Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = blended precipitation datasets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6615 KB  
Article
Creation and Comparison of High-Resolution Daily Precipitation Gridded Datasets for Greece Using a Variety of Interpolation Techniques
by Giorgos Ntagkounakis, Panagiotis Nastos, John Kapsomenakis and Kostas Douvis
Hydrology 2025, 12(2), 31; https://doi.org/10.3390/hydrology12020031 - 10 Feb 2025
Viewed by 1093
Abstract
This study investigates a range of precipitation interpolation techniques with the objective of generating high-resolution gridded daily precipitation datasets for the Greek region. The study utilizes a comprehensive station dataset, incorporating geographical variables derived from satellite-based elevation data and integrating precipitation data from [...] Read more.
This study investigates a range of precipitation interpolation techniques with the objective of generating high-resolution gridded daily precipitation datasets for the Greek region. The study utilizes a comprehensive station dataset, incorporating geographical variables derived from satellite-based elevation data and integrating precipitation data from the ERA5 reanalysis. A total of three different modeling approaches are developed. Firstly, we utilize a General Additive Model in conjunction with an Indicator Kriging model using only station data and limited geographical variables. In the second iteration of the model, we blend ERA5 reanalysis data in the interpolation methodology and incorporate more geographical variables. Finally, we developed a novel modeling framework that integrates ERA5 data, a variety of geographical data, and a multi-model interpolation process which utilizes different models to predict precipitation at distinct thresholds. Our results show that using the ERA5 data can increase the accuracy of the interpolated precipitation when the station dataset used is sparse. Additionally, the implementation of multi-model interpolation techniques which use distinct models for different precipitation thresholds can improve the accuracy of precipitation and extreme precipitation modeling, addressing important limitations of previous modeling approaches. Full article
Show Figures

Figure 1

20 pages, 3073 KB  
Article
Successful Precipitation Downscaling Through an Innovative Transformer-Based Model
by Fan Yang, Qiaolin Ye, Kai Wang and Le Sun
Remote Sens. 2024, 16(22), 4292; https://doi.org/10.3390/rs16224292 - 18 Nov 2024
Cited by 3 | Viewed by 2132
Abstract
In this research, we introduce a novel method leveraging the Transformer architecture to generate high-fidelity precipitation model outputs. This technique emulates the statistical characteristics of high-resolution datasets while substantially lowering computational expenses. The core concept involves utilizing a blend of coarse and fine-grained [...] Read more.
In this research, we introduce a novel method leveraging the Transformer architecture to generate high-fidelity precipitation model outputs. This technique emulates the statistical characteristics of high-resolution datasets while substantially lowering computational expenses. The core concept involves utilizing a blend of coarse and fine-grained simulated precipitation data, encompassing diverse spatial resolutions and geospatial distributions, to instruct Transformer in the transformation process. We have crafted an innovative ST-Transformer encoder component that dynamically concentrates on various regions, allocating heightened focus to critical spatial zones or sectors. The module is capable of studying dependencies between different locations in the input sequence and modeling at different scales, which allows it to fully capture spatiotemporal correlations in meteorological element data, which is also not available in other downscaling methods. This tailored module is instrumental in enhancing the model’s ability to generate outcomes that are not only more realistic but also more consistent with physical laws. It adeptly mirrors the temporal and spatial distribution in precipitation data and adeptly represents extreme weather events, such as heavy and enduring storms. The efficacy and superiority of our proposed approach are substantiated through a comparative analysis with several cutting-edge forecasting techniques. This evaluation is conducted on two distinct datasets, each derived from simulations run by regional climate models over a period of 4 months. The datasets vary in their spatial resolutions, with one featuring a 50 km resolution and the other a 12 km resolution, both sourced from the Weather Research and Forecasting (WRF) Model. Full article
Show Figures

