Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Data
2.2. IRQPE Algorithm
- Precipitation comes from tall clouds with cold cloud top temperature (TBB); and
- The taller the cloud, the colder the cloud top temperature, and the heavier the precipitation.
- Time/space collocated TBB/MWCOMB2x data pairs collected.
- Histograms for TBB and MWCOMB2x assembled for each 0.5° lat/lon and for each hour.
- PDF tables (cumulated histogram) constructed for each hour and for each 0.5° lat/lon using histograms for a 7-h duration centering at the target hour, for a 31-day period centering at the target date, and over a spatial domain of 1.5° lat/lon centering at the target grid box.
- The data (histogram) collecting domain is expanded until at least a certain number of pairs (2000 is set in this study) of raining cases are included.
- The established PDF tables are then converted to a TBB–precipitation relationship, assuming TBB at a certain percentile is associated with precipitation at the same percentile.
2.3. Three Sets of IRQPE Experimented in This Study
3. Results
3.1. The Verification and Climate Applications of IRQPE
3.2. Regional Improvement of IRQPE
3.3. Improvements of IRQPE over Taiwan Region by Incorporating Local Surface Data
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arkin, P.A.; Meisner, B.N. The Relationship between Large Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during1982–1984. Mon. Weather Rev. 1979, 106, 1153–1171. [Google Scholar]
- Arkin, P.A.; Ardanuy, P.E. Estimating climatic-scale precipitation from space: A review. J. Clim. 1989, 2, 1229–1238. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.A.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Arkin, P.A. The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Weather Rev. 1987, 115, 51–74. [Google Scholar] [CrossRef]
- Adler, R.F.; Negri, A.J. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol. 1988, 27, 30–51. [Google Scholar] [CrossRef]
- Vicente, G.A. Hourly Retrieval of Precipitation Rate from the Combination of Passive Microwave and Infrared Satellite Radiometric Measurements. Ph.D. Thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, WI, USA, 1994. [Google Scholar]
- Liu, G.; Curry, J.A.; Sheu, R.S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data. J. Geophys. Res. 1995, 100D, 13811–13826. [Google Scholar] [CrossRef]
- Kuligowski, R.J.; Li, Y.; Hao, Y.; Zhang, Y. Improvements to the GOES-R rainfall rate algorithm. J. Hydrometeorol. 2016, 17, 1693–1704. [Google Scholar] [CrossRef]
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. Clim. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; Agha Kouchak, A.; Brathwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef]
- Kuligowski, R.J. A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeorol. 2002, 3, 112–130. [Google Scholar] [CrossRef]
- Turk, J.T.; Mostovoy, G.V.; Anantharaj, V. The NRL-Blend High Resolution Precipitation Product and Its Application to Land Surface Hydrology. In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 85–104. [Google Scholar]
- Todd, M.C.; Kidd, C.; Kniveton, D.; Bellerby, T.J. A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol. 2001, 18, 742–755. [Google Scholar] [CrossRef]
- Kirstetter, P.E.; Karbalaee, N.; Hsu, K.; Hong, Y. Probabilistic precipitation rate estimates with space-based infrared sensors. Q. J. R. Meteorol. Soc. 2018, 144, 191–205. [Google Scholar] [CrossRef]
- D’Adderio, L.P.; Puca, S.; Vulpiani, G.; Petracca, M.; Sanò, P.; Dietrich, S. RAINBOW: An Operational Oriented Combined IR-Algorithm. Remote Sens. 2020, 12, 2444. [Google Scholar] [CrossRef]
- Hsu, K.-L.; Karbalee, N.; Braithwaite, D. Improving PERSIANN-CCS Using Passive Microwave Rainfall Estimation. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 375–391. [Google Scholar]
- Ferraro, R.R. SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res. 1997, 102, 16715–16735. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K.; Chen, W.C.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.Y.; Liu, Q.H.; Yan, B.; Weng, F.Z.; et al. MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System. IEEE Trans. Geosci. Rem. Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.; Ferraro, R.; Joseph Munchak, S.; Petković, V. The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Phillip, A.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.J.; Wu, S.; Yoo, S.H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document (ATBD); NASA/GSFC: Greenbelt, MD, USA, 2014. [Google Scholar]
- Kubota, T.; Aonashi, K.; Kachi, M.; Ushio, T.; Shige, S.; Takayaby, Y.N.; Oki, R. Global satellite mapping of precipitation (GSMaP). In Satellite Precipitation Measurement; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Xie, P.; Joyce, R.; Wu, S. Second Generation CMORPH: Real-time production. In Proceedings of the 2018 AGU Fall Meetings, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Chang, P.-L.; Zhang, J.; Tang, Y.-S.; Tang, L.; Lin, P.-F.; Langston, C.; Kaney, B.; Chen, C.-R.; Howard, K. An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bull. Am. Meteorol. Soc. 2021, 102, E555–E577. [Google Scholar] [CrossRef]
- Chen, Y.L.; Sui, C.H.; Chang, C.P.; Tseng, K.C. Effect of the MJO on East Asian winter rainfall as revealed by an SVD analysis. J. Clim. 2021, 34, 9729–9746. [Google Scholar] [CrossRef]
- He, J.; Lin, H.; Wu, Z. Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather. J. Geophys. Res. Atmos. 2011, 116, D03109. [Google Scholar] [CrossRef]
- Upadhyaya, S.A.; Kirstetter, P.E.; Gourley, J.J.; Kuligowski, R.J. On the Propagation of Satellite Precipitation Estimation Errors: From Passive Microwave to Infrared Estimates. Estimates. J. Hydrometeorol. 2020, 21, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
30-Day Rainfall | Tropics | Sub-Tropics | Mid-Latitude |
---|---|---|---|
JFM | 0.962 | 0.928 | 0.929 |
AMJ | 0.962 | 0.970 | 0.925 |
JAS | 0.975 | 0.970 | 0.969 |
OND | 0.974 | 0.972 | 0.937 |
10-day rainfall | Tropics | Sub-Tropics | Mid-Latitude |
JFM | 0.936 | 0.891 | 0.851 |
AMJ | 0.939 | 0.939 | 0.872 |
JAS | 0.943 | 0.945 | 0.929 |
OND | 0.944 | 0.948 | 0.874 |
5-day rainfall | Tropics | Sub-Tropics | Mid-Latitude |
JFM | 0.904 | 0.853 | 0.762 |
AMJ | 0.919 | 0.913 | 0.819 |
JAS | 0.916 | 0.921 | 0.890 |
OND | 0.920 | 0.925 | 0.809 |
1-day rainfall | Tropics | Sub-Tropics | Mid-Latitude |
JFM | 0.871 | 0.792 | 0.711 |
AMJ | 0.888 | 0.861 | 0.758 |
JAS | 0.886 | 0.881 | 0.837 |
OND | 0.889 | 0.893 | 0.754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-L.; Chen, C.-R.; Xie, P. Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data. Atmosphere 2023, 14, 342. https://doi.org/10.3390/atmos14020342
Chen Y-L, Chen C-R, Xie P. Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data. Atmosphere. 2023; 14(2):342. https://doi.org/10.3390/atmos14020342
Chicago/Turabian StyleChen, Yun-Lan, Chia-Rong Chen, and Pingping Xie. 2023. "Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data" Atmosphere 14, no. 2: 342. https://doi.org/10.3390/atmos14020342
APA StyleChen, Y. -L., Chen, C. -R., & Xie, P. (2023). Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data. Atmosphere, 14(2), 342. https://doi.org/10.3390/atmos14020342