Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = boron steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12003 KiB  
Article
Corrosion Mechanism of Austenitic Stainless Steel in Simulated Small Modular Reactor Primary Water Chemistry
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Metals 2025, 15(8), 875; https://doi.org/10.3390/met15080875 - 4 Aug 2025
Viewed by 78
Abstract
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis [...] Read more.
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis of impedance spectra with a distribution of relaxation times revealed contributions from the oxide layer and its interface with the coolant. Glow-Discharge Optical Emission Spectroscopy (GDOES) was used to estimate the thickness and elemental composition of the formed oxides. A quantitative interpretation of the impedance data using the Mixed-Conduction Model allowed us to estimate the kinetic and transport parameters of oxide growth and dissolution, as well as iron dissolution through oxide. The film thicknesses following exposure agreed with ex-situ analyses. The obtained corrosion and release rates were used for comparison with laboratory and industrial data in nominal pressurized water reactor primary coolants. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 250
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

18 pages, 5372 KiB  
Article
Effect of B4C Reinforcement on the Mechanical Properties and Corrosion Resistance of CoCrMo, Ti, and 17-4 PH Alloys
by Ömer Faruk Güder, Ertuğrul Adıgüzel and Aysel Ersoy
Appl. Sci. 2025, 15(13), 7284; https://doi.org/10.3390/app15137284 - 27 Jun 2025
Viewed by 287
Abstract
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating [...] Read more.
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating varying B4C contents into each matrix through mechanical alloying, cold pressing, and vacuum sintering. The microstructural integrity and dispersion of B4C were examined using scanning electron microscopy. The performance of the materials was evaluated using several methods, including Vickers hardness, pin-on-disk wear testing, ultrasonic elastic modulus measurements, electrical conductivity, and electrochemical assessments (potentiodynamic polarization and EIS). This study’s findings demonstrated that B4C significantly enhanced the hardness and wear resistance of all alloys, especially Ti- and CoCrMo-based systems. However, an inverse correlation was observed between B4C content and corrosion resistance, especially in 17-4 PH matrices. Ti-5B4C was identified as the most balanced composition, exhibiting high wear resistance, low corrosion rate and elastic modulus values approaching those of human bone. Weibull analysis validated the consistency and reliability of key performance metrics. The results show that adding B4C can change the properties of biomedical alloys, offering engineering advantages for B4C-reinforced biomedical implants. Ti-B4C composites exhibit considerable potential for application in advanced implant technologies. Full article
Show Figures

