opposite characteristics—a low initial Dm from the dry upper layers but maximum growth through the moist warm rain layer and updrafts. Type 3 features intermediate humidity throughout the column with updrafts and downdrafts coexisting in the warm rain layer, producing moderate growth. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

18 pages, 1900 KiB  
Article
Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis
by Suraj Rajasekhar and Karthik Vishwanath
Photonics 2025, 12(7), 698; https://doi.org/10.3390/photonics12070698 - 10 Jul 2025
Viewed by 311
Abstract
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered [...] Read more.
Time-domain (TD) diffuse reflectance can be modeled using diffusion theory (DT) to non-invasively estimate optical transport coefficients of biological media, which serve as markers of tissue physiology. We employ an optimized N-layer DT solver in cylindrical geometry to reconstruct optical coefficients of bilayered media from TD reflectance generated via Monte Carlo (MC) simulations. Optical properties for 384 bilayered tissue models representing human head or limb tissues were obtained from the literature at three near-infrared wavelengths. MC data were fit using the layered DT model to simultaneously recover transport coefficients in both layers. Bottom-layer absorption was recovered with errors under 0.02 cm−1, and top-layer scattering was retrieved within 3 cm−1 of input values. In contrast, recovered bottom-layer scattering had mean errors exceeding 50%. Total hemoglobin concentration and oxygen saturation were reconstructed for the bottom layer to within 10 μM and 5%, respectively. Extracted transport coefficients were significantly more accurate when obtained using layered DT compared to the conventional, semi-infinite DT model. Our results suggest using improved theoretical modeling to analyze TD reflectance analysis significantly improves recovery of deep-layer absorption. Full article
(This article belongs to the Special Issue Optical Technologies for Biomedical Science)
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Effects of Environmental Temperature Variation on the Spatio-Temporal Shoaling Behaviour of Adult Zebrafish (Danio rerio): A Two- and Three-Dimensional Analysis
by Mattia Toni, Flavia Frabetti, Gabriella Tedeschi and Enrico Alleva
Animals 2025, 15(14), 2006; https://doi.org/10.3390/ani15142006 - 8 Jul 2025
Viewed by 319
Abstract
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is [...] Read more.
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is essential for evaluating the ecological and evolutionary consequences of climate change. This study investigates the effects of acute (4-day) and chronic (21-day) exposure to three temperature regimes—18 °C (low), 26 °C (control), and 34 °C (high)—on the spatio-temporal shoaling behaviour of adult zebrafish (Danio rerio). Groups of four fish were tested for six minutes in water maintained at the same temperature as their prior acclimation. Shoaling behaviour was assessed by analysing shoal structure—encompassing shoal dimensions and cohesion—as well as spatial positioning. Parameters measured included inter-fish distance, shoal volume, shoal area, homogeneity index, distance to the centroid, and the shoal’s vertical and horizontal distribution. Results revealed complex behavioural changes influenced by both temperature and duration of exposure. At 18 °C, zebrafish showed a marked preference for the bottom zone and exhibited no significant temporal modulation in exploratory behaviour—patterns indicative of heightened anxiety-like responses. In contrast, exposure to 34 °C resulted in increased shoal cohesion, particularly under chronic conditions, and a progressive increase in environmental exploration over the six-minute test period. This enhancement in exploratory activity was especially evident when compared to the first minute of the test and was characterised by greater vertical movement—reflected in the increased use of the upper zone—and broader horizontal exploration, including more frequent occupation of peripheral areas. These findings align with previous research linking thermal variation to neurobiological and proteomic alterations in zebrafish. By elucidating how temperature modulates social behaviour in ectotherms, this study offers valuable insights into the potential behavioural impacts of climate change on aquatic ecosystems. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

27 pages, 5055 KiB  
Article
Physical–Mathematical Modeling and Simulations for a Feasible Oscillating Water Column Plant
by Fabio Caldarola, Manuela Carini, Alessandro Costarella, Gioia De Raffele and Mario Maiolo
Mathematics 2025, 13(14), 2219; https://doi.org/10.3390/math13142219 - 8 Jul 2025
Viewed by 275
Abstract
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual [...] Read more.
The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual advantage of large-scale integration into port infrastructures or coastal defense structures such as breakwaters, etc. The core challenge lies in optimizing the geometry of the OWC chamber and its associated ducts. A trapezoidal cross-section is adopted, with various front wall inclinations ranging from 90° to 45°. This geometric parameter significantly affects both the internal compression ratio and the hydrodynamic behavior of incoming and outgoing waves. Certain inclinations revealed increased turbulence and notable interference with waves reflected from the chamber bottom which determined an unexpected drop in efficiency. The optimal performance occurred at an inclination of approximately 55°, yielding an efficiency of around 12.8%, because it represents the most advantageous and balanced compromise between counter-trend phenomena. A detailed analysis is carried out on several key parameters for the different configurations (e.g., internal and external wave elevations, crest phase shifts, pressures, hydraulic loads, efficiency, etc.) to reach the most in-depth analysis possible of the complex phenomena that come into play. Lastly, the study also discusses the additional structural and functional benefits of inclined walls over traditional parallelepiped-shaped chambers, both from a structural and construction point of view, and for the possible use for coastal defense. Full article
Show Figures

Figure 1

16 pages, 2473 KiB  
Article
Improvement of EMAT Butterfly Coil for Defect Detection in Aluminum Alloy Plate
by Dazhao Chi, Guangyu Sun and Haichun Liu
Materials 2025, 18(13), 3207; https://doi.org/10.3390/ma18133207 - 7 Jul 2025
Viewed by 298
Abstract
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with [...] Read more.
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with the desired shear waves (S-waves) reflected by internal defects. To solve this problem, a simulation–experiment approach optimized the butterfly coil parameters. An FE model visualized the electromagnetic acoustic transducer (EMAT) acoustic field and predicted signals. Orthogonal simulations tested three main parameters: excitation frequency, wire diameter, and effective coil width. Tests on aluminum specimens with artificial defects used the optimized EMAT. Simulated and measured signals showed strong correlation, validating optimal parameters. The results confirmed suppressed L-wave interference and improved defect detection sensitivity, enabling detection of a 3 mm diameter flat-bottomed hole buried 37 mm deep. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 353
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 327
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 468
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

Back to TopTop