Figure 1

27 pages, 10360 KB  
Article
Soil Moisture-Derived SWDI at 30 m Based on Multiple Satellite Datasets for Agricultural Drought Monitoring
by Jing Ning, Yunjun Yao, Joshua B. Fisher, Yufu Li, Xiaotong Zhang, Bo Jiang, Jia Xu, Ruiyang Yu, Lu Liu, Xueyi Zhang, Zijing Xie, Jiahui Fan and Luna Zhang
Remote Sens. 2024, 16(18), 3372; https://doi.org/10.3390/rs16183372 - 11 Sep 2024
Cited by 2 | Viewed by 2580
Abstract
As a major agricultural hazard, drought frequently occurs due to a reduction in precipitation resulting in a continuously propagating soil moisture (SM) deficit. Assessment of the high spatial-resolution SM-derived drought index is crucial for monitoring agricultural drought. In this study, we generated a [...] Read more.
As a major agricultural hazard, drought frequently occurs due to a reduction in precipitation resulting in a continuously propagating soil moisture (SM) deficit. Assessment of the high spatial-resolution SM-derived drought index is crucial for monitoring agricultural drought. In this study, we generated a downscaled random forest SM dataset (RF-SM) and calculated the soil water deficit index (RF-SM-SWDI) at 30 m for agricultural drought monitoring. The results showed that the RF-SM dataset exhibited better consistency with in situ SM observations in the detection of extremes than did the SM products, including SMAP, SMOS, NCA-LDAS, and ESA CCI, for different land cover types in the U.S. and yielded a satisfactory performance, with the lowest root mean square error (RMSE, below 0.055 m3/m3) and the highest coefficient of determination (R2, above 0.8) for most observation networks, based on the number of sites. A vegetation health index (VHI), derived from a Landsat 8 optical remote sensing dataset, was also generated for comparison. The results illustrated that the RF-SM-SWDI and VHI exhibited high correlations (R ≥ 0.5) at approximately 70% of the stations. Furthermore, we mapped spatiotemporal drought monitoring indices in California. The RF-SM-SWDI provided drought conditions with more detailed spatial information than did the short-term drought blend (STDB) released by the U.S. Drought Monitor, which demonstrated the expected response of seasonal drought trends, while differences from the VHI were observed mainly in forest areas. Therefore, downscaled SM and SWDI, with a spatial resolution of 30 m, are promising for monitoring agricultural field drought within different contexts, and additional reliable factors could be incorporated to better guide agricultural management practices. Full article
(This article belongs to the Special Issue Quantitative Remote Sensing of Vegetation and Its Applications)
Show Figures

Figure 1

25 pages, 13456 KB  
Article
Optimizing Temporal Weighting Functions to Improve Rainfall Prediction Accuracy in Merged Numerical Weather Prediction Models for the Korean Peninsula
by Jongyun Byun, Hyeon-Joon Kim, Narae Kang, Jungsoo Yoon, Seokhwan Hwang and Changhyun Jun
Remote Sens. 2024, 16(16), 2904; https://doi.org/10.3390/rs16162904 - 8 Aug 2024
Viewed by 2209
Abstract
Accurate predictions are crucial for addressing the challenges posed by climate change. Given South Korea’s location within the East Asian summer monsoon domain, characterized by high spatiotemporal variability, enhancing prediction accuracy for regions experiencing heavy rainfall during the summer monsoon is essential. This [...] Read more.
Accurate predictions are crucial for addressing the challenges posed by climate change. Given South Korea’s location within the East Asian summer monsoon domain, characterized by high spatiotemporal variability, enhancing prediction accuracy for regions experiencing heavy rainfall during the summer monsoon is essential. This study aims to derive temporal weighting functions using hybrid surface rainfall radar-observation data as the target, with input from two forecast datasets: the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) and the KLAPS Forecast System. The results indicated that the variability in the optimized parameters closely mirrored the variability in the rainfall events, demonstrating a consistent pattern. Comparison with previous blending results, which employed event-type-based weighting functions, showed significant deviation in the average AUC (0.076) and the least deviation (0.029). The optimized temporal weighting function effectively mitigated the limitations associated with varying forecast lead times in individual datasets, with RMSE values of 0.884 for the 1 h lead time of KLFS and 2.295 for the 4–6 h lead time of MAPLE. This blending methodology, incorporating temporal weighting functions, considers the temporal patterns in various forecast datasets, markedly reducing computational cost while addressing the temporal challenges of existing forecast data. Full article
Show Figures

