Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,037)

Search Parameters:
Keywords = body forces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 313 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
22 pages, 734 KiB  
Article
An Assembly Accuracy Analysis Method for Weak Rigid Components
by Dongping Zhao, Zhe Yuan, Xiaosong Zhao and Gangfeng Wang
Machines 2025, 13(8), 694; https://doi.org/10.3390/machines13080694 - 6 Aug 2025
Abstract
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes [...] Read more.
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes inaccurate, and the accuracy of key components cannot be effectively controlled. This may lead to serious issues such as forced assembly, repair, and rework. To address these problems, this study proposes a rigid–flexible coupling-based assembly accuracy analysis method for WRCs. The stiffness matrix and assembly deformation of WRCs are calculated, and by coupling assembly deformation with other assembly deviations, a rigid–flexible coupling assembly accuracy data model is established. This model incorporates multiple deviation sources, including assembly process variations, design tolerances, and assembly deformations. Assembly deviation transfer modeling and accumulation calculation methods for WRCs are investigated, enabling assembly accuracy simulation and statistical analysis. A case study on WRC assembly accuracy analysis is conducted, and the results demonstrate that the proposed method improves the accuracy of assembly analysis for WRCs, verifying its reliability. Full article
22 pages, 6288 KiB  
Article
The Pontoon Design Optimization of a SWATH Vessel for Resistance Reduction
by Chun-Liang Tan, Chi-Min Wu, Chia-Hao Hsu and Shiu-Wu Chau
J. Mar. Sci. Eng. 2025, 13(8), 1504; https://doi.org/10.3390/jmse13081504 - 5 Aug 2025
Abstract
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel [...] Read more.
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel conditions. The vessel’s resistance is simplified into three components: pontoon, strut, and fin stabilizer. Four design parameters define the pontoon geometry: fore-body length, aft-body length, fore-body angle, and aft-body angle. Computational fluid dynamics (CFD) simulations using STAR-CCM+ 2302 provide 1400 resistance data points, including fin stabilizer lift and drag forces at varying angles of attack. These are used to train a DNN in MATLAB 2018a with five hidden layers containing six, eight, nine, eight, and seven neurons. K-fold cross-validation ensures model stability and aids in identifying optimal design parameters. The optimized hull has a 7.8 m fore-body, 6.8 m aft-body, 10° fore-body angle, and 35° aft-body angle. It achieves a 2.2% resistance reduction compared to the baseline. The improvement is mainly due to a reduced Munk moment, which lowers the angle of attack needed by the fin stabilizer, thereby reducing drag. The optimized design provides cost-efficient construction and enhanced payload capacity. This study demonstrates the effectiveness of combining CFD and deep learning for hull form optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

17 pages, 6494 KiB  
Article
Evaluation of a Passive-Assist Exoskeleton Under Different Assistive Force Profiles in Agricultural Working Postures
by Naoki Saito, Takumi Kobayashi, Kohei Akimoto, Toshiyuki Satoh and Norihiko Saga
Actuators 2025, 14(8), 381; https://doi.org/10.3390/act14080381 - 1 Aug 2025
Viewed by 161
Abstract
To enable the practical application of passive back-support exoskeletons employing pneumatic artificial muscles (PAMs) in tasks such as agricultural work, we evaluated their assistive effectiveness in a half-squatting posture with a staggered stance. In this context, assistive force profiles were adjusted according to [...] Read more.
To enable the practical application of passive back-support exoskeletons employing pneumatic artificial muscles (PAMs) in tasks such as agricultural work, we evaluated their assistive effectiveness in a half-squatting posture with a staggered stance. In this context, assistive force profiles were adjusted according to body posture to achieve more effective support. The targeted assistive force profile was designed to be continuously active from the standing to the half-squatting position, with minimal variation across this range. The assistive force profile was developed based on a PAM contractile force model and implemented using a cam mechanism. The effectiveness of assistance was assessed by measuring body flexion angles and erector spinae muscle activity during lifting and carrying tasks. The results showed that the assistive effect was greater on the side with the forward leg. Compared to the condition without exoskeleton assistance, the conventional pulley-based system reduced muscle activity by approximately 20% whereas the cam-based system achieved a reduction of approximately 30%. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

