Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (591)

Search Parameters:
Keywords = bone mineral composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 266 KiB  
Article
Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers
by Catarina N. Matias, Francesco Campa, Joana Cardoso, Margarida L. Cavaca, Rafael Carlos and Filipe J. Teixeira
Sports 2025, 13(8), 257; https://doi.org/10.3390/sports13080257 - 6 Aug 2025
Abstract
Gaming has evolved into a cultural phenomenon with a global reach, captivating millions of individuals. Nevertheless, little is known about this population. We aim to physiologically characterise the Portuguese gamers, bearing in mind that phase angle (PhA) is a general indicator of health, [...] Read more.
Gaming has evolved into a cultural phenomenon with a global reach, captivating millions of individuals. Nevertheless, little is known about this population. We aim to physiologically characterise the Portuguese gamers, bearing in mind that phase angle (PhA) is a general indicator of health, to check possible correlations between body composition, strength, and nutrition. A sample of 35 male gamers (individuals who play video games) was evaluated for anthropometry; body composition through DXA for whole-body bone mineral content (BMC), fat-free mass (FFM, kg), fat mass, and visceral adipose tissue, and through BIA (bioelectrical impedance analysis) for total body water (TBW), water pools (extracellular water and intracellular water, ICW), and PhA; strength through maximal isometric handgrip strength using a dynamometer; and nutritional intake using a three-day food record. Results show that participants are within reference metrics for all the analysed variables except regarding protein and carbohydrate intake (all values are above and below the Acceptable Macronutrient Distribution Ranges, respectively). A positive correlation was observed between PhA and TBW, ICW, handgrip strength, BMC and FFM, and a negative correlation with fat mass (absolute, percentage and visceral). In conclusion, PhA correlates with body composition variables, which aligns with previous research as a predictor of health and performance. Full article
14 pages, 3902 KiB  
Article
Navigating the Limits: Unraveling Unidentified Fossil Bone and Tooth Fragments Through Histology, Chemistry, and Multivariate Statistics
by Yannicke Dauphin
Minerals 2025, 15(8), 807; https://doi.org/10.3390/min15080807 - 30 Jul 2025
Viewed by 370
Abstract
For paleoenvironmental reconstruction, paleontologists prefer large, well-preserved fossils. Yet, such specimens are rare, and countless small fragments, though abundant, often go unused. These fragments lack visible internal structure, thus requiring etching, a procedure not permitted on large, intact specimens. Our research introduces a [...] Read more.
For paleoenvironmental reconstruction, paleontologists prefer large, well-preserved fossils. Yet, such specimens are rare, and countless small fragments, though abundant, often go unused. These fragments lack visible internal structure, thus requiring etching, a procedure not permitted on large, intact specimens. Our research introduces a three-step method to identify the nature of these small fragments. With their structures revealed, we can then analyze the chemical composition of identified tissues. The method was tested using samples of vertebrate fossils collected in Malawi. Even with a limited number of samples, multivariate analyses (Principal Component Analyses—PCA) of these chemical data effectively differentiate fossil and recent samples, as well as bone, dentin, and enamel. This approach successfully reveals the behavior of the mineralized tissues of fossil samples. Ultimately, by leveraging microstructural and chemical data, we can study previously unidentified fragments or rare fossils. This allows for the estimation of preservation state and helps to avoid biases in paleoenvironmental reconstructions. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

