Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Assessments
2.3.1. Anthropometry
2.3.2. Body Composition
- −
- Dual-energy X-ray absorptiometry (DXA) device (Horizon Wi, Hologic, Waltham, MA, USA) where participants underwent a whole-body scan according to the procedures recommended by the manufacturer [19]. The same technician positioned the patient, performed the scan, and executed the analyses. Measurements included whole-body bone mineral content (BMC, kg), FFM (kg), and FM (% and kg). Within FM, visceral adipose tissue was further analysed using DXA software Version 13.6.0.7:5 (VAT, cm2) [20].
- −
- BIA was performed using a single frequency of 50 kHz device (BIVA PRO, Akern, Pisa, Italy) for estimates of whole-body resistance (R) and reactance (Xc). Assessments were obtained after a 10 min rest period in a supine position. From the raw data R and Xc, total body water (TBW) and water pools (extracellular water, ECW (L), and intracellular water, ICW (L)) were determined using Akern Software (version 1.19.2). Also, phase angle (PhA) was calculated as the arctangent of Xc/R × 180/π from R and Xc [21].
2.3.3. Handgrip Strength
2.3.4. Diet Control
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. General Characteristics and Food Intake
4.2. Body Composition and Phase Angle
4.3. Limitations Section
4.4. Clinical Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMDR | Acceptable Macronutrient Distribution Ranges |
BIA | Bioelectrical Impedance Analysis |
BIVA | Bioelectrical Impedance Vector Analysis |
BMC | Bone Mineral Content |
BMI | Body Mass Index |
DXA | Dual-energy X-ray Absorptiometry |
ECW | Extracellular Water |
FFM | Fat-Free Mass |
FM | Fat Mass |
ICW | Intracellular Water |
PhA | Phase Angle |
TBW | Total Body Water |
VAT | Visceral Adipose Tissue |
References
- Limone, P.; Ragni, B.; Toto, G.A. The epidemiology and effects of video game addiction: A systematic review and meta-analysis. Acta Psychol. 2023, 241, 104047. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zi, Y.; Zhuang, W.; Gao, Y.; Tong, Y.; Song, L.; Liu, Y. Linking Esports to health risks and benefits: Current knowledge and future research needs. J. Sport Health Sci. 2020, 9, 485–488. [Google Scholar] [CrossRef]
- Adams, T. Playing computer games as electronic sport: In search of a theoretical framework for a new research field. In Computer Games and New Media Cultures: A Handbook of Digital Games Studies; Springer: Dordrecht, The Netherlands, 2012; pp. 477–490. [Google Scholar]
- Kelly, S.; Leung, J. The New Frontier of Esports and Gaming: A Scoping Meta-Review of Health Impacts and Research Agenda. Front. Sports Act. Living 2021, 3, 640362. [Google Scholar] [CrossRef]
- Chan, G.; Huo, Y.; Kelly, S.; Leung, J.; Tisdale, C.; Gullo, M. The impact of eSports and online video gaming on lifestyle behaviours in youth: A systematic review. Comput. Human. Behav. 2022, 126, 106974. [Google Scholar] [CrossRef]
- Thomas, C.J.; Rothschild, J.; Earnest, C.P.; Blaisdell, A. The Effects of Energy Drink Consumption on Cognitive and Physical Performance in Elite League of Legends Players. Sports 2019, 7, 196. [Google Scholar] [CrossRef]