20 pages, 576 KiB  
Article
Effectiveness of a Physiotherapy Stress-Management Protocol on Cardiorespiratory, Metabolic and Psychological Indicators of Children and Adolescents with Morbid Obesity
by Pelagia Tsakona, Alexandra Hristara-Papadopoulou, Thomas Apostolou, Ourania Papadopoulou, Ioannis Kitsatis, Eleni G. Paschalidou, Christos Tzimos, Maria G. Grammatikopoulou and Kyriaki Tsiroukidou
Children 2025, 12(8), 1010; https://doi.org/10.3390/children12081010 - 31 Jul 2025
Viewed by 205
Abstract
Background: Chronic stress in childhood and adolescence leads to excessive cortisol secretion, adipokines production and obesity with all the negative mental and physical effects on the health of individuals and adulthood. Objectives: The aim of the present non-randomized controlled trial was to investigate [...] Read more.
Background: Chronic stress in childhood and adolescence leads to excessive cortisol secretion, adipokines production and obesity with all the negative mental and physical effects on the health of individuals and adulthood. Objectives: The aim of the present non-randomized controlled trial was to investigate the effect of a stress management protocol with diaphragmatic breathing (DB) and physiotherapy exercise on stress, body composition, cardiorespiratory and metabolic markers of children and adolescents with morbid obesity. Methods: The study included 31 children and adolescents (5–18 years old) with morbid obesity (22 in the intervention arm and 9 controls). All participants completed anxiety questionnaires and a self-perception scale. Forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), blood pressure (BP) and SpO2 were measured. Fasting glucose, uric acid, triglycerides, HbA1c, (AST/SGOT), (ALT/SGPT), HDL, LDL, insulin, ACTH, cortisol, HOMA-IR, 17-OH, S-DHEA, SHBG were assessed, and anthropometric measurements were also performed. Results: In the intervention group, 4 months after the treatment, an improvement was noted in the BMI, BMI z-score, waist-to-height ratio, FEV1, SpO2, pulse and systolic BP. HDL increased, ALT/SGPT and insulin resistance improved. Positive changes were observed in temporary and permanent stress and self-esteem of children in the intervention group, including anxiety, self-perception, physical appearance, etc. Conclusions: A combined exercise and DB protocol has a positive effect on stress, by improving body composition, reducing insulin resistance, and ameliorating physical and mental health and quality of life of pediatric patients with morbid obesity. Full article
(This article belongs to the Special Issue Childhood Obesity: Prevention, Intervention and Treatment)
Show Figures