Figure 1

17 pages, 6769 KB  
Article
Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data
by Yun-Lan Chen, Chia-Rong Chen and Pingping Xie
Atmosphere 2023, 14(2), 342; https://doi.org/10.3390/atmos14020342 - 8 Feb 2023
Cited by 1 | Viewed by 2188
Abstract
An Infrared (IR)-passive microwave (PMW) blended technique is developed to derive precipitation estimates over the Asia-Pacific domain through calibrating the temperature of brightness blackbody from the Japanese Himawari-8 satellite to precipitation derived from the combined PMW retrievals (currently MWCOMB2x) based on the probability [...] Read more.
An Infrared (IR)-passive microwave (PMW) blended technique is developed to derive precipitation estimates over the Asia-Pacific domain through calibrating the temperature of brightness blackbody from the Japanese Himawari-8 satellite to precipitation derived from the combined PMW retrievals (currently MWCOMB2x) based on the probability density function (PDF)-matching concept. Called IRQPE, the technique is modified and fine-tuned to better represent the spatially rapidly changing cloud–precipitation relationship over the target region with PDF-matching tables established over a refined spatial resolution of 0.5° lat/lon grid. The evaluation of the IRQPE shows broadly comparable performance to that of the CMORPH2 in detecting rainfall systems of large and medium-scales at a resolution of 1.0° degree. Rainfall variations from the two datasets over El Niño-Southern Oscillation and the Madden Julian Oscillation active convective centers show well consistency of each other, suggesting usefulness of the IRQPE in climate applications. Two approaches for regional improvements are explored by establishing the PDF tables for a further refined spatial resolution and by replacing the PMW-based precipitation ‘truth’ fields with the surface gauge data to overcome the shortcoming of PMW-based retrievals in capturing orographic rainfall over the Taiwan area. The results show significant improvements. The rainfall patterns of revised the IRQPE at a resolution of 0.1° degree on above the 5-day timescale correlate well with the Taiwan official surface ground truth called the QPESUMS, which is a gridded set of gauge-corrected Radar quantitative precipitation estimations. The root mean square error of the revised IRQPE on estimating the Taiwan overall land rainfall is close to Radar-derived rainfall accumulations on a 30-day time-scale. Full article
Show Figures

Figure 1

24 pages, 5627 KB  
Article
A Two-Step Approach to Blending GSMaP Satellite Rainfall Estimates with Gauge Observations over Australia
by Zhi-Weng Chua, Yuriy Kuleshov, Andrew B. Watkins, Suelynn Choy and Chayn Sun
Remote Sens. 2022, 14(8), 1903; https://doi.org/10.3390/rs14081903 - 14 Apr 2022
Cited by 16 | Viewed by 2919
Abstract
An approach to developing a blended satellite-rainfall dataset over Australia that could be suitable for operational use is presented. In this study, Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates were blended with station-based rain gauge data over Australia, using operational station [...] Read more.
An approach to developing a blended satellite-rainfall dataset over Australia that could be suitable for operational use is presented. In this study, Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates were blended with station-based rain gauge data over Australia, using operational station data that has not been harnessed by other blended products. A two-step method was utilized. First, GSMaP satellite precipitation estimates were adjusted using rain gauge data through multiplicative ratios that were gridded using ordinary kriging. This step resulted in reducing dry biases, especially over topography. The adjusted GSMaP data was then blended with the Australian Gridded Climate Dataset (AGCD) rainfall analysis, an operational station-based gridded rain gauge dataset, using an inverse error variance weighting method to further remove biases. A validation that was performed using a 20-year range (2001 to 2020) showed the proposed approach was successful; the resulting blended dataset displayed superior performance compared to other non-gauge-based datasets with respect to stations as well as displaying more realistic patterns of rainfall than the AGCD in areas with no rain gauges. The average mean absolute error (MAE) against station data was reduced from 0.89 to 0.31. The greatest bias reductions were obtained for extreme precipitation totals and over mountainous regions, provided sufficient rain gauge availability. The newly produced dataset supported the identification of a general positive bias in the AGCD over the north-west interior of Australia. Full article
(This article belongs to the Special Issue Remote Sensing for Precipitation Retrievals)
Show Figures

