Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = bis(trifluoromethanesulfonyl)imide (TFSI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4279 KiB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 318
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

11 pages, 27459 KiB  
Article
Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity
by Guihong Lyu, Carsten Korte and Jiangshui Luo
Materials 2025, 18(9), 2048; https://doi.org/10.3390/ma18092048 - 30 Apr 2025
Viewed by 552
Abstract
In this work, we present a study on the thermal/transport properties of a novel deep eutectic solvent (DES) obtained by using N-methyltrifluoroacetamide (FNMA) as the hydrogen bond donor (HBD) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the hydrogen bond acceptor (HBA). The binary phase diagram, [...] Read more.
In this work, we present a study on the thermal/transport properties of a novel deep eutectic solvent (DES) obtained by using N-methyltrifluoroacetamide (FNMA) as the hydrogen bond donor (HBD) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the hydrogen bond acceptor (HBA). The binary phase diagram, thermal stability, flammability, viscosity and ionic conductivity of the as-prepared DESs were investigated at atmospheric pressure. The binary phase diagram shows a range of eutectic molar ratios (xLiTFSI = 0.2~0.33), with the lowest deep eutectic temperature of −84 °C. At xLiTFSI = 0.2 (i.e., FNMA:LiTFSI = 4:1 and denoted as DES-4:1). The as-prepared DES composition exhibits high thermal stability (onset temperature of weight loss = 78 °C), a low viscosity (η = 48.9 mPa s at 25 °C), relatively high ionic conductivity (σ = 0.86 mS cm−1 at 25 °C) and non-flammability. The transport properties, including ionic conductivity and viscosity, as a function of temperature are in accordance with the Vogel–Fulcher–Tammann (VFT) equations. With increasing molar ratio of HBD vs. HBA, the viscosity decreases, and the ionic conductivity increases at a given temperature between 25 °C and 80 °C. The roughly equal pseudo-activation energies for ion transport and viscous flow in each composition imply a strong coupling of ion transport and viscous flow. Walden plots indicate vehicular transport as the main ion transport mechanism for the DES-4:1 and DES-3:1 compositions; meanwhile, it was confirmed that the ionic conductivity and viscous flow are strictly coupled. The present work is expected to provide strategies for the development of wide-temperature-range and safer electrolytes with low salt concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Figure 1

15 pages, 3379 KiB  
Article
Designing Pyrrolidinium-Based Ionic Liquid Electrolytes for Energy Storage: Thermal and Electrical Behaviour of Ternary Mixtures with Lithium Salt and Carbonates
by Antía Santiago-Alonso, José M. Sánchez-Pico, Raquel San Emeterio, María Villanueva, Juan José Parajó and Josefa Salgado
Appl. Sci. 2025, 15(8), 4354; https://doi.org/10.3390/app15084354 - 15 Apr 2025
Viewed by 494
Abstract
Ionic liquids (ILs) have attracted increasing attention due to their unique physicochemical properties. Among them, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, emerges as an ideal candidate for fundamental studies in electrochemical applications. This work aims to deepen the understanding of its conductivity performance, and potential interaction with [...] Read more.
Ionic liquids (ILs) have attracted increasing attention due to their unique physicochemical properties. Among them, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, emerges as an ideal candidate for fundamental studies in electrochemical applications. This work aims to deepen the understanding of its conductivity performance, and potential interaction with added metal salts, providing insight into its applicability in advanced energy storage systems. Firstly, binary mixtures with ethylene carbonate have been prepared to improve the transport properties and select the optimal concentration of both components. Subsequently, lithium salt was added to design the adequate electrolyte. The thermal and electrochemical characterisation of these mixtures was performed by differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and Broad Band Dielectric Spectroscopy (BBDS). The results reveal a wide liquid range for the ternary systems studied, extending below −80 °C and above 120 °C. Additionally, they exhibit notably high conductivity values at room temperature (ranging from 0.2 S·m−1 for the most concentrated to 0.70 S·m−1 for the lowest concentrated), which highlights their suitability for advanced electrochemical applications, including but not limited to batteries. This extended liquid phase mitigates, or potentially eliminates, some of the most common issues associated with current electrolytes, such as undesired crystallisation at low temperatures. In this paper, a new promising electrolyte, consisting of a ternary mixture obtained by adding lithium salt to the eutectic composition of [C3C1Pyrr][TFSI] and ethyl carbonate is proposed. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