11 pages, 1250 KiB  
Article
Height Velocity in Pediatric Cystic Fibrosis Under Triple CFTR Modulator Therapy: A Real-Life Monocentric Experience
by Alessandra Boni, Francesco d’Aniello, Grazia Ubertini, Marco Cappa, Fabiana Ciciriello, Fabio Majo, Luca Cristiani, Federico Alghisi, Enza Montemitro, Sergio Bella, Matteo De Marchis, Renato Cutrera and Alessandro G. Fiocchi
J. Clin. Med. 2025, 14(15), 5259; https://doi.org/10.3390/jcm14155259 - 25 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Cystic fibrosis (CF) is a multi-system disorder characterized by chronic respiratory failure, malnutrition, and impaired growth. Achieving linear growth above the 50th percentile is associated with better pulmonary outcomes. Since October 2022, Elexacaftor/Tezacaftor/Ivacaftor (ETI) has been approved in Italy for children aged [...] Read more.
Background/Objectives: Cystic fibrosis (CF) is a multi-system disorder characterized by chronic respiratory failure, malnutrition, and impaired growth. Achieving linear growth above the 50th percentile is associated with better pulmonary outcomes. Since October 2022, Elexacaftor/Tezacaftor/Ivacaftor (ETI) has been approved in Italy for children aged ≥6 years. However, data on its impact on height velocity (HV) remain lacking. This study aims to evaluate growth patterns by HV and explore differences according to the CFTR variant genotype. Methods: We conducted a prospective single-center study at the CF Unit of Bambino Gesù Children’s Hospital involving 24 children aged 6–11 years eligible for ETI treatment. Baseline assessments included height, weight, body mass index (BMI), bone mineral density (BMD), body composition (via bioelectrical impedance analysis, BIA), and muscle strength (one-minute sit-to-stand test (1STST)). Height, weight, HV, and BMI standard deviation scores (SDS) were calculated for the 6 months before and after ETI initiation. Results: The mean age of the cohort was 8.7 ± 1.9 years (F/M: 12/12), with most patients naïve to CFTR modulators. A significant increase in HV was observed post-ETI: from 4.2 ± 2.0 cm/year (−1.96 ± 2.4 SDS) in the 6 months before treatment to 7.1 ± 3.0 cm/year (+1.5 ± 3.7 SDS) after treatment initiation (p < 0.0001). Patients with F508del/minimal function (F/MF) genotypes (n = 11) showed significantly greater HV compared to those with F508del/F508del (F/F, n = 5) and F508del/residual function (F/RF, n = 8) genotypes (p < 0.0001). No significant differences were observed among genetic groups in baseline BMD or lean mass. Conclusions: ETI treatment significantly and rapidly improves HV in children with CF, particularly in those with F/MF genotypes. These findings underscore the role of CFTR modulator therapy in promoting linear growth, a key indicator of health in pediatric CF populations. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Diagnosis and Treatment)
Show Figures

Figure 1

20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 385
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

13 pages, 380 KiB  
Article
Intuitive Eating and the Female Athlete Triad in Collegiate Runners
by Janie Thomson and Hawley C. Almstedt
Nutrients 2025, 17(14), 2337; https://doi.org/10.3390/nu17142337 - 17 Jul 2025
Viewed by 357
Abstract
Background: Female collegiate runners may be at high risk for disordered eating and poor bone health, which are characteristics of the female athlete triad. Intuitive eating can promote healthy eating behavior and adequate calorie intake, central variables in calculating energy availability, an [...] Read more.
Background: Female collegiate runners may be at high risk for disordered eating and poor bone health, which are characteristics of the female athlete triad. Intuitive eating can promote healthy eating behavior and adequate calorie intake, central variables in calculating energy availability, an underlying cause of low bone mass in athletes. Poor bone health can contribute to injury, preventing optimal performance for athletes. The purpose of this study was to assess intuitive eating, energy availability, and bone mineral density in female college runners with comparison to non-athletes. Methods: Female college athletes (n = 13, 19.5 ± 1.4 yrs) and non-athletes (n = 12, 19.9 ± 1.3 yrs) completed the Intuitive Eating Scale, Eating Disorder Examination Questionnaire, and menstrual history survey. Bone mineral density and body composition were measured using a dual-energy X-ray absorptiometer (DEXA). A 3-day diet record and exercise log were used to assess dietary intake, estimate energy expenditure, and calculate energy availability. Results: Intuitive eating was inversely correlated with disordered eating (r = −0.596, p = 0.002). Intuitive eating scores were not correlated to calorie intake, energy availability, bone mass, or percent body fat. Runners consumed significantly more calories, calcium, magnesium, phosphorus, and protein (g/kg) than non-athletes. Energy availability and bone mineral density were not significantly different between runners and non-athletes. Conclusions: Intuitive eating is associated with healthy eating behaviors in college-age females and was not related to energy availability, bone density, or body composition in this population. Future research could explore the use of intuitive eating principles in reducing disordered eating and addressing low energy availability in female runners and non-athletes. Full article
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 602
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