Figure 1

20 pages, 6272 KiB  
Article
Experimental Investigation of the Interplay Between Al-, B-, and Ti-Nitrides in Microalloyed Steel and Thermodynamic Analysis
by Markus Führer, Sabine Zamberger, Christoph Seubert and Erwin Povoden-Karadeniz
Metals 2025, 15(7), 705; https://doi.org/10.3390/met15070705 - 25 Jun 2025
Viewed by 464
Abstract
Aluminum, boron, and titanium microalloyed into high-strength low-alloy boron steel exhibit a complex interplay, competing for nitrogen, with titanium demonstrating the highest affinity, followed by boron and aluminum. This competition affects the formation and distribution of nitrides, impacting the microstructure and mechanical properties [...] Read more.
Aluminum, boron, and titanium microalloyed into high-strength low-alloy boron steel exhibit a complex interplay, competing for nitrogen, with titanium demonstrating the highest affinity, followed by boron and aluminum. This competition affects the formation and distribution of nitrides, impacting the microstructure and mechanical properties of the steel. Titanium protects boron from forming BN and facilitates the nucleation of acicular ferrite, enhancing toughness. The segregation of boron to grain boundaries, rather than its precipitation as boron nitride, promotes the formation of martensite and thus the through-hardenability. Aluminum nitride is critical in controlling grain size through a pronounced pinning effect. In this study, we employ energy- and wavelength-dispersive X-ray spectroscopy and computer-aided particle analysis to analyze the phase content of 12 high-purity vacuum induction-melted samples. The primary objective of this study is to correctly describe the microstructural evolution in the Fe-Al-B-Ti-C-N system using the Calphad approach, with special emphasis on correctly predicting the dissolution temperatures of nitrides. A multicomponent database is constructed through the incorporation of available binary and ternary descriptions, employing the Calphad approach. The experimental findings regarding the solvus temperature of the involved nitrides are employed to validate the accuracy of the thermodynamic database. The findings offer a comprehensive understanding of the relative phase stabilities and the associated interplay among the involved elements Al, B, and Ti in the Fe-rich corner of the system. The type and size distribution of the stable nitrides in microalloyed steel have been demonstrated to exert a substantial influence on the properties of the material, thereby rendering accurate predictions of phase stabilities of considerable relevance. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
Hydrophobic Boron Nitride Nanoflower Coatings on Mild Steel Surfaces
by Aamir Nadeem, Muhammad Faheem Maqsood, Mohsin Ali Raza, Syed Muhammad Zain Mehdi and Shahbaz Ahmad
Surfaces 2025, 8(3), 42; https://doi.org/10.3390/surfaces8030042 - 25 Jun 2025
Viewed by 568
Abstract
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, [...] Read more.
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, and 60 min, and their structural, surface, and water-repellent characteristics were evaluated. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy confirmed the successful formation of BN, while water contact angle measurements indicated high hydrophobicity, demonstrating excellent barrier properties. Scanning electron microscopy (SEM) revealed morphological evolution from flower- and needle-like BN structures in the sample placed in the CVD furnace for 15 min to dense, coral-like, and tubular networks in the samples placed for 30 and 60 min. These findings highlight that BN coatings, particularly the one obtained after 30 min of deposition, have a high hydrophobic character following the Cassie–Baxter model and can be used for corrosion resistance and anti-icing on MS, making them ideal for industrial applications requiring long-lasting protection. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

19 pages, 4647 KiB  
Article
The Prediction of High-Temperature Bulging Deformations in Non-Uniform Welded Tubes and Its Application to Complex-Shaped Tubular Parts
by Zhenyu Zhang, Yanli Lin, Xianggang Ruan, Jiangkai Liang, Tianyu Wang, Junzhuo Wang and Zhubin He
Materials 2025, 18(12), 2882; https://doi.org/10.3390/ma18122882 - 18 Jun 2025
Viewed by 305
Abstract
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation [...] Read more.
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation during the bulging process. This inconsistency hampers precise predictions of the deformation behavior of the welded tubes at high temperatures. Accordingly, this research explored the flow characteristics and mechanical properties of PHS1500 boron steel welded tubes. This research was conducted at 850 °C and 900 °C, with strain rates of 0.01 s−1–1 s−1. The Johnson–Cook model was modified for both the base metal and the weld using experimental stress–strain data. Meanwhile, to assess the model precisions, the correlation coefficient r and the average absolute relative error (AARE) were employed. Finally, hot gas forming of PHS1500 boron steel welded tubular parts with complex shapes was predicted through a finite element analysis. This research showed a positive correlation of the strain rate with both the yield and tensile strengths in the base metal and the weld. The average yield strength and tensile strength of the weld were 12.8% and 3.9% higher than those of the base metal, respectively. The r and AARE of the modified Johnson–Cook constitutive model for the base metal’s and the weld’s flow stress were 0.99 and 2.23% and 0.982 and 5.31%, respectively. The maximum deviation in the predictions of the distribution of the wall thickness of a typical cross-section of the formed complex-shaped tubular parts was less than 8%. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 7657 KiB  
Article
Utilizing Excess Resin in Prepregs to Achieve Good Performance in Joining Hybrid Materials
by Nawres J. Al-Ramahi, Safaa M. Hassoni, Janis Varna and Roberts Joffe
Polymers 2025, 17(12), 1689; https://doi.org/10.3390/polym17121689 - 18 Jun 2025
Viewed by 433
Abstract
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg [...] Read more.
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg composite, forming a thin layer, and a toughened structural epoxy (Sika Power-533), designed for the automotive industry, forming a thick layer. Modified double cantilever beam (DCB) and end-notched flexure (ENF) specimens were used for testing. The results show that using Sika Power-533 increases the critical energy release rate by up to 30 times compared to the prepreg resin, highlighting the impact of adhesive layer thickness. Joints with the thick Sika adhesive performed similarly regardless of whether uncoated or Al–Si-coated steel was used, indicating the composite/Sika interface as the failure point. In contrast, the thin resin adhesive layer exhibited poor bonding with uncoated steel, which detached during sample preparation. This suggests that, for thin layers, the resin/steel interface is the weakest link. These findings underline the importance of adhesive selection and layer thickness for optimizing joint performance in composite–metal hybrid structures. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 1472 KiB  
Technical Note
Modeling of Tensile Tests Flow Curves Using an Explicit Piecewise Inverse Approach
by Aditya Vuppala, Holger Brüggemann, David Bailly and Emad Scharifi
Metals 2025, 15(6), 638; https://doi.org/10.3390/met15060638 - 5 Jun 2025
Viewed by 438
Abstract
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of [...] Read more.
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of experimental data challenging using analytical methods. In contrast, inverse approaches in which the behavior is represented by constitutive equations and the parameters are fitted using an iterative procedure are extremely dependent on the empirical equation chosen at the outset and can be computationally expensive. The inverse piecewise flow curve determination method, previously developed for compression tests, is extended in this paper to tensile testing. A stepwise approach is proposed to calculate constant strain rate flow curves accounting for the unique characteristics of tensile deformation. To capture the effects of localized strain rate variations during necking, a parallel flow curve determination strategy is introduced. Tensile test flow curves for manganese-boron steel 22MnB5, a material commonly used in hot stamping applications, are determined, and the approach is demonstrated for virtual force–displacement curves. It has been shown that these curves can replicate the virtual experimental flow curves data with a maximum deviation of 1%. Full article
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 433
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