19 pages, 5627 KiB  
Article
Chemically Polymerized Polypyrrole on Glucose-Porcine Skin Gelatin Nanofiber as Multifunctional Electrochemical Actuator-Sensor-Capacitor
by Rudolf Kiefer, Toribio F. Otero, Madis Harjo and Quoc Bao Le
Polymers 2025, 17(5), 631; https://doi.org/10.3390/polym17050631 - 26 Feb 2025
Cited by 1 | Viewed by 932
Abstract
Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose–porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of [...] Read more.
Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose–porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of composites. The isometric and isotonic characterizations by electro-chemo-mechanical deformation (ECMD) of NFS-PPy are obtained from cyclic voltammetric and chronoamperometric responses in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium triflouromethanesulfonate (LiTF) and sodium perchlorate (NaClO4) in propylene carbonate (PC). The results indicate a prevalent anion-driven actuation of the linear actuator (expansion by oxidation and contraction by reduction). Different stress (4–2 kPa) and strain (0.7–0.4%) gradients are a function of the anion Van der Waals volume. During reversible actuation (expansion/contraction), the material stores/releases energy, obtaining greater specific capacitance, 68 F g−1, in LiTFSI solutions, keeping 82% of this capacity after 2000 cycles. The sensitivity (the slope of the linear sensing equation) is a characteristic of the exchanged anion. The reaction of the PPy-coated nanofiber is multifunctional, developing simultaneous actuation, sensing, and energy storage. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Full article
(This article belongs to the Special Issue Functional Hybrid Polymeric Composites, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 5157 KiB  
Article
Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
by Kevin Vattappara, Martin Finsterbusch, Dina Fattakhova-Rohlfing, Idoia Urdampilleta and Andriy Kvasha
Batteries 2025, 11(2), 42; https://doi.org/10.3390/batteries11020042 - 21 Jan 2025
Viewed by 2064
Abstract
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a [...] Read more.
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators. Full article
Show Figures

Figure 1

12 pages, 4353 KiB  
Article
A Flexible Yet Robust 3D-Hybrid Gel Solid-State Electrolyte Based on Metal–Organic Frameworks for Rechargeable Lithium Metal Batteries
by Ruliang Liu, Jiaqi Xue, Lijun Xie, Huirong Chen, Zhaoxia Deng and Wei Yin
Gels 2024, 10(12), 812; https://doi.org/10.3390/gels10120812 - 10 Dec 2024
Cited by 2 | Viewed by 1015
Abstract
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal–organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte [...] Read more.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal–organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF). Benefiting from the excellent mechanical properties, rich pore structure, and numerous unsaturated metal sites of GCSE-P/MCN-M, our GCSE-P/MCN-M exhibits excellent mechanical modulus (953 MPa), good ionic conductivity (9.3 × 10−4 S cm−1) and wide electrochemical window (4.8 V). In addition, Li/LiFePO4 batteries based on GCSE-P/MCN-M have also demonstrated excellent cycling performance (a high-capacity retention of 87% after 200 cycles at 0.5 C). This work provides a promising approach for developing gel solid-state electrolytes with high ion conduction and excellent safety performance. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