32 pages, 6710 KiB  
Article
XPS Investigation of Sol–Gel Bioactive Glass Synthesized with Geothermal Water
by Helena Cristina Vasconcelos, Maria Meirelles and Reşit Özmenteş
Surfaces 2025, 8(3), 50; https://doi.org/10.3390/surfaces8030050 - 14 Jul 2025
Viewed by 207
Abstract
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and [...] Read more.
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and MgO-modified bioglasses. Using high-resolution X-ray photoelectron spectroscopy (XPS), we examined how the mineral composition of the waters influenced the chemical environment and network connectivity of the glass surface. The presence of trace ions, such as Mg2+, Sr2+, Zn2+, and B3+, altered the silicate structure, as evidenced by binding energy shifts and peak deconvolution in O 1s, Si 2p, P 2p, Ca 2p, and Na 1s spectra. Thermal treatment further promoted polymerization and reduced hydroxylation. Our findings suggest that mineral-rich waters act as functional agents, modulating the reactivity and structure of bioactive glass surfaces in eco-sustainable synthesis routes. Full article
(This article belongs to the Special Issue Bio-Inspired Surfaces)
Show Figures

Figure 1

20 pages, 1370 KiB  
Article
Interpretable Machine Learning for Osteopenia Detection: A Proof-of-Concept Study Using Bioelectrical Impedance in Perimenopausal Women
by Dimitrios Balampanos, Christos Kokkotis, Theodoros Stampoulis, Alexandra Avloniti, Dimitrios Pantazis, Maria Protopapa, Nikolaos-Orestis Retzepis, Maria Emmanouilidou, Panagiotis Aggelakis, Nikolaos Zaras, Maria Michalopoulou and Athanasios Chatzinikolaou
J. Funct. Morphol. Kinesiol. 2025, 10(3), 262; https://doi.org/10.3390/jfmk10030262 - 11 Jul 2025
Viewed by 396
Abstract
Objectives: The early detection of low bone mineral density (BMD) is essential for preventing osteoporosis and related complications. While dual-energy X-ray absorptiometry (DXA) remains the gold standard for diagnosis, its cost and limited availability restrict its use in large-scale screening. This study investigated [...] Read more.
Objectives: The early detection of low bone mineral density (BMD) is essential for preventing osteoporosis and related complications. While dual-energy X-ray absorptiometry (DXA) remains the gold standard for diagnosis, its cost and limited availability restrict its use in large-scale screening. This study investigated whether raw bioelectrical impedance analysis (BIA) data combined with explainable machine learning (ML) models could accurately classify osteopenia in women aged 40 to 55. Methods: In a cross-sectional design, 138 women underwent same-day BIA and DXA assessments. Participants were categorized as osteopenic (T-score between −1.0 and −2.5; n = 33) or normal (T-score ≥ −1.0) based on DXA results. Overall, 24.1% of the sample were classified as osteopenic, and 32.85% were postmenopausal. Raw BIA outputs were used as input features, including impedance values, phase angles, and segmental tissue parameters. A sequential forward feature selection (SFFS) algorithm was employed to optimize input dimensionality. Four ML classifiers were trained using stratified five-fold cross-validation, and SHapley Additive exPlanations (SHAP) were applied to interpret feature contributions. Results: The neural network (NN) model achieved the highest classification accuracy (92.12%) using 34 selected features, including raw impedance measurements, derived body composition indices such as regional lean mass estimates and the edema index, as well as a limited number of categorical variables, including self-reported physical activity status. SHAP analysis identified muscle mass indices and fluid distribution metrics, features previously associated with bone health, as the most influential predictors in the current model. Other classifiers performed comparably but with lower precision or interpretability. Conclusions: ML models based on raw BIA data can classify osteopenia with high accuracy and clinical transparency. This approach provides a cost-effective and interpretable alternative for the early identification of individuals at risk for low BMD in resource-limited or primary care settings. Full article
Show Figures