Figure 1

24 pages, 384 KiB  
Review
Potential Metal Contamination in Foods of Animal Origin—Food Safety Aspects
by József Lehel, Dániel Pleva, Attila László Nagy, Miklós Süth and Tibor Kocsner
Appl. Sci. 2025, 15(15), 8468; https://doi.org/10.3390/app15158468 (registering DOI) - 30 Jul 2025
Viewed by 176
Abstract
This literature review provides an overview of the food safety and toxicological characteristics of various heavy metals and metalloids and the public health significance of their occurrence in food. Metals also occur as natural components of the environment, but they can enter food [...] Read more.
This literature review provides an overview of the food safety and toxicological characteristics of various heavy metals and metalloids and the public health significance of their occurrence in food. Metals also occur as natural components of the environment, but they can enter food of animal origin and the human body primarily due to anthropogenic (industrial, agricultural, transport-related) activities. The persistent heavy metals (e.g., Hg, Pb, Cd) found in the environment are not biodegradable, can accumulate, and can enter the bodies of higher animals and subsequently, humans, where they are metabolized into various compounds with differing toxicity. Thus, due to their environmental contamination, they can accumulate in living organisms and their presence in the food chain is of great concern for human health. Regulations of the European Community in force lay down maximum levels for a limited number of metals, and the types of regulated foodstuffs of animal origin are also narrower than in the past, e.g., wild game animals and eggs are not included. The regulation of game meat (including offal) deserves consideration, given that it is in close interaction with the environmental condition of a given area and serves as indicator of it. Full article
22 pages, 1725 KiB  
Article
Whole-Body Vision/Force Control for an Underwater Vehicle–Manipulator System with Smooth Task Transitions
by Jie Liu, Guofang Chen, Fubin Zhang and Jian Gao
J. Mar. Sci. Eng. 2025, 13(8), 1447; https://doi.org/10.3390/jmse13081447 - 29 Jul 2025
Viewed by 132
Abstract
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out [...] Read more.
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out simultaneously with prescribed priorities, can be referred to as sets of tasks (SOTs). In this work, a hybrid vision/force control method with continuous task transitions is proposed for a UVMS to simultaneously track the reference vision and force trajectory during manipulation. Several tasks with expected objectives and specific priorities are established and combined as SOTs in hybrid vision/force tracking. At different stages, various SOTs are carried out with different emphases. A hierarchical optimization-based whole-body control framework is constructed to obtain the solution in a strictly hierarchical fashion. A continuous transition method is employed to mitigate oscillations during the task switching phase. Finally, comparative simulation experiments are conducted and the results verify the improved convergence of the proposed tracking controller for UVMSs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1752 KiB  
Article
From Myofascial Chains to the Polyconnective Network: A Novel Approach to Biomechanics and Rehabilitation Based on Graph Theory
by Daniele Della Posta, Immacolata Belviso, Jacopo Junio Valerio Branca, Ferdinando Paternostro and Carla Stecco
Life 2025, 15(8), 1200; https://doi.org/10.3390/life15081200 - 28 Jul 2025
Viewed by 449
Abstract
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification [...] Read more.
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification of topologically central nodes involved in force transmission, stability, and coordination. Using the aNETomy model and the BIOMECH 3.4 database, we constructed an undirected network of 2208 anatomical nodes and 7377 biomechanical relationships. Centrality analysis (degree, betweenness, and closeness) revealed that structures such as the sacrum and thoracolumbar fascia exhibit high connectivity and strategic importance within the network. These findings, while derived from a theoretical modeling approach, suggest that such key nodes may inform targeted treatment strategies, particularly in complex or compensatory musculoskeletal conditions. The proposed concept of a polyconnective skeleton (PCS) synthesizes the most influential anatomical hubs into a functional core of the system. This framework may support future clinical and technological applications, including integration with imaging modalities, real-time monitoring, and predictive modeling for personalized and preventive medicine. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

16 pages, 1127 KiB  
Article
Effects of Corn–Soybean Meal-Based Fermented Feed Supplementation on Growth Performance, Meat Quality, Fatty Acid Profiles, Nutritional Values, and Gut Microbiota of Lean-Type Finishing Pigs
by Jiao Song, Xin Wang, Yuhan Cao, Yue He and Ye Yang
Foods 2025, 14(15), 2641; https://doi.org/10.3390/foods14152641 - 28 Jul 2025
Viewed by 421
Abstract
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 [...] Read more.
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 replicates of 8 pigs per pen. The pigs in control group (CON group) were fed a basal diet, while the pigs in fermented feed group (FF group) were fed a diet supplemented with 10% fermented feed. The experimental period lasted 70 days. Results exhibited that pigs in FF group had a significant increase in final body weight and average daily gain (ADG) (p < 0.05) and had a significant decrease in the feed-to-gain ratio (F/G) (p < 0.05). The FF group also exhibited significant promotion in muscle intramuscular fat content, marbling score, and meat color and significantly reduced the meat shear force and drip loss (p < 0.05). Serum analysis indicated that fermented feed significantly elevated blood glucose, total cholesterol, triglyceride levels, and serum hormones such as insulin, leptin, and IGF-1 (p < 0.05). Additionally, fermented feed significantly elevated the levels of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs), whereas it decreased the saturated fatty acids (SFAs) contents (p < 0.05). The fermented feed also significantly enhanced pork nutritional values (p < 0.05). The fermented feed increased the expression of IGF-1, SREBP1c, PDE3, PPARγ, SCD5, and FAT/CD36 mRNA (p < 0.05). Furthermore, microbial 16S rDNA analysis uncovered that FF supplementation significantly reduced the Campilobacterota phylum abundance, while increasing the genus abundances of Clostridium_sensu_stricto, norank_f_Oscillospiraceae, unclassified_c_Clostridia, and V9D2013 (p < 0.05). In summary, the results indicated that the microbial fermented feed exhibited the regulation effects on pork quality and nutritional values of lean-type pigs through regulating lipid metabolism and gut microbial composition. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