- Dallman, J.; Herda, A.; Cleary, C.J.; Morey, T.; Diederich, A.; Vopat, B.G.; Vopat, L.M. A Brief Review of the Literature for Published Dual-Energy X-Ray Absorptiometry Protocols for Athletes. Sports Health 2024, 16, 735–743. [Google Scholar] [CrossRef]
- Campa, F.; Gatterer, H.; Lukaski, H.; Toselli, S. Stabilizing Bioimpedance-Vector-Analysis Measures With a 10-Minute Cold Shower After Running Exercise to Enable Assessment of Body Hydration. Int. J. Sports Physiol. Perform. 2019, 14, 1006–1009. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Campa, F.; Coratella, G.; Cerullo, G.; Stagi, S.; Paoli, S.; Marini, S.; Grigoletto, A.; Moroni, A.; Petri, C.; Andreoli, A.; et al. New bioelectrical impedance vector references and phase angle centile curves in 4,367 adults: The need for an urgent update after 30 years. Clin. Nutr. 2023, 42, 1749–1758. [Google Scholar] [CrossRef]
- da Silva, B.R.; Orsso, C.E.; Gonzalez, M.C.; Sicchieri, J.M.F.; Mialich, M.S.; Jordao, A.A.; Prado, C.M. Phase angle and cellular health: Inflammation and oxidative damage. Rev. Endocr. Metab. Disord. 2023, 24, 543–562. [Google Scholar] [CrossRef]
- Ward, L.C.; Brantlov, S. Bioimpedance basics and phase angle fundamentals. Rev. Endocr. Metab. Disord. 2023, 24, 381–391. [Google Scholar] [CrossRef]
- DiFrancisco-Donoghue, J.; Balentine, J.; Schmidt, G.; Zwibel, H. Managing the health of the eSport athlete: An integrated health management model. BMJ Open Sport Exerc. Med. 2019, 5, e000467. [Google Scholar] [CrossRef]
- Bostanci, H.; Emir, A.; Tarakci, D.; Tarakci, E. Video game-based therapy for the non-dominant hand improves manual skills and grip strength. Hand Surg. Rehabil. 2020, 39, 265–269. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Nunes, C.L.; Francisco, R.; Jesus, F.; Cardoso, M.; Valamatos, M.J.; Homens, P.M.; Sardinha, L.B.; Martins, P.; et al. Phase Angle Is a Marker of Muscle Quantity and Strength in Overweight/Obese Former Athletes. Int. J. Environ. Res. Public Health 2021, 18, 6649. [Google Scholar] [CrossRef]
- Matias, C.N.; Cardoso, J.; Cavaca, M.L.; Cardoso, S.; Giro, R.; Vaz, J.; Couto, P.A.; Dores, A.R.; Ferreira, T.B.; Tinsley, G.M.; et al. Game on: A cross-sectional study on gamers’ mental health, Game patterns, physical activity, eating and sleeping habits. Comput. Human. Behav. 2023, 148, 107901. [Google Scholar] [CrossRef]
- World Medical, A. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual, 3rd–8th ed.; Human Kinetics: Chicago, IL, USA, 1988. [Google Scholar]
- Hologic. Horizon Series-Operator Manual; Hologic: Marlborough, MA, USA, 2020; Volume MAN-04871-602 Revision 007. [Google Scholar]
- Gadekar, T.; Dudeja, P.; Basu, I.; Vashisht, S.; Mukherji, S. Correlation of visceral body fat with waist-hip ratio, waist circumference and body mass index in healthy adults: A cross sectional study. Med. J. Armed Forces India 2020, 76, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Campa, F.; Cerullo, G.; D’Antona, G.; Giro, R.; Faleiro, J.; Reis, J.F.; Monteiro, C.P.; Valamatos, M.J.; Teixeira, F.J. Bioelectrical Impedance Vector Analysis Discriminates Aerobic Power in Futsal Players: The Role of Body Composition. Biology 2022, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Sillen, M.J.; Groenen, M.T.; Wouters, E.F.; Franssen, F.M. New normative values for handgrip strength: Results from the UK Biobank. J. Am. Med. Dir. Assoc. 2013, 14, 775.e5–775.e11. [Google Scholar] [CrossRef]