Figure 1

21 pages, 1768 KiB  
Article
FST Polymorphisms Associate with Musculoskeletal Traits and Modulate Exercise Response Differentially by Sex and Modality in Northern Han Chinese Adults
by Wei Cao, Zhuangzhuang Gu, Ronghua Fu, Yiru Chen, Yong He, Rui Yang, Xiaolin Yang and Zihong He
Genes 2025, 16(7), 810; https://doi.org/10.3390/genes16070810 - 10 Jul 2025
Viewed by 355
Abstract
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research [...] Read more.
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research on Key Technologies for an Exercise and Fitness Expert Guidance System” project, was analyzed. These participants were previously randomly assigned to one of four exercise groups (Hill, Running, Cycling, Combined) or a non-exercising Control group, and completed their respective 16-week protocols. Body composition, bone mineral content (BMC), bone mineral density (BMD), and serum follistatin levels were all assessed pre- and post-intervention. Dual-energy X-ray absorptiometry (DXA) was utilized for the body composition, BMC, and BMD measurements. FST SNPs (rs3797296, rs3797297) were genotyped using matrix assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) or microarrays. To elucidate the biological mechanisms, we performed in silico functional analyses for rs3797296 and rs3797297. Results: Baseline: In females only, the rs3797297 T allele was associated with higher muscle mass (β = 1.159, 95% confidence interval (CI): 0.202–2.116, P_adj = 0.034) and BMC (β = 0.127, 95% CI: 0.039–0.215, P_adj = 0.009), with the BMC effect significantly mediated by muscle mass. Exercise Response: Interventions improved body composition, particularly in females. Gene-Exercise Interaction: A significant interaction occurred exclusively in women undertaking hill climbing: the rs3797296 G allele was associated with attenuated muscle mass gains (β = −1.126 kg, 95% CI: −1.767 to −0.485, P_adj = 0.034). Baseline follistatin correlated with body composition (stronger in males) and increased post-exercise (primarily in males, Hill/Running groups) but did not mediate SNP effects on exercise adaptation. Functional annotation revealed that rs3797297 is a likely causal variant, acting as a skeletal muscle eQTL for the mitochondrial gene NDUFS4, suggesting a mechanism involving muscle bioenergetics. Conclusions: Findings indicate that FST polymorphisms associate with musculoskeletal traits in Northern Han Chinese. Mechanistic insights from functional annotation reveal potential pathways for these associations, highlighting the potential utility of these genetic markers for optimizing training program design. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 276 KiB  
Article
Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA
by Bárbara Vasconcelos, José Irineu Gorla, Karina Santos Guedes de Sá, Rui Corredeira and Tânia Bastos
Healthcare 2025, 13(14), 1658; https://doi.org/10.3390/healthcare13141658 - 9 Jul 2025
Viewed by 315
Abstract
Background: Sport plays an important role in the health promotion of people with cerebral palsy (CP). However, risk factors may impair sport performance and health in non-ambulatory athletes. Therefore, the aim of the present study was to explore body composition and bone [...] Read more.
Background: Sport plays an important role in the health promotion of people with cerebral palsy (CP). However, risk factors may impair sport performance and health in non-ambulatory athletes. Therefore, the aim of the present study was to explore body composition and bone health in a group of world-class Boccia players with CP. Methods: Five BC2-class players with CP, aged 15–42 years old, were assessed using Dual-Energy X-Ray Absorptiometry (DXA) for body composition and bone mineral density (BMD) and content (BMC). The fat mass index (kg/m2) was used to define obesity, and the BMD Z-score used to analyze bone health. A preliminary indicator of sarcopenia was considered using the appendicular lean mass index. Results: Players 1 and 3 exhibited similar body compositions (obesity class 1 and BMD Z-score are below the expected range for age). Player 5 exhibited multiple health-related risk factors. The results regarding youth players (Player 2 and Player 4) should be analyzed with caution. Conclusions: Overall, due to Boccia’s specific characteristics, players may benefit from close monitoring by multidisciplinary teams and supplementary strategies (e.g., strength training, individualized diet plans) to promote quality of life and performance. However, further research is needed to confirm the data, since these preliminary findings do not allow for broader generalizations. Full article
13 pages, 1243 KiB  
Article
Three-Dimensional Assessment of the Biological Periacetabular Defect Reconstruction in an Ovine Animal Model: A µ-CT Analysis
by Frank Sebastian Fröschen, Thomas Martin Randau, El-Mustapha Haddouti, Jacques Dominik Müller-Broich, Frank Alexander Schildberg, Werner Götz, Dominik John, Susanne Reimann, Dieter Christian Wirtz and Sascha Gravius