Figure 1

16 pages, 13621 KB  
Article
Improved Monitoring and Assessment of Meteorological Drought Based on Multi-Source Fused Precipitation Data
by Si Chen, Qi Li, Wushuang Zhong, Run Wang, Dong Chen and Shihan Pan
Int. J. Environ. Res. Public Health 2022, 19(3), 1542; https://doi.org/10.3390/ijerph19031542 - 29 Jan 2022
Cited by 15 | Viewed by 3506
Abstract
Meteorological drought, one of the most frequent climate-related disasters, causes great danger for human health and socioeconomic development. With an aim to improve the accuracy of meteorological drought monitoring, this study collected multi-source remotely-sensed precipitation products, i.e., the Tropical Rainfall Measuring Mission (TRMM), [...] Read more.
Meteorological drought, one of the most frequent climate-related disasters, causes great danger for human health and socioeconomic development. With an aim to improve the accuracy of meteorological drought monitoring, this study collected multi-source remotely-sensed precipitation products, i.e., the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement Mission (GPM), and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), and compared their performance over Hubei Province, China. The geographic difference analysis was used to blend the best-fitted product with gauged precipitation data. Based on the fused dataset with verification, the spatio-temporal characteristics of drought were investigated. Results showed that GPM performed the best in precipitation numerical evaluation and event detection with a 5 mm/d threshold. The fused data accurately captured 80% of historical drought events and indicated that extreme annual droughts mainly occurred in the northern and northwestern regions, while slight, moderate, and severe droughts mainly occurred in the central and eastern parts. The short-term drought exhibited the highest frequency of 33% in summer and the lowest frequency of 27% in spring, while the medium-term drought showed a higher frequency in autumn and winter. This could be a preliminary assessment of drought based on multi-source fused precipitation data for precise drought outlook and risk management. Full article
Show Figures

Figure 1

21 pages, 2830 KB  
Article
A Comparison of Various Correction and Blending Techniques for Creating an Improved Satellite-Gauge Rainfall Dataset over Australia
by Zhi-Weng Chua, Yuriy Kuleshov, Andrew B. Watkins, Suelynn Choy and Chayn Sun
Remote Sens. 2022, 14(2), 261; https://doi.org/10.3390/rs14020261 - 7 Jan 2022
Cited by 16 | Viewed by 3177
Abstract
Satellites offer a way of estimating rainfall away from rain gauges which can be utilised to overcome the limitations imposed by gauge density on traditional rain gauge analyses. In this study, Australian station data along with the Japan Aerospace Exploration Agency’s (JAXA) Global [...] Read more.
Satellites offer a way of estimating rainfall away from rain gauges which can be utilised to overcome the limitations imposed by gauge density on traditional rain gauge analyses. In this study, Australian station data along with the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) and the Bureau of Meteorology’s (BOM) Australian Gridded Climate Dataset (AGCD) rainfall analysis are combined to develop an improved satellite-gauge rainfall analysis over Australia that uses the strengths of the respective data sources. We investigated a variety of correction and blending methods with the aim of identifying the optimal blended dataset. The correction methods investigated were linear corrections to totals and anomalies, in addition to quantile-to-quantile matching. The blending methods tested used weights based on the error variance to MSWEP (Multi-Source Weighted Ensemble Product), distance to the closest gauge, and the error from a triple collocation analysis to ERA5 and Soil Moisture to Rain. A trade-off between away-from- and at-station performances was found, meaning there was a complementary nature between specific correction and blending methods. The most high-performance dataset was one corrected linearly to totals and subsequently blended to AGCD using an inverse error variance technique. This dataset demonstrated improved accuracy over its previous version, largely rectifying erroneous patches of excessive rainfall. Its modular use of individual datasets leads to potential applicability in other regions of the world. Full article
Show Figures