- Langer, R.D.; Guimarães, R.F.; Guerra-Júnior, G.; Gonçalves, E.M. Can Phase Angle Be Associated With Muscle Strength in Healthy Male Army Cadets? Mil. Med. 2022, 188, e1935–e1940. [Google Scholar] [CrossRef]
- Mundstock, E.; Amaral, M.A.; Baptista, R.R.; Sarria, E.E.; Dos Santos, R.R.G.; Filho, A.D.; Rodrigues, C.A.S.; Forte, G.C.; Castro, L.; Padoin, A.V.; et al. Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1504–1510. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoshida, T.; Murakami, H.; Kawakami, R.; Gando, Y.; Ohno, H.; Tanisawa, K.; Konishi, K.; Julien, T.; Kondo, E.; et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci. Rep. 2022, 12, 17274. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chen, J.; Lai, T.F.; Chung, Y.Y.; Park, J.H.; Hu, Y.J.; Liao, Y. Sedentary Behavior and Phase Angle: An Objective Assessment in Physically Active and Inactive Older Adults. Nutrients 2023, 16, 101. [Google Scholar] [CrossRef] [PubMed]
- Quetelet, A. Recherches sur le poids de l’ homme aux different âges. In Nouveaux Memoire de l’ Academie Royale des Sciences et BellesLettres de Bruxelles; Académie Royale des Sciences et Belles-Lettres de Bruxelles: Brussels, Belgium, 1832. [Google Scholar]
- Berg, J.; Nauman, J.; Wisløff, U. Normative values for body composition in 22,191 healthy Norwegian adults 20–99 years: The HUNT4 study. Prog. Cardiovasc. Dis. 2024, 85, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Chumlea, W.C.; Guo, S.S.; Zeller, C.M.; Reo, N.V.; Baumgartner, R.N.; Garry, P.J.; Wang, J.; Pierson, R.N., Jr.; Heymsfield, S.B.; Siervogel, R.M. Total body water reference values and prediction equations for adults. Kidney Int. 2001, 59, 2250–2258. [Google Scholar] [CrossRef]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin. Nutr. 2020, 39, 1411–1417. [Google Scholar] [CrossRef]
- Pasco, J.A.; Holloway, K.L.; Dobbins, A.G.; Kotowicz, M.A.; Williams, L.J.; Brennan, S.L. Body mass index and measures of body fat for defining obesity and underweight: A cross-sectional, population-based study. BMC Obes. 2014, 1, 9. [Google Scholar] [CrossRef]
- Peterson, M.J.; Czerwinski, S.A.; Siervogel, R.M. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77, 1186–1191. [Google Scholar] [CrossRef]
- Brochu, M.; Tchernof, A.; Turner, A.N.; Ades, P.A.; Poehlman, E.T. Is there a threshold of visceral fat loss that improves the metabolic profile in obese postmenopausal women? Metabolism 2003, 52, 599–604. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Jee, Y.; O’Connor, S.D.; del Rio, A.M. Visceral adiposity and hepatic steatosis at abdominal CT: Association with the metabolic syndrome. AJR. Am. J. Roentgenol. 2012, 198, 1100–1107. [Google Scholar] [CrossRef]