12 pages, 2735 KiB  
Article
PTHF/LATP Composite Polymer Electrolyte for Solid State Batteries
by Elmira Nurgaziyeva, Gulnur Turlybay, Aigul Tugelbayeva, Almagul Mentbayeva and Sandugash Kalybekkyzy
Polymers 2024, 16(22), 3176; https://doi.org/10.3390/polym16223176 - 14 Nov 2024
Cited by 2 | Viewed by 2357
Abstract
The novel crosslinked composite polymer electrolyte (CPE) was developed and investigated using polytetrahydrofuran (PTHF) and polyethyleneglycol diacrylate (PEGDA), incorporating lithium aluminum titanium phosphate (LATP) particles and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Composite polymer electrolytes (CPEs) for solid-state lithium-ion batteries (LIBs) were synthesized by harnessing [...] Read more.
The novel crosslinked composite polymer electrolyte (CPE) was developed and investigated using polytetrahydrofuran (PTHF) and polyethyleneglycol diacrylate (PEGDA), incorporating lithium aluminum titanium phosphate (LATP) particles and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Composite polymer electrolytes (CPEs) for solid-state lithium-ion batteries (LIBs) were synthesized by harnessing the synergistic effects of PTHF crosslinking and the addition of LATP ceramics, while systematically varying the film composition and LATP content. CPEs containing 15 wt% LATP (PPL15) demonstrated improved mechanical strength and electrochemical stability, achieving a high conductivity of 1.16 × 10−5 S·cm−1 at 80 °C, outperforming conventional PEO-based polymer electrolytes. The CPE system effectively addresses safety concerns and mitigates the rapid degradation typically associated with polyether electrolytes. The incorporation of PEGDA not only enhances mechanical stability but also facilitates lithium salt dissociation and ion transport, leading to a uniform microstructure free from agglomerated particles. The temperature-dependent ionic conductivity measurements indicated optimal performance at lower LATP concentrations, highlighting the impact of ceramic particle agglomeration onion transport pathways. These findings contribute to advancing solid-state battery systems toward practical application. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3368 KiB  
Article
The Role of Interfacial Effects in the Impedance of Nanostructured Solid Polymer Electrolytes
by Martino Airoldi, Ullrich Steiner and Ilja Gunkel
Batteries 2024, 10(11), 401; https://doi.org/10.3390/batteries10110401 - 12 Nov 2024
Viewed by 1735
Abstract
The role of interfacial effects on an ion-conducting poly(styrene-b-ethylene oxide) (PS-b-PEO or SEO) diblock copolymer doped with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was investigated by electrochemical impedance spectroscopy (EIS). Coating the surface of commonly used stainless steel electrodes with a [...] Read more.
The role of interfacial effects on an ion-conducting poly(styrene-b-ethylene oxide) (PS-b-PEO or SEO) diblock copolymer doped with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was investigated by electrochemical impedance spectroscopy (EIS). Coating the surface of commonly used stainless steel electrodes with a specific random copolymer brush increases the measured ionic conductivity by more than an order of magnitude compared to the uncoated electrodes. The increase in ionic conductivity is related to the interfacial structure of the block copolymer domain morphology on the electrode surface. We show that the impedance associated with the electrode–electrolyte interface can be detected using nonmetallic electrodes, allowing us to distinguish the ionic conductivity behaviors of the bulk electrolyte and the interfacial layers for both as-prepared and annealed samples. Full article
Show Figures

Figure 1

24 pages, 5707 KiB  
Article
Revolutionizing Battery Longevity by Optimising Magnesium Alloy Anodes Performance
by Bankole I. Oladapo, Mattew A. Olawumi and Francis T. Omigbodun
Batteries 2024, 10(11), 383; https://doi.org/10.3390/batteries10110383 - 30 Oct 2024
Cited by 2 | Viewed by 2142
Abstract
This research explores the enhancement of electrochemical performance in magnesium batteries by optimising magnesium alloy anodes, explicitly focusing on Mg-Al and Mg-Ag alloys. The study’s objective was to determine the impact of alloy composition on anode voltage stability and overall battery efficiency, particularly [...] Read more.
This research explores the enhancement of electrochemical performance in magnesium batteries by optimising magnesium alloy anodes, explicitly focusing on Mg-Al and Mg-Ag alloys. The study’s objective was to determine the impact of alloy composition on anode voltage stability and overall battery efficiency, particularly under extended cycling conditions. The research assessed the anodes’ voltage behaviour and internal resistance across magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) electrolyte formulations using a systematic setup involving cyclic voltammetry on the anode and electrochemical impedance spectroscopy. The Mg-Al alloy demonstrated superior performance, with minimal voltage drop and lower resistance increase than the Mg-Ag alloy. The results showed that the Mg-Al alloy maintained over 85% energy efficiency after 100 cycles, significantly outperforming the Mg-Ag alloy, which exhibited increased degradation and efficiency reduction to approximately 80%. These findings confirm that incorporating aluminium into magnesium anodes stabilises the anode voltage and enhances the overall battery efficiency by mitigating degradation mechanisms. Consequently, the Mg-Al alloy is identified as an up-and-coming candidate for use in advanced battery technologies, offering energy density and cycle life improvements. This study lays the groundwork for future research to refine magnesium alloy compositions further to boost battery performance. Full article
Show Figures