Bioengineering 2025, 12(7), 729; https://doi.org/10.3390/bioengineering12070729 - 3 Jul 2025
Viewed by 397
Abstract
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing [...] Read more.
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing area of the acetabulum were augmented with various materials in an ovine periacetabular defect model (Group 1: NanoBone® (artificial hydroxyapatite-silicate composite; Artoss GmbH, Germany); Group 2: autologous sheep cancellous bone; Group 3: Tutoplast® (processed allogeneic sheep cancellous bone; Tutogen Medical GmbH, Germany)) and bridged with an acetabular reinforcement ring of the Ganz type. Eight months after implantation, a μ-CT examination (n = 8 animals per group) was performed. A μ-CT analysis of the contralateral acetabula (n = 8, randomly selected from all three groups) served as the control group. In a defined volume of interest (VOI), bone volume (BV), mineral volume (MV), and bone substitute volume (BSV), as well as the bone surface (BS) relative to the total volume (TV) and the surface-to-volume ratio (BS/BV), were determined. To assess the bony microarchitecture, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N), as well as connectivity density (Conn.D), the degree of anisotropy (DA), and the structure model index (SMI), were evaluated. The highest BV was observed for NanoBone® (Group 1), which also showed the highest proportion of residual bone substitute material in the defect. This resulted in a significant increase in BV/TV with a significant decrease in BS/BV. The assessment of the microstructure for Groups 2 and 3 compared to Group 1 showed a clear approximation of Tb.Th, Tb.Sp, Tb.N, and Conn.D to the microstructure of the control group. The SMI showed a significant decrease in Group 1. All materials demonstrated their suitability by supporting biological defect reconstruction. NanoBone® showed the highest rate of new bone formation; however, the microarchitecture indicated more advanced bone remodeling and an approximate restoration of the trabecular structure for both autologous and allogeneic Tutoplast® cancellous bone when using the impaction bone grafting technique. Full article
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Perioperative and Oncological Outcome in Patients Undergoing Curative-Intent Liver Resection for Cholangiocarcinoma in the Context of Osteopenia
by Franziska A. Meister, Katharina Joechle, Philipp Tessmer, Esref Belger, Anjali A. Roeth, Oliver Beetz, Felix Oldhafer, Jan Bednarsch, Ulf P. Neumann, Carolin V. Schneider, Robert Siepmann, Iakovos Amygdalos, Florian W. R. Vondran and Zoltan Czigany
Cancers 2025, 17(13), 2213; https://doi.org/10.3390/cancers17132213 - 1 Jul 2025
Viewed by 298
Abstract
Background: Cholangiocarcinoma (CCA) of the liver is a highly aggressive cancer that arises from malignant cells in the bile ducts. Radical surgery remains the only curative option, but major liver resection carries high perioperative risks. This study investigates the predictive value of [...] Read more.
Background: Cholangiocarcinoma (CCA) of the liver is a highly aggressive cancer that arises from malignant cells in the bile ducts. Radical surgery remains the only curative option, but major liver resection carries high perioperative risks. This study investigates the predictive value of preoperative bone mineral density (BMD), measured via CT, for perioperative complications, mortality, and long-term outcomes. Methods: The analysis included 202 patients who underwent curative-intent surgery for intrahepatic cholangiocarcinoma (iCCA; n = 97) or perihilar cholangiocarcinoma (pCCA; n = 105) between 2010 and 2019. Preoperative bone mineral density (BMD) was assessed using computed tomography segmentation at the level of the 12th thoracic vertebra. Osteopenia was defined according to established cutoffs. Results: Osteopenia was highly prevalent in both iCCA (53/97, 54%) and pCCA (54/105, 51%) subcohorts. Patients suffering from osteopenia were significantly older than those without (71.1 [62–76.6] years vs. 61.3 [52.9–69.2] years; p < 0.001). Alteration in BMD did not demonstrate a significant prognostic effect in terms of perioperative morbidity (Mann–Whitney U; comprehensive complication index—CCI: 34 [9–56] vs. 40 [21–72] p = 0.185; iCCA: p = 0.803; pCCA: p = 0.165). The median overall survival in our cohort was 19 [14–25] months. Patients with osteopenia did not exhibit a significantly different overall survival compared to those with normal bone mineral density (log-rank p = 0.234). Conclusions: In contrast to our previous observations in other oncological patient cohorts, osteopenia alone had no significant negative impact on clinical outcomes in our large European cohort of patients undergoing curative-intent surgery for CCA. To validate these findings, further prospective studies are warranted. Full article
(This article belongs to the Special Issue Clinical Surgery for Hepato-Pancreato-Biliary (HPB) Cancer)
Show Figures