- Nicklas, B.J.; Penninx, B.W.; Ryan, A.S.; Berman, D.M.; Lynch, N.A.; Dennis, K.E. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 2003, 26, 1413–1420. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; Technical Report Series; World Health Organization (WHO): Geneva, Switzerland, 2003. [Google Scholar]
- Franceschini, S.; Bertoni, S.; Lulli, M.; Pievani, T.; Facoetti, A. Short-Term Effects of Video-Games on Cognitive Enhancement: The Role of Positive Emotions. J. Cogn. Enhanc. 2022, 6, 29–46. [Google Scholar] [CrossRef]
- Comeras-Chueca, C.; Marin-Puyalto, J.; Matute-Llorente, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Gonzalez-Aguero, A. Effects of Active Video Games on Health-Related Physical Fitness and Motor Competence in Children and Adolescents With Overweight or Obesity: Systematic Review and Meta-Analysis. JMIR Serious Games 2021, 9, e29981. [Google Scholar] [CrossRef]
- West, R.; Swing, E.L.; Anderson, C.A.; Prot, S. The Contrasting Effects of an Action Video Game on Visuo-Spatial Processing and Proactive Cognitive Control. Int. J. Environ. Res. Public Health 2020, 17, 5160. [Google Scholar] [CrossRef] [PubMed]
- Alsaad, F.; Binkhamis, L.; Alsalman, A.; Alabdulqader, N.; Alamer, M.; Abualait, T.; Khalil, M.S.; Al Ghamdi, K.S. Impact of Action Video Gaming Behavior on Attention, Anxiety, and Sleep Among University Students. Psychol. Res. Behav. Manag. 2022, 15, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Leis, O.; Lautenbach, F. Psychological and physiological stress in non-competitive and competitive esports settings: A systematic review. Psychol. Sport Exerc. 2020, 51, 101738. [Google Scholar] [CrossRef]
- Iosa, M.; Verrelli, C.M.; Gentile, A.E.; Ruggieri, M.; Polizzi, A. Gaming Technology for Pediatric Neurorehabilitation: A Systematic Review. Front. Pediatr. 2022, 10, 775356. [Google Scholar] [CrossRef]
- Zheng, L.; Oberle, C.; Hawkes-Robinson, W.; Daniau, S. Serious Games as a Complementary Tool for Social Skill Development in Young People: A Systematic Review of the Literature. Simul. Gaming 2021, 52, 686–714. [Google Scholar] [CrossRef]
- Rudolf, K.; Bickmann, P.; Froböse, I.; Tholl, C.; Wechsler, K.; Grieben, C. Demographics and Health Behavior of Video Game and eSports Players in Germany: The eSports Study 2019. Int. J. Environ. Res. Public Health 2020, 17, 1870. [Google Scholar] [CrossRef]
- Shen, Y.; Cicchella, A. Health Consequences of Intensive E-Gaming: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 1968. [Google Scholar] [CrossRef]
- Sharma, M.K.; Anand, N.; Murthy, K.D. Personality characteristics of online gamers. Indian J. Psychiatry 2020, 62, 453–454. [Google Scholar] [CrossRef]
- Gentile, D.A.; Bailey, K.; Bavelier, D.; Brockmyer, J.F.; Cash, H.; Coyne, S.M.; Doan, A.; Grant, D.S.; Green, C.S.; Griffiths, M.; et al. Internet Gaming Disorder in Children and Adolescents. Pediatrics 2017, 140 (Suppl. S2), S81–S85. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Jang, J.H.; Lee, J.Y.; Choi, A.; Kim, B.M.; Park, M.K.; Jung, M.H.; Choi, J.S. Self-Efficacy and Clinical Characteristics in Casual Gamers Compared to Excessive Gaming Users and Non-Gamers in Young Adults. J. Clin. Med. 2020, 9, 2720. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Huang, Q.; Huang, S.; Tan, L.; Shao, T.; Fang, T.; Chen, X.; Lin, S.; Qi, J.; Cai, Y.; et al. Prevalence of Internet Gaming Disorder and Its Association With Personality Traits and Gaming Characteristics Among Chinese Adolescent Gamers. Front. Psychiatry 2020, 11, 598585. [Google Scholar] [CrossRef]