17 pages, 3922 KiB  
Article
Effect of Post-Aging on Laser-Boronized Surface of 18Ni-300 Maraging Steel with Hypoeutectic Structure
by Jelena Škamat, Olegas Černašėjus, Kęstutis Bučelis and Oleksandr Kapustynskyi
Lubricants 2025, 13(6), 236; https://doi.org/10.3390/lubricants13060236 - 25 May 2025
Viewed by 508
Abstract
Laser-boronized parts manufactured by a selective laser melting process from 18Ni to 300 maraging steel are investigated in this study. Two main issues are addressed, namely (i) the possibility to restore the hardness of the heat-affected zone (HAZ) formed during laser processing and [...] Read more.
Laser-boronized parts manufactured by a selective laser melting process from 18Ni to 300 maraging steel are investigated in this study. Two main issues are addressed, namely (i) the possibility to restore the hardness of the heat-affected zone (HAZ) formed during laser processing and (ii) the effect of re-aging on the hardness and wear resistance of the laser-boronized layer with a hypoeutectic structure. Optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, microhardness measurements, the “ball-on-plate” dry sliding test, and the two-body dry abrasive wear test were employed to answer the questions. The results confirmed that HAZ is formed with the dissolution of intermetallides formed before and undergo full (near the molten pool) or partial (at some distance from the molten pool) iron–base matrix recrystallization. The hardness of HAZ (350–550 HK0.05) has been restored after re-aging to the 550–600 HK0.05 level. Moreover, a certain positive effect of re-aging on the laser-boronized layer with a hardness of ~470–750 HK0.2 is established, associated with structural transformations induced by aging in the iron-based solid solution phase. The hardness increased by ~9–25%. The wear resistance of the hardest boronized samples (~750 HK0.2) under dry sliding and dry abrasive wear conditions was ~5.8 times and 3.7 times higher than that of the aged control sample, while re-aging provided further improvement of these characteristics. The presented results provide insights into the effectiveness of laser-boronized layers having a hypoeutectic structure in terms of increasing the wear resistance of maraging steel. Full article
Show Figures