Figure 1

13 pages, 5888 KiB  
Article
Operando Fabricated Quasi-Solid-State Electrolyte Hinders Polysulfide Shuttles in an Advanced Li-S Battery
by Sayan Das, Krish Naresh Gupta, Austin Choi and Vilas Pol
Batteries 2024, 10(10), 349; https://doi.org/10.3390/batteries10100349 - 1 Oct 2024
Cited by 1 | Viewed by 2690
Abstract
Lithium-sulfur (Li-S) batteries are a promising option for energy storage due to their theoretical high energy density and the use of abundant, low-cost sulfur cathodes. Nevertheless, several obstacles remain, including the dissolution of lithium polysulfides (LiPS) into the electrolyte and a restricted operational [...] Read more.
Lithium-sulfur (Li-S) batteries are a promising option for energy storage due to their theoretical high energy density and the use of abundant, low-cost sulfur cathodes. Nevertheless, several obstacles remain, including the dissolution of lithium polysulfides (LiPS) into the electrolyte and a restricted operational temperature range. This manuscript presents a promising approach to addressing these challenges. The manuscript describes a straightforward and scalable in situ thermal polymerization method for synthesizing a quasi-solid-state electrolyte (QSE) by gelling pentaerythritol tetraacrylate (PETEA), azobisisobutyronitrile (AIBN), and a dual salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3)-based liquid electrolyte. The resulting freestanding quasi-solid-state electrolyte (QSE) effectively inhibits the polysulfide shuttle effect across a wider temperature range of −25 °C to 45 °C. The electrolyte’s ability to prevent LiPS migration and cluster formation has been corroborated by scanning electron microscopy (SEM) and Raman spectroscopy analyses. The optimized QSE composition appears to act as a physical barrier, thereby significantly improving battery performance. Notably, the capacity retention has been demonstrated to reach 95% after 100 cycles at a 2C rate. Furthermore, the simple and scalable synthesis process paves the way for the potential commercialization of this technology. Full article
(This article belongs to the Special Issue Electrolytes for Solid State Batteries—2nd Edition)
Show Figures

Figure 1

13 pages, 2633 KiB  
Article
Pyrrolidinium-Based Ionic Liquids as Advanced Non-Aqueous Electrolytes for Safer Next Generation Lithium Batteries
by Antía Santiago-Alonso, José Manuel Sánchez-Pico, Raquel San Emeterio, María Villanueva, Josefa Salgado and Juan José Parajó
Batteries 2024, 10(9), 319; https://doi.org/10.3390/batteries10090319 - 10 Sep 2024
Cited by 3 | Viewed by 1501
Abstract
In the current context of increasing energy demand, ionic liquids (ILs) are presented as possible candidates to replace conventional electrolytes and to develop more efficient energy storage devices. The IL 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide has been selected for this work, due to the good thermal [...] Read more.
In the current context of increasing energy demand, ionic liquids (ILs) are presented as possible candidates to replace conventional electrolytes and to develop more efficient energy storage devices. The IL 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide has been selected for this work, due to the good thermal and chemical stabilities and good electrochemical performance of the pyrrolidinium cation based ILs. Binary mixtures of this IL and lithium salt with the same anion, [TFSI], have been prepared with the aim of assessing them, as possible electrolytes for lithium batteries. These mixtures were thermally and electrochemically characterised through DSC and dielectric spectroscopy studies. The ionic conductivity decreases as the salt concentration increases, finding values ranging between 0.4 S/m and 0.1 S/m at room temperature. Additionally, a wide liquid range was found for the mixtures, which would reduce or even eliminate some of the most common problems of current electrolytes, such as their crystallisation at low temperatures and flammability. Finally, the toxicity of pure IL and the intermediate salt concentration was also evaluated in terms of the bioluminescence inhibition of the Alivibrio Fischeri bacteria, observing that, although the toxicity increases with the salt addition, both samples can be classified as practically harmless. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

