Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,541)

Search Parameters:
Keywords = body-weight loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3175 KiB  
Article
GLP-1-Mediated Pregnancy and Neonatal Complications in Mice
by Rajalakshmi Ramamoorthy, Arianna K. Carden, Hussain Hussain, Brian Z. Druyan, Ping Ping Chen, Rima Hajjar, Carmen Fernandez, Nila Elumalai, Amirah B. Rashed, Karen Young, Anna Rosa Speciale, Emily M. West, Staci Marbin, Bradley Safro, Ian J. Bishop, Arumugam R. Jayakumar, Luis Sanchez-Ramos and Michael J. Paidas
J. Dev. Biol. 2025, 13(3), 29; https://doi.org/10.3390/jdb13030029 - 15 Aug 2025
Viewed by 30
Abstract
Glucagon-like peptide 1 (GLP-1), a hormone derived from the proglucagon gene, regulates various physiological processes; however, its impact on pregnancy outcomes remains poorly understood. Assessing the effects of GLP-1 on neonates is vital as GLP-1 is increasingly administered during pregnancy. This study evaluates [...] Read more.
Glucagon-like peptide 1 (GLP-1), a hormone derived from the proglucagon gene, regulates various physiological processes; however, its impact on pregnancy outcomes remains poorly understood. Assessing the effects of GLP-1 on neonates is vital as GLP-1 is increasingly administered during pregnancy. This study evaluates the effect of GLP-1 exposure on maternal complications and neonatal defects in mice. Pregnant female A/J mice received subcutaneous injections of recombinant GLP-1 (rGLP-1; 1000 nmol/kg) on embryonic day 1 (EP, early pregnancy) or day 15 (E15, late pregnancy). Maternal and neonatal body weights, morphology, and mortality were recorded, and mRNA sequencing was conducted to analyze gene expression in neonatal tissues. Maternal body weight decreased following rGLP-1 exposure, and pups born to both the early and late exposure groups experienced significant weight loss. Pups in the late exposure group exhibited uniform skin detachment and a dramatically higher mortality rate than those born to the early exposure group. Further, RT-PCR analysis confirms the significantly increased expression of selected genes in the skin and associated pathogenesis. RNA sequencing of pups’ skin, brain, lung, and liver tissues from the late exposure group showed altered gene expression. Since maternal weight loss, increased neonatal mortality, and altered gene expression have been observed, GLP-1 receptor agonists (GLP-1RAs) should be avoided during pregnancy. Full article
(This article belongs to the Special Issue Embryonic Development and Regenerative Medicine)
Show Figures

Figure 1

16 pages, 3830 KiB  
Article
5,7-Dimethoxyflavone Attenuates Sarcopenic Obesity by Enhancing PGC-1α–Mediated Mitochondrial Function in High-Fat-Diet-Induced Obese Mice
by Changhee Kim, Mi-Bo Kim, Sanggil Lee and Jae-Kwan Hwang
Nutrients 2025, 17(16), 2642; https://doi.org/10.3390/nu17162642 - 14 Aug 2025
Viewed by 102
Abstract
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and [...] Read more.
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and muscle-preserving properties, its effects on sarcopenic obesity remain unclear. Methods: Four-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 6 weeks to induce sarcopenic obesity, followed by 8 weeks of continued HFD with the oral administration of DMF. Muscle function was assessed through grip strength and treadmill running tests, while muscle and fat volumes were measured using micro-CT. Mechanistic analyses were performed using gene expression and Western blot analysis. Results: DMF significantly reduced body weight, fat mass, and adipocyte size while enhancing grip strength, endurance, skeletal muscle mass, and the muscle fiber cross-sectional area. In the gastrocnemius muscle, DMF increased the gene expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Ppargc1a) and its isoform Ppargc1a4, thereby promoting mitochondrial biogenesis. It also improved protein turnover by modulating protein synthesis and degradation via the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling pathway. In subcutaneous and brown adipose tissues, DMF increased mitochondrial DNA content and the expression of thermogenic and beige adipocyte-related genes. These findings suggest that DMF alleviates sarcopenic obesity by improving mitochondrial function and regulating energy metabolism in both skeletal muscle and adipose tissues via PGC-1α-mediated pathways. Thus, DMF represents a promising therapeutic candidate for the integrated management of sarcopenic obesity. Full article
Show Figures