Graphical abstract

20 pages, 8973 KB  
Article
Evaluation of Eight Global Precipitation Datasets in Hydrological Modeling
by Yiheng Xiang, Jie Chen, Lu Li, Tao Peng and Zhiyuan Yin
Remote Sens. 2021, 13(14), 2831; https://doi.org/10.3390/rs13142831 - 19 Jul 2021
Cited by 38 | Viewed by 4924
Abstract
The number of global precipitation datasets (PPs) is on the rise and they are commonly used for hydrological applications. A comprehensive evaluation on their performance in hydrological modeling is required to improve their performance. This study comprehensively evaluates the performance of eight widely [...] Read more.
The number of global precipitation datasets (PPs) is on the rise and they are commonly used for hydrological applications. A comprehensive evaluation on their performance in hydrological modeling is required to improve their performance. This study comprehensively evaluates the performance of eight widely used PPs in hydrological modeling by comparing with gauge-observed precipitation for a large number of catchments. These PPs include the Global Precipitation Climatology Centre (GPCC), Climate Hazards Group Infrared Precipitation with Station dataset (CHIRPS) V2.0, Climate Prediction Center Morphing Gauge Blended dataset (CMORPH BLD), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN CDR), Tropical Rainfall Measuring Mission multi-satellite Precipitation Analysis 3B42RT (TMPA 3B42RT), Multi-Source Weighted-Ensemble Precipitation (MSWEP V2.0), European Center for Medium-range Weather Forecast Reanalysis 5 (ERA5) and WATCH Forcing Data methodology applied to ERA-Interim Data (WFDEI). Specifically, the evaluation is conducted over 1382 catchments in China, Europe and North America for the 1998-2015 period at a daily temporal scale. The reliabilities of PPs in hydrological modeling are evaluated with a calibrated hydrological model using rain gauge observations. The effectiveness of PPs-specific calibration and bias correction in hydrological modeling performances are also investigated for all PPs. The results show that: (1) compared with the rain gauge observations, GPCC provides the best performance overall, followed by MSWEP V2.0; (2) among the eight PPs, the ones incorporating daily gauge data (MSWEP V2.0 and CMORPH BLD) provide superior hydrological performance, followed by those incorporating 5-day (CHIRPS V2.0) and monthly (TMPA 3B42RT, WFDEI, and PERSIANN CDR) gauge data. MSWEP V2.0 and CMORPH BLD perform better than GPCC, underscoring the effectiveness of merging multiple satellite and reanalysis datasets; (3) regionally, all PPs exhibit better performances in temperate regions than in arid or topographically complex mountainous regions; and (4) PPs-specific calibration and bias correction both can improve the streamflow simulations for all eight PPs in terms of the Nash and Sutcliffe efficiency and the absolute bias. This study provides insights on the reliabilities of PPs in hydrological modeling and the approaches to improve their performance, which is expected to provide a reference for the applications of global precipitation datasets. Full article
Show Figures