Figure 1

11 pages, 2127 KiB  
Article
Characterization of Boride Layers on S235 Steel and Calculation of Activation Energy Using Taylor Expansion Model
by Mourad Keddam, Peter Orihel, Peter Jurci and Martin Kusy
Coatings 2025, 15(5), 579; https://doi.org/10.3390/coatings15050579 - 13 May 2025
Viewed by 480
Abstract
S235 low-carbon steel was boronized between 1123 K and 1273 K using a commercial powder mixture (Durborid) to study the formation and growth behavior of boride layers. The type of interface and thickness of the resulting layers were determined with scanning electron microscopy [...] Read more.
S235 low-carbon steel was boronized between 1123 K and 1273 K using a commercial powder mixture (Durborid) to study the formation and growth behavior of boride layers. The type of interface and thickness of the resulting layers were determined with scanning electron microscopy (SEM). The technique of X-ray diffraction (XRD) confirmed the formation of a predominantly single-phase Fe2B layer under most processing conditions. To assess the diffusion behavior, the kinetic model with a Taylor series expansion was implemented to calculate the B diffusion coefficients in the Fe2B layer under a transient diffusion regime. The B activation energy in Fe2B was determined to be 157 kJ/mol, which aligns well with values derived from the literature. Full article
Show Figures

Figure 1

18 pages, 8197 KiB  
Article
Role of Base Grease Type on the Lubrication Performance of Hexagonal Boron Nitride Nanoparticles and Microparticles
by Szymon Senyk, Krzysztof Gocman, Marcin Wachowski and Tadeusz Kałdoński
Materials 2025, 18(10), 2196; https://doi.org/10.3390/ma18102196 - 9 May 2025
Viewed by 477
Abstract
This study investigates the influence of hexagonal boron nitride (h-BN) particle size and concentration on the tribological performance of lithium and calcium greases. Formulations containing h-BN nanoparticles and microparticles at 1%, 3%, 5%, and 10% by weight were evaluated in ball-on-flat reciprocating tests [...] Read more.
This study investigates the influence of hexagonal boron nitride (h-BN) particle size and concentration on the tribological performance of lithium and calcium greases. Formulations containing h-BN nanoparticles and microparticles at 1%, 3%, 5%, and 10% by weight were evaluated in ball-on-flat reciprocating tests under three load conditions. The tests were conducted using a steel ball and a steel plate. The most favorable results were obtained for greases with 3% h-BN, characterized by an average particle size of 130 nm and the highest nanoparticle content. In lithium grease, this formulation reduced friction by up to 9.7% and wear by up to 69.2% compared to the base grease. In calcium grease, the same additive concentration led to reductions of up to 18.2% in friction and 70.2% in wear. Tribological performance was significantly influenced by the type of base grease, which affected the dispersion of the additive and its ability to form protective surface layers. SEM/EDS analysis of the surfaces after testing revealed that the dominant lubrication mechanisms included shearing-sliding and surface-mending effects. This study confirms that h-BN—especially in nanoparticle form—is an effective additive for improving the performance of greases. Full article
Show Figures

Graphical abstract

15 pages, 2826 KiB  
Article
Electrochemical Looping Green Hydrogen Production by Using Water Electrochemically Treated as a Raw Material for the Electrolyzer
by Mayra K. Sales Monteiro, Jussara C. Cardozo, Aruzza M. de Morais Araújo, Amanda D. Gondim, Tabata N. Feijoó, Luis D. Loor-Urgilés, Carlos A. Martínez-Huitle, Marco A. Quiroz and Elisama V. dos Santos
Catalysts 2025, 15(5), 447; https://doi.org/10.3390/catal15050447 - 2 May 2025
Cited by 1 | Viewed by 818
Abstract
In this study, the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that, the depolluted water was reused, for the first time, [...] Read more.
In this study, the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that, the depolluted water was reused, for the first time, in the cathodic compartment once again, in the same cell to be a viable environmental alternative for converting water into energy (green H2) with higher efficiency and reasonable cost requirements. The production of green H2 in the cathodic compartment (Ni-Fe-based steel stainless (SS) mesh as cathode), in concomitance with the electrochemical oxidation (EO) of wastewater in the anodic compartment (boron-doped diamond (BDD) supported in Nb as anode), was studied (by applying different current densities (j = 30, 60 and 90 mA cm−2) at 25 °C) in a divided-membrane type electrochemical cell driven by a photovoltaic (PV) energy source. The results clearly showed that, in the first step, the water anodically treated by applying 90 mA cm−2 for 180 min reached high-quality water parameters. Meanwhile, green H2 production was greater than 1.3 L, with a Faradaic efficiency of 100%. Then, in a second step, the water anodically treated was reused in the cathodic compartment again for a new integrated-hybrid process with the same electrodes under the same experimental conditions. The results showed that the reuse of water in the cathodic compartment is a sustainable strategy to produce green H2 when compared to the electrolysis using clean water. Finally, two implied benefits of the proposed process are the production of green H2 and wastewater cleanup, both of which are equally significant and sustainable. The possible use of H2 as an energetic carrier in developing nations is a final point about sustainability improvements. This is a win-win solution. Full article
Show Figures