Figure 1

16 pages, 1350 KiB  
Article
Rowing Performance After Dehydration: An Effect of Method
by Dayton J. Kelly, Anastasia H. Nepotiuk and Liana E. Brown
Physiologia 2025, 5(3), 24; https://doi.org/10.3390/physiologia5030024 - 11 Aug 2025
Viewed by 122
Abstract
Purpose: To investigate whether mild hypohydration in lightweight rowers compromises rowing performance despite a two-hour rehydration window. Methods: Experienced varsity rowers [11 male (82.3 ± 26.2 kg, age = 21.3 ± 4.0 years, height = 184.7 ± 2.4 cm) and three female (62.1 [...] Read more.
Purpose: To investigate whether mild hypohydration in lightweight rowers compromises rowing performance despite a two-hour rehydration window. Methods: Experienced varsity rowers [11 male (82.3 ± 26.2 kg, age = 21.3 ± 4.0 years, height = 184.7 ± 2.4 cm) and three female (62.1 ± 11.8 kg, 2.3 ± 4.2 years, 166.4 ± 16.2 cm)] performed a 2000 m rowing ergometer time trial and visuomotor battery twice: once euhydrated and once after mild dehydration. Weight loss (−1.68 ± 0.23% body mass reduction) was achieved through a combination of 12 h (abstinence) of fluid and food restriction and sauna exposure. Results: Participants were significantly slower on the 2000 m rowing trial in the hypohydration condition than in the euhydration condition (+2.44 ± 4.5 s, p < 0.05). Hierarchical linear regression analyses revealed that this rowing performance decrement was explained by hypohydration achieved overnight through fluid abstinence (r2 = 0.504, p < 0.01) but not by hypohydration achieved in the sauna (r2 = 0.025, n.s.), corroborating our previous finding. This analysis also revealed a relationship between hypohydration-related rowing performance decrements and hypohydration-related changes in visuomotor function (r2 = 0.310, p < 0.01). Conclusions: These findings suggest that rowing time trial performance can be negatively affected by relatively small changes in hydration status and that the method by which hypohydration is achieved is important. Rowing performance losses were explained by hypohydration due to prolonged fluid abstinence and by hypohydration-related changes to neural control of movement. Performance losses were not related to rapid sauna-based fluid loss. Full article
(This article belongs to the Special Issue Exercise Physiology and Biochemistry: 2nd Edition)
Show Figures

Figure 1

16 pages, 1520 KiB  
Article
Preoperative Tyrosine Levels as Predictive Biomarkers for Excessive Fat-Free Mass Loss Following Laparoscopic Sleeve Gastrectomy in Patients with Morbid Obesity
by Inyoung Lee, Eunhye Seo, Yeongkeun Kwon, Chang Min Lee, Nam Hoon Kim, Jong-Han Kim, Sung Il Choi and Sungsoo Park
Metabolites 2025, 15(8), 543; https://doi.org/10.3390/metabo15080543 - 11 Aug 2025
Viewed by 269
Abstract
Background/Objectives: Fat-free mass (FFM) loss after metabolic and bariatric surgery (MBS) is associated with adverse long-term outcomes, including osteoporosis. Identifying biomarkers that predict excessive FFM loss can improve perioperative patient management and postoperative risk stratification. This study investigated whether preoperative amino acid [...] Read more.
Background/Objectives: Fat-free mass (FFM) loss after metabolic and bariatric surgery (MBS) is associated with adverse long-term outcomes, including osteoporosis. Identifying biomarkers that predict excessive FFM loss can improve perioperative patient management and postoperative risk stratification. This study investigated whether preoperative amino acid metabolite (AAM) levels could predict excessive FFM loss after laparoscopic sleeve gastrectomy (LSG). Methods: Forty patients with morbid obesity who underwent LSG between 2019 and 2020 were retrospectively analyzed. Based on the FFM loss to body weight loss ratio (%FFML/BWL) at 3 months postoperatively, patients were categorized into excessive (>25%) and non-excessive (≤25%) FFM loss groups. Anthropometric measurements and serum sampling were performed preoperatively and at 3, 6, and 12 months postoperatively. AAM profiles were collected before surgery. Statistical analyses, including logistic regression and receiver operating characteristic curves, were performed. Results: Twenty-five patients showed excessive FFM loss 3 months after surgery. They had significantly lower preoperative tyrosine (Tyr) levels (p = 0.025). Logistic regression revealed that higher Tyr levels were significantly associated with lower odds of being male, suggesting a potential protective effect (odds ratio (OR) =0.019, p = 0.010). Tyr profiling demonstrated acceptable predictive performance (area under the curve =0.715, p = 0.025). Despite nonsignificant p-values, trends showed lower FFM and muscle mass and higher fat mass in the excessive FFM loss group throughout follow-up. Conclusions: Preoperative Tyr profiling may help identify patients at risk for excessive FFM loss. These findings support prioritizing metabolic health alongside total weight loss in the evaluation of MBS outcomes. Full article
Show Figures