12 pages, 2536 KiB  
Article
Optimization of Lithium Metal Anode Performance: Investigating the Interfacial Dynamics and Reductive Mechanism of Asymmetric Sulfonylimide Salts
by Shuang Feng, Tianxiu Yin, Letao Bian, Yue Liu and Tao Cheng
Batteries 2024, 10(6), 180; https://doi.org/10.3390/batteries10060180 - 24 May 2024
Viewed by 2041
Abstract
Asymmetric lithium salts, such as lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), have been demonstrated to surpass traditional symmetric lithium salts with improved Li+ conductivity and the capacity to generate a stable solid electrolyte interphase (SEI) while maintaining compatibility with an aluminum (Al0) current [...] Read more.
Asymmetric lithium salts, such as lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI), have been demonstrated to surpass traditional symmetric lithium salts with improved Li+ conductivity and the capacity to generate a stable solid electrolyte interphase (SEI) while maintaining compatibility with an aluminum (Al0) current collector. However, the intrinsic reductive mechanism through which LiDFTFSI influences battery performance remains unclear and under debate. Herein, detailed SEI reactions of LiDFTFSI–based electrolytes were investigated by combining density functional theory and molecular dynamics, aiming to clarify the formation process and atomic structure of the SEI. Our results show that asymmetric DFTFSI weakens the interaction between carbonate solvents and Li+, and substantially alters the solvation structure, exhibiting a well-balanced coordination capacity compared to bis(trifluoromethanesulfonyl)imide (TFSI). Nanosecond hybrid molecular dynamics simulation further reveals that preferential decomposition of LiDFTFSI produces sufficient LiF and Li2O to facilitate a robust SEI. Moreover, abundant F generated from LiDFTFSI decomposition accumulates on the Al surface and subsequently combines with Al3+ from the current collector to form AlF3, potentially inhibiting corrosion of the current collector. Overall, these findings elucidate how LiDFTFSI regulates the solvation sheath and SEI structure, advancing the development of high-performance electrolytes compatible with current collectors. Full article
Show Figures

Figure 1

13 pages, 5262 KiB  
Article
Metal-Doped NASICON/Polymer Composite Solid Electrolyte for Lithium Titania Anode in Lithium-Ion Batteries
by Chien-Te Hsieh, Tzu-Shaing Cho, Jeng-Kuei Chang and Jagabandhu Patra
Polymers 2024, 16(9), 1251; https://doi.org/10.3390/polym16091251 - 30 Apr 2024
Cited by 2 | Viewed by 2528
Abstract
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability [...] Read more.
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity LATP samples are successfully synthesized through a modified sol–gel method followed by thermal calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity of 1.88 × 10−4 S cm−1 at ambient temperature. The optimum conductivity can be attributed to alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C) and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries with desirable charge–discharge properties and high durability. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