Figure 1

16 pages, 5101 KiB  
Article
Trabecular Titanium Architecture Drives Human Mesenchymal Stem Cell Proliferation and Bone Differentiation
by Laura Caliogna, Micaela Berni, Giulia Gastaldi, Federico Alberto Grassi, Eugenio Jannelli, Mario Mosconi, Elisa Salatin, Silvia Burelli, Riccardo Toninato, Michele Pressacco and Gianluigi Pasta
Int. J. Mol. Sci. 2025, 26(13), 6354; https://doi.org/10.3390/ijms26136354 - 1 Jul 2025
Viewed by 347
Abstract
The aim of this in vitro study is to investigate the adhesion, proliferation, and differentiation of human adipose-derived mesenchymal stem cells (hASC) on Trabecular Titanium scaffolds manufactured with different manufacturing processes (EBM and SLM). The in vitro adhesion and proliferation of hASC on [...] Read more.
The aim of this in vitro study is to investigate the adhesion, proliferation, and differentiation of human adipose-derived mesenchymal stem cells (hASC) on Trabecular Titanium scaffolds manufactured with different manufacturing processes (EBM and SLM). The in vitro adhesion and proliferation of hASC on titanium scaffolds with WST assays have been carried out. The comparison of the gene expression profiles of typical bone genes (Alp, Bglap, Col1a1, and Osx) through real-time PCR assays and the evaluation of extracellular matrix composition with immunofluorescence and SEM analysis have been performed. In addition, the possible osteoinductive properties of the two scaffolds have been investigated through real-time PCR and ALP assays. Data showed that Trabecular Titanium supports human adipose-derived mesenchymal stem cell colonization and induces differentiation in bone with the deposition of the abundant extracellular mineralized matrix regardless of the manufacturing process, proving that the micro- and macro-design features are the key factors responsible for the osteoinduction behavior. These features can only be achieved through tailored 3D printing process parameters. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 5341 KiB  
Article
Kinetic Control of Oxygenated Apatites: Dynamic Operation of a Pilot-Scale Precipitation Reactor for Bone-Mimetic Biomaterials
by Soumia Belouafa, Mohammed Berrada, Khalid Digua and Hassan Chaair
Minerals 2025, 15(7), 700; https://doi.org/10.3390/min15070700 - 30 Jun 2025
Viewed by 326
Abstract
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to [...] Read more.
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to direct the formation of apatites with tailored structural and chemical properties. Three synthesis routes were explored using CaCO3, Ca(NO3)2, and CaCl2 as calcium precursors, under optimized Ca/P molar ratios. The evolution of ionic concentrations (Ca2+, PO43−), peroxide and molecular oxygen incorporation, and carbonate content was monitored over a reaction time range of 2 min to 4 h. Characterization by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and chemical analysis revealed a time-dependent transformation of amorphous phases into poorly crystalline apatites with specific textures. After 60 min, the Ca/P