Figure 1

31 pages, 6205 KB  
Article
A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm
by Khalil Ur Rahman and Songhao Shang
Remote Sens. 2020, 12(24), 4009; https://doi.org/10.3390/rs12244009 - 8 Dec 2020
Cited by 8 | Viewed by 3763
Abstract
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average [...] Read more.
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average least squares (WALS) algorithm from 2007 to 2018 with 0.25° spatial resolution and one-day temporal resolution. Several SPDs, including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42-v7, Precipitation Estimates from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), ERA-Interim (reanalysis dataset), SM2RAIN-CCI, and SM2RAIN-ASCAT are evaluated to select appropriate blending SPDs in different climate regions. Six statistical indices, including mean bias (MB), mean absolute error (MAE), unbiased root mean square error (ubRMSE), correlation coefficient (R), Kling–Gupta efficiency (KGE), and Theil’s U coefficient, are used to assess the WALS-RBPD performance over 102 rain gauges (RGs) in Pakistan. The results showed that WALS-RBPD had assigned higher weights to IMERG in the glacial, humid, and arid regions, while SM2RAIN-ASCAT had higher weights across the hyper-arid region. The average weights of IMERG (SM2RAIN-ASCAT) are 29.03% (23.90%), 30.12% (24.19%), 31.30% (27.84%), and 27.65% (32.02%) across glacial, humid, arid, and hyper-arid regions, respectively. IMERG dominated monsoon and pre-monsoon seasons with average weights of 34.87% and 31.70%, while SM2RAIN-ASCAT depicted high performance during post-monsoon and winter seasons with average weights of 37.03% and 38.69%, respectively. Spatial scale evaluation of WALS-RPBD resulted in relatively poorer performance at high altitudes (glacial and humid regions), whereas better performance in plain areas (arid and hyper-arid regions). Moreover, temporal scale performance assessment depicted poorer performance during intense precipitation seasons (monsoon and pre-monsoon) as compared with post-monsoon and winter seasons. Skill scores are used to quantify the improvements of WALS-RBPD against previously developed blended precipitation datasets (BPDs) based on WALS (WALS-BPD), dynamic clustered Bayesian model averaging (DCBA-BPD), and dynamic Bayesian model averaging (DBMA-BPD). On the one hand, skill scores show relatively low improvements of WALS-RBPD against WALS-BPD, where maximum improvements are observed in glacial (humid) regions with skill scores of 29.89% (28.69%) in MAE, 27.25% (23.89%) in ubRMSE, and 24.37% (28.95%) in MB. On the other hand, the highest improvements are observed against DBMA-BPD with average improvements across glacial (humid) regions of 39.74% (36.93%), 38.27% (33.06%), and 39.16% (30.47%) in MB, MAE, and ubRMSE, respectively. It is recommended that the development of RBPDs can be a potential alternative for data-scarce regions and areas with complex topography. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Graphical abstract

33 pages, 6282 KB  
Article
Evaluation of Multi-Satellite Precipitation Datasets and Their Error Propagation in Hydrological Modeling in a Monsoon-Prone Region
by Jie Chen, Ziyi Li, Lu Li, Jialing Wang, Wenyan Qi, Chong-Yu Xu and Jong-Suk Kim
Remote Sens. 2020, 12(21), 3550; https://doi.org/10.3390/rs12213550 - 30 Oct 2020
Cited by 28 | Viewed by 3973
Abstract
This study comprehensively evaluates eight satellite-based precipitation datasets in streamflow simulations on a monsoon-climate watershed in China. Two mutually independent datasets—one dense-gauge and one gauge-interpolated dataset—are used as references because commonly used gauge-interpolated datasets may be biased and unable to reflect the real [...] Read more.
This study comprehensively evaluates eight satellite-based precipitation datasets in streamflow simulations on a monsoon-climate watershed in China. Two mutually independent datasets—one dense-gauge and one gauge-interpolated dataset—are used as references because commonly used gauge-interpolated datasets may be biased and unable to reflect the real performance of satellite-based precipitation due to sparse networks. The dense-gauge dataset includes a substantial number of gauges, which can better represent the spatial variability of precipitation. Eight satellite-based precipitation datasets include two raw satellite datasets, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Prediction Center MORPHing raw satellite dataset (CMORPH RAW); four satellite-gauge datasets, Tropical Rainfall Measuring Mission 3B42 (TRMM), PERSIANN Climate Data Record (PERSIANN CDR), CMORPH bias-corrected (CMORPH CRT), and gauge blended datasets (CMORPH BLD); and two satellite-reanalysis-gauge datasets, Multi-Source Weighted-Ensemble Precipitation (MSWEP) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS). The uncertainty related to hydrologic model physics is investigated using two different hydrological models. A set of statistical indices is utilized to comprehensively evaluate the precipitation datasets from different perspectives, including detection, systematic, random errors, and precision for simulating extreme precipitation. Results show that CMORPH BLD and MSWEP generally perform better than other datasets. In terms of hydrological simulations, all satellite-based datasets show significant dampening effects for the random error during the transformation process from precipitation to runoff; however, these effects cannot hold for the systematic error. Even though different hydrological models indeed introduce uncertainties to the simulated hydrological processes, the relative hydrological performance of the satellite-based datasets is consistent in both models. Namely, CMORPH BLD performs the best, which is followed by MSWEP, CMORPH CRT, and TRMM. PERSIANN CDR and CHIRPS perform moderately well, and two raw satellite datasets are not recommended as proxies of gauged observations for their worse performances. Full article
(This article belongs to the Special Issue Remote Sensing of Hydro-Meteorology)
Show Figures