Figure 1

14 pages, 1980 KiB  
Article
Synergistic Enhancement of Eimeria maxima Vaccine Efficacy Through EF-1α Antigen and Chicken XCL1 Chemokine Adjuvant Combination
by Rong Chen, Xiao-Feng Lin, Hong-Yan Wu, Li-Na Li, Lei Wang, Deng-Feng Wang, Hai-Yan Wu, Pan-Pan Guo, Muhammad Mohsin and Guang-Wen Yin
Animals 2025, 15(16), 2330; https://doi.org/10.3390/ani15162330 - 8 Aug 2025
Viewed by 259
Abstract
Coccidiosis is a major parasitic disease that suppresses poultry productivity and causes significant global economic losses. Currently, controlling Eimeria parasites relies primarily on the use of anticoccidial drugs or live vaccines. However, these conventional control strategies face the dual constraints of escalating drug [...] Read more.
Coccidiosis is a major parasitic disease that suppresses poultry productivity and causes significant global economic losses. Currently, controlling Eimeria parasites relies primarily on the use of anticoccidial drugs or live vaccines. However, these conventional control strategies face the dual constraints of escalating drug resistance and unsustainable economic expenditures. In this study, the efficacy of a chimeric subunit vaccine comprising Eimeria maxima Elongation Factor-1α (EmEF1α) and chicken chemokine Ligand-1 (ChXCL1) was assessed for protection against experimental Eimeria maxima infection. The synthetic gene fragment ChXCL1-EmEF1α was ligated to the pET28a vector and expressed in vitro. Western blot analysis confirmed the successful expression of the recombinant ChXCL1-EmEF1α protein. Chickens immunized with the ChXCL1-EmEF1α exhibited a significantly stronger IgY response and higher secretion of IL-2 and IL-17 compared to those vaccinated with recombinant ChXCL1 alone or challenged solely with E. maxima. Furthermore, the ChXCL1-EmEF1α group demonstrated enhanced anticoccidial effects, including reduced intestinal lesions, higher body weight gain, and lower oocyst shedding compared to control groups. Following E. maxima challenge, the EmEF1α and ChXCL1-EmEF1α groups demonstrated robust protective efficacy, achieving high ACI values of 182 and 178, respectively. In contrast, the ChXCL1 and UC groups exhibited significantly lower ACI values (150 and 149, respectively), indicating minimal protection. This improvement was also reflected in the immune response, with significantly elevated levels of CD4+ and CD8+ T cells in the ChXCL1-EmEF1α-treated chickens. Moreover, ChXCL1 acts as an effective adjuvant when fused with EmEF1α, enhancing the vaccine’s anticoccidial efficacy. These results suggest that the ChXCL1-EmEF1α chimeric immunogen is a promising candidate for developing subunit vaccines against E. maxima infections. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

14 pages, 280 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Viewed by 199
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
14 pages, 746 KiB  
Article
Long-Term Outcomes of the Dietary Approaches to Stop Hypertension (DASH) Intervention in Nonobstructive Coronary Artery Disease: Follow-Up of the DISCO-CT Study
by Magdalena Makarewicz-Wujec, Jan Henzel, Cezary Kępka, Mariusz Kruk, Barbara Jakubczak, Aleksandra Wróbel, Rafał Dąbrowski, Zofia Dzielińska, Marcin Demkow, Edyta Czepielewska and Agnieszka Filipek
Nutrients 2025, 17(15), 2565; https://doi.org/10.3390/nu17152565 - 6 Aug 2025
Viewed by 470
Abstract
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It [...] Read more.
In the original randomised Dietary Intervention to Stop Coronary Atherosclerosis (DISCO-CT) trial, a 12-month Dietary Approaches to Stop Hypertension (DASH) project led by dietitians improved cardiovascular and metabolic risk factors and reduced platelet chemokine levels in patients with coronary artery disease (CAD). It is unclear whether these benefits are sustained. Objective: To determine whether the metabolic, inflammatory, and clinical benefits achieved during the DISCO-CT trial are sustained six years after the structured intervention ended. Methods: Ninety-seven adults with non-obstructive CAD confirmed in coronary computed tomography angiography were randomly assigned to receive optimal medical therapy (control group, n = 41) or the same therapy combined with intensive DASH counselling (DASH group, n = 43). After 301 ± 22 weeks, 84 individuals (87%) who had given consent underwent reassessment of body composition, meal frequency assessment, and biochemical testing (lipids, hs-CRP, CXCL4, RANTES and homocysteine). Major adverse cardiovascular events (MACE) were assessed. Results: During the intervention, the DASH group lost an average of 3.6 ± 4.2 kg and reduced their total body fat by an average of 4.2 ± 4.8 kg, compared to an average loss of 1.1 ± 2.9 kg and a reduction in total body fat of 0.3 ± 4.1 kg in the control group (both p < 0.01). Six years later, most of the lost body weight and fat tissue had been regained, and there was a sharp increase in visceral fat area in both groups (p < 0.0001). CXCL4 decreased by 4.3 ± 3.0 ng/mL during the intervention and remained lower than baseline values; in contrast, in the control group, it initially increased and then decreased (p < 0.001 between groups). LDL cholesterol and hs-CRP levels returned to baseline in both groups but remained below baseline in the DASH group. There was one case of MACE in the DASH group, compared with four cases (including one fatal myocardial infarction) in the control group (p = 0.575). Overall adherence to the DASH project increased by 26 points during counselling and then decreased by only four points, remaining higher than in the control group. Conclusions: A one-year DASH project supported by a physician and dietitian resulted in long-term suppression of the proatherogenic chemokine CXCL4 and fewer MACE over six years, despite a decline in adherence and loss of most anthropometric and lipid benefits. It appears that sustained systemic reinforcement of behaviours is necessary to maintain the benefits of lifestyle intervention in CAD. Full article
(This article belongs to the Special Issue Nutrients: 15th Anniversary)
Show Figures