14 pages, 4207 KiB  
Article
Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films
by Sunkyu Kim, Wonjong Lee, Zobia Irshad, Siwon Yun, Hyeji Han, Muhammad Adnan, Hyo Sik Chang and Jongchul Lim
Energies 2024, 17(9), 2062; https://doi.org/10.3390/en17092062 - 26 Apr 2024
Cited by 2 | Viewed by 1509
Abstract
Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier [...] Read more.
Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier transport, thus lowering the open-circuit voltages (Voc) of PSCs. To unveil this ambiguous phenomenon, we intensively performed various optoelectronic measurements to investigate the impact of interfacial charge-carrier dynamics of PSCs under various light intensities. This is because the charge density can exhibit different mobility and charge transport properties depending on the characteristics of the charge transport layers. We explored the influence of the hole transport layer (HTL) by investigating charge transport properties using photoluminescence (PL) and time-resolved (TRPL) to unveil interfacial recombination phenomena and optoelectronic characteristics. We specifically investigated the impact of various thicknesses of HTLs, such as 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), and poly(triaryl)amine (PTAA), on FA0.83MA0.17Pb(Br0.05I0.95)3 perovskite films. The HTLs are coated on perovskite film by altering the HTL’s concentration and using F4-TCNQ and 4-tert-butylpyridine (tBP) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) as dopants both for spiro-OMeTAD and PTAA. These HTLs diversified the charge concentration gradients in the absorption layer, thus leading to different recombination rates based on the employed laser intensities. At the same time, the generated charge carriers are rapidly transferred to the interface of the HTL/absorption layer and accumulate holes at the interface because of inefficient capacitance and mobility differences caused by differently doped HTL thicknesses. Notably, the charge concentration gradient is low at lower light intensities and did not accumulate holes at the HTL/absorption layer interface, even though they have high charge mobility. Therefore, this study highlights the importance of interfacial charge recombination and charge transport phenomena to achieve highly efficient and stable PSCs. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

13 pages, 4024 KiB  
Article
Solid-State Lithium Batteries with Cathode-Supported Composite Solid Electrolytes Enabling High-Rate Capability and Excellent Cyclic Performance
by Kang-Feng Chang, Pradeep Kumar Panda, Chien-Te Hsieh, Po-Chih Yang, Navish Kataria and Kuan Shiong Khoo
Batteries 2023, 9(10), 490; https://doi.org/10.3390/batteries9100490 - 26 Sep 2023
Cited by 10 | Viewed by 3694
Abstract
In this study, robust composite solid electrolytes were developed and employed to enhance the performance of Li-metal batteries significantly. The robust composite solid electrolytes are composed of a soft polymer, poly(ethylene oxide), a Li salt, bis(trifluoromethanesulfonyl)imide (LiTFSI), and super ionic conductive ceramic fillers [...] Read more.
In this study, robust composite solid electrolytes were developed and employed to enhance the performance of Li-metal batteries significantly. The robust composite solid electrolytes are composed of a soft polymer, poly(ethylene oxide), a Li salt, bis(trifluoromethanesulfonyl)imide (LiTFSI), and super ionic conductive ceramic fillers such as Li1.5Al0.5Ti1.5(PO4)3 (LATP), and Li6.4La3Zr1.4Ta0.6O12 (LLZTO). The main goal of this study is to enhance the electrochemical stability and ionic conductivity. The ionic conductivities of the composite solid electrolytes were found to be 2.08 × 10−4 and 1.64 × 10−4 S cm−1 with the introduction of LATP and LLZTO fillers, respectively. The results prove that the fabricated solid electrolyte was electrochemical stable at voltage exceeding 4.25 V vs. Li/Li+. The internal resistance of the solid electrolyte significantly reduced compared to gel electrolyte. This reduction can be attributed to the alleviation of bulk electrolyte, charge-transfer, and interfacial electrolyte/electrode impedance. When LiFePO4 cathode sheets are coated with a composite solid electrolyte containing LATP powders, the resulting Li-metal battery displays high capacity at 5 C (with a capacity retention of 65.2% compared to the original capacity at 0.2 C) as well as superior cyclic stability and excellent Coulombic efficiency (>99.5%, 200 cycles). These results confirm that the composite solid electrolyte acts as a protective layer which has the ability to prevent the growth of Li dendrites. Consequently, the fabricated electrolyte configuration can be engineered to enable high energy/power density and electrochemical stable cyclability in Li-metal batteries. Full article
Show Figures

Graphical abstract

Back to TopTop