11 pages, 839 KiB  
Article
Predicting Proximal Femoral Remodeling After Short-Stem Hip Arthroplasty: A Biomechanical Modeling Approach
by Jan Heřt, Martin Havránek, Matej Daniel and Antonín Sosna
J. Clin. Med. 2025, 14(15), 5307; https://doi.org/10.3390/jcm14155307 - 27 Jul 2025
Viewed by 422
Abstract
Background: Short-stem hip replacements are designed to provide improved load distribution and to mimic natural biomechanics. The interplay between implant design, positioning, and resulting bone biomechanics in individual patients remains underexplored, and the relationship between radiographically assessed bone remodeling around short stems [...] Read more.
Background: Short-stem hip replacements are designed to provide improved load distribution and to mimic natural biomechanics. The interplay between implant design, positioning, and resulting bone biomechanics in individual patients remains underexplored, and the relationship between radiographically assessed bone remodeling around short stems and biomechanical predictions has not been previously reported. Methods: This study evaluated three short-stem hip implant designs: Proxima, Collo-MIS, and Minima. Postoperative bone remodeling patterns were analyzed, categorizing remodeling as bone gain, bone loss, or no observable activity, with changes tracked over time. Patient-specific biomechanical models were generated from 6-week postoperative radiographs. Finite element simulations incorporated body weight and gluteal muscle forces to estimate stress and strain distributions within the proximal femur. Strain energy was then applied to a mechanostat-based remodeling algorithm to predict bone remodeling patterns. These biomechanical predictions were compared to observed radiographic remodeling at 2 years post-surgery. A validated biomechanical model was further used to simulate different postoperative positions of the three types of stems. Results: No differences in bone remodeling patterns were observed among the three short-stem designs. Computational modeling demonstrated a statistically significant correlation between predicted remodeling and radiographic measurements at 2 years (p < 0.001). Proxima stems showed a tendency towards increased cortical bone loading under pronounced varus or valgus position in comparison to other two stems, although this observation requires further validation. Conclusions: This exploratory study demonstrates the feasibility of using biomechanical modeling to estimate bone remodeling around short-stem hip implants based on early postoperative radiographs. While the results are promising, they should be interpreted with caution due to the limited cohort size. The proposed modeling approach may offer clinical value in evaluating implant behavior and informing patient-specific treatment strategies. However, further research with larger populations is necessary to refine and validate these predictive tools. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