Figure 1

15 pages, 750 KiB  
Review
Using Biocontrol Fungi to Control Helminthosis in Wild Animals: An Innovative Proposal for the Health and Conservation of Species
by Júlia dos Santos Fonseca, Beatriz Bacelar Barbosa, Adolfo Paz Silva, María Sol Arias Vázquez, Cristiana Filipa Cazapal Monteiro, Huarrisson Azevedo Santos and Jackson Victor de Araújo
Pathogens 2025, 14(8), 775; https://doi.org/10.3390/pathogens14080775 - 5 Aug 2025
Viewed by 374
Abstract
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. [...] Read more.
Helminth parasites of wild animals represent a major threat to the health of these animals, leading to significant losses in performance, health, and zoonotic implications. In some zoos, anthelmintics have traditionally been used to control these parasites, many of which are also zoonotic. Other actions, such as the removal of organic waste, have also been adopted. Few or no control measures are applied to free-ranging wild animals. Helminthophagous fungi are a promising biological alternative. When animals ingest fungal spores, they are excreted in their feces, where they trap and destroy helminth larvae and eggs, preventing and reducing the parasite load in the environment. Another alternative is to administer fungi by spraying them directly into the environment. This review aims to examine the use of helminthophagous fungi in the control of helminthiases in wild animals, highlighting their potential to minimize dependence on chemical treatments and promote sustainable animal breeding and production. There are many challenges to making this viable, such as environmental variability, stability of formulations, and acceptance of this new technology. These fungi have been shown to reduce parasite burdens in wild animals by up to 75% and can be administered through the animals’ feeding troughs. To date, evidence shows that helminthophagous fungi can reliably curb environmental parasite loads for extended periods, offering a sustainable alternative to repeated anthelmintic dosing. Their use has been linked to tangible gains in body condition, weight, and overall welfare in various captive and free-ranging wildlife species. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

20 pages, 8673 KiB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Viewed by 392
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Graphical abstract

22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 - 2 Aug 2025
Viewed by 448
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Viewed by 304
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 1376 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 - 1 Aug 2025
Viewed by 781
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥ 5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Circulating Lipid Profiles Indicate Incomplete Metabolic Recovery After Weight Loss, Suggesting the Need for Additional Interventions in Severe Obesity
by Alina-Iuliana Onoiu, Vicente Cambra-Cortés, Andrea Jiménez-Franco, Anna Hernández-Aguilera, David Parada, Francesc Riu, Antonio Zorzano, Jordi Camps and Jorge Joven
Biomolecules 2025, 15(8), 1112; https://doi.org/10.3390/biom15081112 - 1 Aug 2025
Viewed by 233
Abstract
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies [...] Read more.
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies before and after weight loss. Using mass spectrometry, 275 lipid species were analysed in non-obese controls, patients with severe obesity, and patients one year after bariatric surgery. The results showed that severe obesity disrupts lipid pathways, contributing to lipotoxicity, inflammation, mitochondrial stress, and abnormal lipid metabolism. Although weight loss improved these disturbances, surgery did not fully normalise the lipid profiles of all patients. Outcomes varied depending on their baseline liver health and genetic differences. Persistent alterations in cholesterol handling, membrane composition, and mitochondrial function were observed in partial responders. Elevated levels of sterol lipids, glycerophospholipids, and sphingolipids emerged as markers of complete metabolic recovery, identifying candidates for targeted post-surgical interventions. These findings support the use of lipidomics to personalise obesity treatment and follow-up. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