Graphical abstract

23 pages, 12284 KB  
Article
The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones
by Christos Stathopoulos, Platon Patlakas, Christos Tsalis and George Kallos
Remote Sens. 2020, 12(5), 825; https://doi.org/10.3390/rs12050825 - 3 Mar 2020
Cited by 24 | Viewed by 4572
Abstract
Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge [...] Read more.
Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge and representation of the sea surface temperature (SST). In this work, an analysis of the impact and uncertainty of the SST from different well-known datasets on the life-cycle of Mediterranean cyclones is attempted. Daily SST from the Real Time Global SST (RTG_SST) and hourly SST fields from the Operational SST and Sea Ice Ocean Analysis (OSTIA) and the NEMO ocean circulation model are implemented in the RAMS/ICLAMS-WAM coupled modeling system. For the needs of the study, the Mediterranean cyclones Trixi, Numa, and Zorbas were selected. Numerical experiments covered all stages of their life-cycles (five to seven days). Model results have been analyzed in terms of storm tracks and intensities, cyclonic structural characteristics, and derived heat fluxes. Remote sensing data from the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurements (GPM), Blended Sea Winds, and JASON altimetry missions were employed for a qualitative and quantitative comparison of modeled results in precipitation, maximum surface wind speed, and wave height. Spatiotemporal deviations in the SST forcing rather than significant differences in the maximum/minimum SST values, seem to mainly contribute to the differences between the model results. Considerable deviations emerged in the resulting heat fluxes, while the most important differences were found in precipitation exhibiting spatial and intensity variations reaching 100 mm. The employment of widely used products is shown to result in different outcomes and this point should be taken into consideration in forecasting and early warning systems. Full article
(This article belongs to the Special Issue Weather Forecasting and Modeling Using Satellite Data)
Show Figures

Figure 1

18 pages, 7896 KB  
Article
Evaluation of Remotely Sensed and Interpolated Environmental Datasets for Vector-Borne Disease Monitoring Using In Situ Observations over the Amhara Region, Ethiopia
by Woubet G. Alemu and Michael C. Wimberly
Sensors 2020, 20(5), 1316; https://doi.org/10.3390/s20051316 - 28 Feb 2020
Cited by 12 | Viewed by 4845
Abstract
Despite the sparse distribution of meteorological stations and issues with missing data, vector-borne disease studies in Ethiopia have been commonly conducted based on the relationships between these diseases and ground-based in situ measurements of climate variation. High temporal and spatial resolution satellite-based remote-sensing [...] Read more.
Despite the sparse distribution of meteorological stations and issues with missing data, vector-borne disease studies in Ethiopia have been commonly conducted based on the relationships between these diseases and ground-based in situ measurements of climate variation. High temporal and spatial resolution satellite-based remote-sensing data is a potential alternative to address this problem. In this study, we evaluated the accuracy of daily gridded temperature and rainfall datasets obtained from satellite remote sensing or spatial interpolation of ground-based observations in relation to data from 22 meteorological stations in Amhara Region, Ethiopia, for 2003–2016. Famine Early Warning Systems Network (FEWS-Net) Land Data Assimilation System (FLDAS) interpolated temperature showed the lowest bias (mean error (ME) ≈ 1–3 °C), and error (mean absolute error (MAE) ≈ 1–3 °C), and the highest correlation with day-to-day variability of station temperature (COR ≈ 0.7–0.8). In contrast, temperature retrievals from the blended Advanced Microwave Scanning Radiometer on Earth Observing Satellite (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) passive microwave and Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature data had higher bias and error. Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) rainfall showed the least bias and error (ME ≈ −0.2–0.2 mm, MAE ≈ 0.5–2 mm), and the best agreement (COR ≈ 0.8), with station rainfall data. In contrast FLDAS had the higher bias and error and the lowest agreement and Global Precipitation Mission/Tropical Rainfall Measurement Mission (GPM/TRMM) data were intermediate. This information can inform the selection of geospatial data products for use in climate and disease research and applications. Full article
Show Figures