18 pages, 392 KiB  
Article
Semantic Restoration of Snake-Slaying in Chan Buddhist Koan
by Yun Wang and Yulu Lv
Religions 2025, 16(8), 973; https://doi.org/10.3390/rel16080973 - 27 Jul 2025
Viewed by 321
Abstract
In the Chan Buddhism koan (gong’an 公案) tradition, the act of “slaying the snake” functions as a signature gesture imbued with complex, historically layered cultural meanings. Rather than merely examining its motivations, this paper emphasizes tracing the semantic transformations that this motif has [...] Read more.
In the Chan Buddhism koan (gong’an 公案) tradition, the act of “slaying the snake” functions as a signature gesture imbued with complex, historically layered cultural meanings. Rather than merely examining its motivations, this paper emphasizes tracing the semantic transformations that this motif has undergone across different historical contexts. It argues that “snake-slaying” operated variously as an imperial narrative strategy reinforcing ruling class ideology; as a form of popular resistance by commoners against flood-related disasters; as a dietary practice among aristocrats and literati seeking danyao (elixirs) 丹藥 for reclusion and transcendence; and ultimately, within the Chan tradition, as a method of spiritual cultivation whereby masters sever desires rooted in attachment to both selfhood and the Dharma. More specifically, first, as an imperial narrative logic, snake-slaying embodied exemplary power: both Liu Bang 劉邦 and Guizong 歸宗 enacted this discursive strategy, with Guizong’s legitimacy in slaying the snake deriving from the precedent set by Liu Bang. Second, as a folk strategy of demystification, snake-slaying acquired a moral aura—since the snake was perceived as malevolent force, their slaying appeared righteous and heroic. Finally, as a mode of self-cultivation among the aristocracy, snake-slaying laid the groundwork for its later internalization. In Daoism, slaying the snake was a means of cultivating the body; in Chan Buddhism, the act is elevated to a higher plane—becoming a way of cultivating the mind. This transformation unfolded naturally, as if predestined. In all cases, the internalization of the snake-slaying motif was not an overnight development: the cultural genes that preceded its appearance in the Chan tradition provided the fertile ground for its karmic maturation and discursive proliferation. Full article
23 pages, 1711 KiB  
Case Report
Effect of Individualized Whole-Body Vibration Exercise on Locomotion and Postural Control in a Person with Multiple Sclerosis: A 5-Year Case Report
by Stefano La Greca, Stefano Marinelli, Rocco Totaro, Francesca Pistoia and Riccardo Di Giminiani
Appl. Sci. 2025, 15(15), 8351; https://doi.org/10.3390/app15158351 - 27 Jul 2025
Viewed by 393
Abstract
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified [...] Read more.
The present study aims to investigate the multi-year effects (5 years) of individualized whole-body vibration (WBV) on locomotion, postural control, and handgrip strength in a 68-year-old man with relapse remitting multiple sclerosis (PwRRMS). The dose–response relationship induced by a single session was quantified by determining the surface electromyographic activity (sEMG) of the participant. The participant wore an orthosis to limit the lack of foot dorsiflexion in the weakest limb during walking in daily life. The gait alteration during walking was assessed at 1, 2 and 3 km/h (without the orthosis) through angle–angle diagrams by quantifying the area, perimeter and shape of the loops, and the sEMG of leg muscles was recorded in both limbs. The evaluation of postural control was conducted during upright standing by quantifying the displacement of the center of pressure (CoP). The handgrip strength was assessed by measuring the force–time profile synchronized with the sEMG activity of upper arm muscles. The participant improved his ability to walk at higher speeds (2–3 km/h) without the orthosis. There were greater improvements in the area and perimeter of angle–angle diagrams for the weakest limb (Δ = 36–51%). The sEMG activity of the shank muscles increased at all speeds, particularly in the tibialis anterior of weakest limbs (Δ = 10–68%). The CoP displacement during upright standing decreased (Δ = 40–60%), whereas the handgrip strength increased (Δ = 32% average). Over the 5-year period of intervention, the individualized WBV improved locomotion, postural control and handgrip strength without side effects. Future studies should consider the possibility of implementing an individualized WBV in PwRRMS. Full article
(This article belongs to the Special Issue Recent Advances in Exercise-Based Rehabilitation)
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 201
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

10 pages, 409 KiB  
Article
Electromyographic Analysis of Lower Limb Muscles During Multi-Joint Eccentric Isokinetic Exercise Using the Eccentron Dynamometer
by Brennan J. Thompson, Merrill Ward, Brayden Worley and Talin Louder
Appl. Sci. 2025, 15(15), 8280; https://doi.org/10.3390/app15158280 - 25 Jul 2025
Viewed by 227
Abstract
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation [...] Read more.
Eccentric muscle actions are integral to human movement, rehabilitation, and performance training due to their characteristic high force output (overload) and low energy cost and perceived exertion. Despite the growing use of eccentric devices, a gap in the research exists exploring multi-muscle activation profiles during multi-joint eccentric-only, isokinetic exercise. This study aimed to quantify and compare surface electromyographic (EMG) activity of four leg muscles—vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (GM)—during a standardized (isokinetic) submaximal eccentric multi-joint exercise using the Eccentron dynamometer. Eighteen healthy adults performed eccentric exercise at 40% of their maximal eccentric strength. Surface EMG data were analyzed using root mean square (RMS) and integrated EMG (iEMG) variables. Repeated-measures ANOVAs and effect sizes (ES) were used to evaluate within-subject differences across muscles. Results showed significantly greater activation in the VL compared to all other muscles (p < 0.05; and ES of 1.28–3.17 versus all other muscles), with the TA also demonstrating higher activation than the BF (p < 0.05). The BF exhibited the lowest activation, suggesting limited hamstring engagement. These findings highlight the effectiveness of the multi-joint isokinetic eccentric leg press movement (via an Eccentron machine) in targeting the quadriceps and dorsiflexors, while indicating the possible need for supplementary hamstring and plantar flexor exercises when aiming for a comprehensive lower body training routine. This study provides important insights for optimizing eccentric training protocols and rehabilitation strategies. Full article
Show Figures

Figure 1

Back to TopTop