- Kim, D.; Nam, J.K.; Keum, C. Adolescent Internet gaming addiction and personality characteristics by game genre. PLoS ONE 2022, 17, e0263645. [Google Scholar] [CrossRef] [PubMed]
- Geisel, O.; Panneck, P.; Stickel, A.; Schneider, M.; Müller, C.A. Characteristics of Social Network Gamers: Results of an Online Survey. Front. Psychiatry 2015, 6, 69. [Google Scholar] [CrossRef]
- Ergezen, G.; Köşker, A.B.; Sözeri, M.E.; Okan, M.; İnan, E. Effect of E-Sports Training on Hand Functions and Reaction Time in Young Adults: Randomized Controlled Study. J. Adv. Sport Technol. 2025, 25, 1–11. [Google Scholar] [CrossRef]
- Franks, R.R.; King, D.; Bodine, W.; Chisari, E.; Heller, A.; Jamal, F.t.; Luksch, J.; Quinn, K.; Singh, R.; Solomon, M. AOASM Position Statement on Esports, Active Video Gaming, and the Role of the Sports Medicine Physician. Clin. J. Sport Med. 2022, 32, e221–e229. [Google Scholar] [CrossRef]
- Emara, A.K.; Ng, M.K.; Cruickshank, J.A.; Kampert, M.W.; Piuzzi, N.S.; Schaffer, J.L.; King, D. Gamer’s Health Guide: Optimizing Performance, Recognizing Hazards, and Promoting Wellness in Esports. Curr. Sports Med. Rep. 2020, 19, 537–545. [Google Scholar] [CrossRef]
- Ketelhut, S.; Bodman, A.; Ries, T.; Nigg, C.R. Challenging the Portrait of the Unhealthy Gamer-The Fitness and Health Status of Esports Players and Their Peers: Comparative Cross-Sectional Study. J. Med. Internet Res. 2023, 25, e45063. [Google Scholar] [CrossRef]
- DiFrancisco-Donoghue, J.; Werner, W.G.; Douris, P.C.; Zwibel, H. Esports players, got muscle? Competitive video game players’ physical activity, body fat, bone mineral content, and muscle mass in comparison to matched controls. J. Sport Health Sci. 2022, 11, 725–730. [Google Scholar] [CrossRef] [PubMed]
- DiFrancisco-Donoghue, J.; Jung, M.-K.; Balentine, M.J.; Zwibel, H. Where Muscle Matters: How Regional Differences, Pain, and Gender Define Gamer Health. Int. J. Environ. Res. Public Health 2025, 22, 687. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, M.N.; Schoeller, D.A. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ian-af.up.pt/ (accessed on 15 June 2022).
- Goulart, J.B.; Aitken, L.S.; Siddiqui, S.; Cuevas, M.; Cardenas, J.; Beathard, K.M.; Riechman, S.E. Nutrition, lifestyle, and cognitive performance in esport athletes. Front. Nutr. 2023, 10, 1120303. [Google Scholar] [CrossRef]
- Ribeiro, F.J.; Viana, V.M.; Borges, N.P.; Teixeira, V.H. The Emergence of eSports Nutrition: A Review. Cent. Eur. J. Sport Sci. Med. 2021, 33, 81–95. [Google Scholar] [CrossRef]
- Nicholson, M.; Poulus, D.; Robergs, R.; Kelly, V.; McNulty, C. How Much Energy Do E’Athletes Use during Gameplay? Quantifying Energy Expenditure and Heart Rate Variability Within E’Athletes. Sports Med.—Open 2024, 10, 44. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef]