atomic ratio stabilized at approximately 1.575, and the resulting apatites exhibited structural features comparable to those of human bone. This study highlights the influence of reactor operation time on precipitation kinetics and the properties of bioactive apatites in a scalable system. The results offer promising prospects for the large-scale production of bone-mimetic materials. However, the lack of biological validation remains a limitation. Future studies will assess the cytocompatibility and bioactivity of these materials to confirm their potential for biomedical applications. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

13 pages, 4081 KiB  
Article
Tailored Morphology and Phase Evolution of Magnesium Whitlockite Granules via a Dissolution–Precipitation Approach
by Ruta Raiseliene, Greta Linkaite, Akvile Ezerskyte and Inga Grigoraviciute
Appl. Sci. 2025, 15(13), 7221; https://doi.org/10.3390/app15137221 - 26 Jun 2025
Viewed by 298
Abstract
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for [...] Read more.
Magnesium whitlockite (Mg-WH) has emerged as a promising biomaterial for bone regeneration due to its compositional similarity to natural bone minerals. This study aimed to systematically modify a dissolution–precipitation synthesis method to produce Mg-WH granules with tailored morphologies and controlled phase compositions for possible use in bone regeneration applications. Three distinct precursor granules were prepared by mixing varying amounts of ammonium dihydrogen phosphate and magnesium hydrogen phosphate with calcium sulfate. The precursors were then transformed into biphasic and single-phase Mg-WH granules by means of immersion in magnesium- and phosphate-containing solutions under controlled conditions. The X-ray diffraction results demonstrated that biphasic materials containing Mg-WH and either calcium-deficient hydroxyapatite (CDHA) or dicalcium phosphate anhydrous (DCPA) formed after 24 h of synthesis, depending on the synthesis conditions. Prolonging the reaction time to 48 h resulted in complete transformation into single-phase Mg-WH granules. Fourier-transform infrared spectroscopy confirmed the presence of functional groups characteristic of Mg-WH, CDHA, and DCPA in the intermediate products. The spectra also indicated the absence of precursor phases and the progressive elimination of secondary phases as the reaction time increased. Scanning electron microscopy analyses revealed notable morphological transformations from the raw granules to the product granules, with the latter exhibiting interlocked spherical and rod-like particles composed of fine Mg-WH rhombohedral crystals. N2 adsorption–desorption analyses exposed significant differences in the surface properties of the synthesized granules. By varying precursor, reaction solution compositions, and reaction times, the study elucidated the phase evolution mechanisms and demonstrated their impact on the structural, morphological, and surface properties of Mg-WH granules. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

Back to TopTop