16 pages, 604 KiB  
Article
Once-Weekly Semaglutide Improves Body Composition in Spanish Obese Adults with Type 2 Diabetes: A 48-Week Prospective Real-Life Study
by Irene Caballero-Mateos, Cristóbal Morales-Portillo and Beatriz González Aguilera
J. Clin. Med. 2025, 14(15), 5434; https://doi.org/10.3390/jcm14155434 - 1 Aug 2025
Viewed by 611
Abstract
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was [...] Read more.
Objective: The objective of this study was to assess changes in body composition, with a specific focus on fat mass (FM) and fat-free mass (FFM), in obese adults with type 2 diabetes (T2D) treated with once-weekly (OW) subcutaneous (s.c.) semaglutide. Methods: This was a single-center, 12-month, real-world, ambispective study (6-month prospective and 6-month retrospective). Body composition parameters were assessed via segmental multifrequency bioelectrical impedance analysis (SMF-BIA). Results: A total of 117 patients with DM2, with a median age of 56 years, a median HbA1c level of 9.4%, and a median body weight of 102.5 kg, were included in the study. The median body weight, body fat mass, and visceral fat significantly decreased at 6 months, with values of −9.3, −7.5, and −1.8 kg, respectively. There were further reductions from 6 to 12 months, albeit at a slower rate. The median skeletal muscle mass significantly decreased at 6 months (−1.2 kg), although no further significant reductions were observed at 12 months. Conclusions: OW s.c. semaglutide for 12 months significantly improved body composition parameters, mainly at the expense of fat mass loss, with the preservation of skeletal muscle mass. These changes are clinically meaningful, since they impact general metabolic health and are associated with improvements in metabolic control and clinical parameters associated with renal and CV risks, as well as presumable improvements in quality of life. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

19 pages, 397 KiB  
Review
Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
by Ioana Bujdei-Tebeică, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu and Cristian Serafinceanu
Medicina 2025, 61(8), 1399; https://doi.org/10.3390/medicina61081399 - 1 Aug 2025
Viewed by 460
Abstract
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. [...] Read more.
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. Past reviews have typically been focused on weight reduction or glycemic effectiveness, with limited inclusion of new therapies’ effects on muscle and fat distribution. In addition, the emergence of incretin-based therapies and dual agonists such as tirzepatide requires an updated synthesis of their impacts on body composition. This review attempts to bridge the gap by taking a systematic approach to how current blood-glucose lowering therapies affect lean body mass, fat mass, and the risk of sarcopenia in T2D patients. Materials and Methods: Between January 2015 and March 2025, we conducted a narrative review by searching the PubMed, Scopus, and Web of Science databases for English-language articles. The keywords were combinations of the following: “type 2 diabetes,” “lean body mass,” “fat mass,” “body composition,” “sarcopenia,” “GLP-1 receptor agonists,” “SGLT2 inhibitors,” “tirzepatide,” and “antidiabetic pharmacotherapy.” Reference lists were searched manually as well. The highest precedence was assigned to studies that aimed at adult type 2 diabetic subjects and reported body composition results. Inclusion criteria for studies were: (1) type 2 diabetic mellitus adult patients and (2) reporting measures of body composition (e.g., lean body mass, fat mass, or muscle function). We prioritized randomized controlled trials and large observational studies and excluded mixed diabetic populations, non-pharmacological interventions only, and poor reporting of body composition. Results: Metformin was widely found to be weight-neutral with minimal effects on muscle mass. Insulin therapy, being an anabolic hormone, often leads to fat mass accumulation and increases the risk of sarcopenic obesity. Incretin-based therapies induced substantial weight loss, mostly from fat mass. Notable results were observed in studies with tirzepatide, demonstrating superior reduction not only in fat mass, but also in visceral fat. Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) promote fat loss but are associated with a small yet significant decrease in lean muscle mass. Conclusions: Blood-glucose lowering therapies demonstrated clinically relevant effects on body composition. Treatment should be personalized, balancing glycemic control, cardiovascular, and renal benefits, together with optimal impact on muscle mass along with glycemic, cardiovascular, and renal benefits. Full article
(This article belongs to the Section Endocrinology)
Back to TopTop