Graphical abstract

26 pages, 10936 KB  
Article
Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data?
by Lei Bai, Yuanqiao Wen, Chunxiang Shi, Yanfen Yang, Fan Zhang, Jing Wu, Junxia Gu, Yang Pan, Shuai Sun and Junyao Meng
Remote Sens. 2020, 12(4), 683; https://doi.org/10.3390/rs12040683 - 19 Feb 2020
Cited by 32 | Viewed by 4504
Abstract
Precipitation serves as a crucial factor in the study of hydrometeorology, ecology, and the atmosphere. Gridded precipitation data are available from a multitude of sources including precipitation retrieved by satellites, radar, the output of numerical weather prediction models, and extrapolation by ground rain [...] Read more.
Precipitation serves as a crucial factor in the study of hydrometeorology, ecology, and the atmosphere. Gridded precipitation data are available from a multitude of sources including precipitation retrieved by satellites, radar, the output of numerical weather prediction models, and extrapolation by ground rain gauge data. Evaluating different types of products in ungauged regions with complex terrain will not only help researchers in applying scientific data, but also provide useful information that can be used to improve gridded precipitation products. The present study aims to evaluate comprehensively 12 precipitation datasets made by raw retrieved products, blended with rain gauge data, and blended multiple source datasets in multi-temporal scales in order to develop a suitable method for creating gridded precipitation data in regions with snow-dominated regions with complex terrain. The results show that the Multi-Source Weighted-Ensemble Precipitation (MSWEP), Global Satellite Mapping of Precipitation with Gauge Adjusted (GSMaP_GAUGE), Tropical Rainfall Measuring Mission (TRMM_3B42), Climate Prediction Center Morphing Technique blended with Chinese observations (CMORPH_SUN), and Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) can represent the spatial pattern of precipitation in arid/semi-arid and humid/semi-humid areas of the Qinghai-Tibet Plateau on a climatological spatial pattern. On interannual, seasonal, and monthly scales, the TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP outperformed the other products. In general, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN_CCS) has poor performance in basins of the Qinghai-Tibet Plateau. Most products overestimated the extreme indices of the 99th percentile of precipitation (R99), the maximal of daily precipitation in a year (Rmax), and the maximal of pentad accumulation of precipitation in a year (R5dmax). They were underestimated by the extreme index of the total number of days with daily precipitation less than 1 mm (dry day, DD). Compared to products blended with rain gauge data only, MSWEP blended with more data sources, and outperformed the other products. Therefore, multi-sources of blended precipitation should be the hotspot of regional and global precipitation research in the future. Full article
Show Figures

Graphical abstract

17 pages, 9139 KB  
Article
Evaluation of Satellite Precipitation Estimates over Australia
by Zhi-Weng Chua, Yuriy Kuleshov and Andrew Watkins
Remote Sens. 2020, 12(4), 678; https://doi.org/10.3390/rs12040678 - 19 Feb 2020
Cited by 46 | Viewed by 6431
Abstract
This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to [...] Read more.
This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed on a monthly time scale and used both point and gridded rain gauge data as the reference dataset. Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia and that gauge-blending yielded a notable increase in performance. Dependencies of performance on geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation detection was reduced in areas of elevated topography and where cold frontal rainfall was the main precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill. In terms of seasons, the performance was relatively similar across the year, with austral summer (DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts (2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were evaluated as useful sources of satellite precipitation estimates over Australia. Full article
Show Figures

Graphical abstract

Back to TopTop