Graphical abstract

16 pages, 18153 KiB  
Article
Effect of Mo and B on Microstructure and Impact Toughness of Coarse Grain Heat-Affected Zone in Low-Carbon V-Ti-N Micro-Alloyed Steel
by Mingliang Qiao, Huibing Fan, Shibiao Wang, Yixin Huang, Qingfeng Wang and Riping Liu
Materials 2025, 18(7), 1667; https://doi.org/10.3390/ma18071667 - 4 Apr 2025
Viewed by 494
Abstract
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the [...] Read more.
This study investigates the effects of molybdenum (Mo) and boron (B) on the microstructures and impact properties in the coarse grain heat-affected zone (CGHAZ) of a low-carbon V-Ti-N steel. The results demonstrate that, at a heat input of up to 75 kJ/cm, the addition of Mo alters the microstructure of the CGHAZ, transforming it from a polygonal ferrite (PF) + degraded pearlite (DP) composition to a granular bainite (GB) + a small amount of acicular ferrite (AF). This transformation increases the impact energy from 20 J to 35 J. Furthermore, with the Mo/B composite addition, the CGHAZ microstructure was refined due to the formation of a large number of acicular ferrites, and the mean equivalent diameter (MEDMTA≥15°) decreased from 7.9 μm to 4.2 μm. Consequently, the impact toughness of the CGHAZ increased from 35 J to 111 J. The correlation between the Mo/B elements, microstructure and impact toughness was investigated in detail. The findings of this study have the potential to generate novel ideas for the advancement of steel materials in the context of high heat input welding. Full article
Show Figures

Figure 1

15 pages, 7767 KiB  
Article
Effect of Mo Addition on the Susceptibility of Advanced High Strength Steels to Liquid Metal Embrittlement
by Fateme Abdiyan, Joseph R. McDermid, Fernando Okigami, Bita Pourbahari, Andrew Macwan, Mirnaly Saenz de Miera, Brian Langelier, Gabriel A. Arcuri and Hatem S. Zurob
Materials 2025, 18(6), 1291; https://doi.org/10.3390/ma18061291 - 14 Mar 2025
Viewed by 663
Abstract
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on [...] Read more.
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on the LME susceptibility of 0.2C-2Mn-1.5Si AHSS through hot tensile testing, RSW, and advanced microstructural analyses, including atom probe tomography (APT) and transmission electron microscopy (TEM). The results suggest that Mo enhances resistance to LME, as evidenced by the increased tensile stroke from 2 mm in the case of the 0 Mo alloy and to 2.75 mm in the case of the 0.2 Mo sample. Also, the average crack length in the shoulder of the welded samples decreased from 109 ± 7 μm to 28 ± 3 μm by adding 0.2 wt% Mo to the base alloy. APT analysis revealed that, in the presence of Mo, there is increased boron (B) segregation at austenite grain boundaries, improving cohesion, while TEM suggested more diffusion of Zn into the substrate, facilitating the formation of Zn-ferrite. These findings highlight Mo’s potential to reduce LME susceptibility of AHSS for automotive applications. Full article
Show Figures

Figure 1

Back to TopTop