Minimum | Maximum | Mean (SD) | Reference Value | |
---|---|---|---|---|
Age (years) | 19.4 | 45.9 | 25.3 ± 6.0 | -- |
Height (cm) | 166.5 | 187.0 | 175.9 ± 5.2 | -- |
Weight (kg) | 58.6 | 113.3 | 75.6 ± 12.8 | -- |
BMI (kg.m−2) *1 | 19.5 | 36.7 | 24.4 ± 4.0 | 18.5–24.9 |
TBW (L) *2 | 34.3 | 52.1 | 43.3 ± 5.3 | 39–52.4 |
ECW (L) | 15.1 | 24.3 | 18.4 ± 2.1 | -- |
ICW (L) | 18.2 | 31.6 | 24.9 ± 3.7 | -- |
PhA (º) *3 | 5.4 | 8.3 | 6.8 ± 0.7 | >6 |
Handgrip right side (kg.F) *4 | 25.0 | 71.0 | 46.5 ± 10.2 | >45 |
Handgrip left side (kg.F) *4 | 26.0 | 70.0 | 43.8 ± 9.5 | >42 |
BMC (kg) | 1.7 | 3.5 | 2.7 ± 0.4 | -- |
FFM (kg) | 42.6 | 68.6 | 56.4 ± 7.0 | -- |
FM (kg) | 7.9 | 48.9 | 17.5 ± 9.7 | -- |
FM (%) *5 | 11.9 | 44.7 | 22.8 ± 8.6 | 10.5–21.8 |
Visceral Fat area (cm2) *6 | 39.3 | 180.7 | 74.2 ± 33.5 | 10–100 |
Energy (kcal) | 1551.4 | 3437.3 | 2108.5 ± 410.2 | |
Energy (kcal/kg body weight) | 13.7 | 55.4 | 28.8 ± 8.2 | |
Protein consumption (g) | 72.1 | 185.3 | 119.2 ± 29.8 | |
Protein consumption (%) *7 | 12.7 | 36.5 | 22.9 ± 5.3 | 10–15 # |
Fat consumption (g) | 54.8 | 134.1 | 83.4 ± 20.2 | |
Fat consumption (%) *7 | 20.8 | 38.3 | 27.8 ± 4.8 | 15–30 |
Carbohydrate consumption (g) | 95.9 | 462.3 | 210.2 ± 63.4 | |
Carbohydrate consumption (% *) *7 | 23.6 | 53.8 | 39.5 ± 6.7 | 55–75 # |
Panel A | Panel B | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bivariate Correlation | Controlling for FFM | Controlling for Physical Activity Practice (min.week−1) | Controlling for Playing Time (h.day−1) | ||||||
r | p | r | p | r | p | r | p | ||
PhA | TBW | 0.437 | 0.009 | -- | -- | 0.380 | 0.050 | 0.405 | 0.018 |
ICW | 0.686 | <0.001 | 0.622 | <0.001 | 0.680 | 0.000 | 0.651 | 0.000 | |
Handgrip right side | 0.629 | <0.001 | 0.433 | 0.011 | 0.652 | 0.000 | 0.599 | 0.000 | |
Handgrip left side | 0.607 | <0.001 | 0.419 | 0.014 | 0.628 | 0.000 | 0.606 | 0.000 | |
BMC | 0.710 | <0.001 | -- | -- | 0.348 | 0.075 | 0.437 | 0.010 | |
FFM | 0.523 | 0.001 | -- | -- | 0.478 | 0.012 | 0.484 | 0.004 | |
FM (absolute) | −0.348 | 0.040 | −0.480 | 0.004 | −0.331 | 0.092 | −0.317 | 0.067 | |
FM (%) | −0.522 | 0.001 | −0.519 | 0.002 | −0.468 | 0.014 | −0.489 | 0.003 | |
VAT (cm2) | −0.252 | 0.040 | −0.362 | 0.035 | −0.228 | 0.252 | −0.247 | 0.158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matias, C.N.; Campa, F.; Cardoso, J.; Cavaca, M.L.; Carlos, R.; Teixeira, F.J. Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers. Sports 2025, 13, 257. https://doi.org/10.3390/sports13080257
Matias CN, Campa F, Cardoso J, Cavaca ML, Carlos R, Teixeira FJ. Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers. Sports. 2025; 13(8):257. https://doi.org/10.3390/sports13080257
Chicago/Turabian StyleMatias, Catarina N., Francesco Campa, Joana Cardoso, Margarida L. Cavaca, Rafael Carlos, and Filipe J. Teixeira. 2025. "Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers" Sports 13, no. 8: 257. https://doi.org/10.3390/sports13080257
APA StyleMatias, C. N., Campa, F., Cardoso, J., Cavaca, M. L., Carlos, R., & Teixeira, F. J. (2025). Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers. Sports, 13(8), 257. https://doi.org/10.3390/sports13080257