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Abstract: This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type
Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO)
anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity
LATP samples are successfully synthesized through a modified sol–gel method followed by thermal
calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type
of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of
the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-
HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity
of 1.88 × 10−4 S cm−1 at ambient temperature. The optimum conductivity can be attributed to
alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state
cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent
high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C)
and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These
findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries
with desirable charge–discharge properties and high durability.

Keywords: cation doping; solid-state batteries; electrolyte conductivity; rate capability; cycle life

1. Introduction

The importance of lithium-ion batteries (LIBs) has been acknowledged over several
decades; nevertheless, continuous endeavors persist to enhance both the performance and
safety of LIBs. Meeting the demands of LIB applications, which span from miniaturized
electronics and home appliances to light and heavy electric vehicles [1–4], necessitates
achieving a high energy density and a high power density. The energy density of LIBs is
directly dominated by the redox potential difference between the positive (cathode) and
negative (anode) electrodes [5], as well as their capacities. Traditionally, graphite has been
the favored material for LIB anodes. The primary advantage of graphite lies in its low
intercalation potential (~0.1 V vs. Li+/Li) and low cost [6]. Lithium titanate (Li4Ti5O12,
LTO) has emerged as a promising substitute for traditional graphite anode materials for
LIBs. The LTO anode operates at a higher potential (~1.55 V vs. Li+/Li), offering enhanced
safety features due to the prevention of Li dendrite formation [7]. The LTO anode has
demonstrated remarkable cycling stability owing to its minimal volume change during Li+

intercalation/deintercalation. Additionally, LTO has exhibited superior stability at high
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working temperatures and a greater rate capability compared to that of graphite anodes [8],
which is favorable for the high-power performance of LIBs.

The utilization of conventional LIBs that incorporate organic liquid electrolytes (i.e.,
volatile and flammable carbonate electrolytes) poses the risk of thermal instability, leading
to potential explosion and catastrophic fire [9,10]. Consequently, solid-state lithium batteries
(SSLBs) are considered promising next-generation lithium batteries. Solid-state electrolytes
(SSEs), chosen over their liquid counterparts, mitigate safety concerns, and, importantly,
these electrolytes can be coupled with various anode and cathode materials with desirable
potentials and capacities for LIBs [11–14]. SSEs can be broadly categorized into two
types: solid polymer electrolytes (SPEs) and inorganic solid (i.e., ceramic) electrolytes
(ISEs) [15,16]. The poor ionic conductivity, inferior mechanical properties, and inadequate
oxidation stability limit the use of SPEs [15], while ISEs are usually fragile and challenging
to fabricate, making them unsuitable for practical applications [16]. Composite solid
electrolytes (CSEs), composed of a polymer phase, Li salt, and Li+-conducting inorganic
fillers, have become a promising alternative [17,18]. In CSEs, the polymer phase has
good flexibility, plasticity, and wettability toward electrodes [19,20], while the ceramic filler
imparts high Li+ conductivity and boosts the mechanical strength to prevent electrode short-
circuiting [21,22]. A CSE, thus, blends the merits of SPEs and ISEs, endowing SSLBs with
desirable charge–discharge properties. In fact, inorganic filler materials play a crucial role in
CSEs. Among various inorganic Li+-conducting fillers, NASICON-type Li1.3Al0.3Ti1.7(PO4)3
(LATP) [23] and garnet-type Li7La3Zr2O12 (LLZO) have received a considerable amount of
attention due to their adequate Li+ conductivity and good chemical stability [24]. LLZO is
chemically stable against Li metal [25]. LATP possesses a significant advantage in terms
of material synthesis and practical commercialization, considering the relatively low cost
of the raw materials and fabrication process. The high stability of LATP against H2O/O2
allows the material preparation and handling to proceed in the ambient air [23,26].

The exploration of LTO-supported SSEs for SSLBs remains limited, with only a few
studies delving into this topic. Investigating LTO-supported SSEs has the potential to yield
significant advancement in SSLB performance. The integration of LTO as a supporting
material for SSE can enhance the overall stability, rate capability, and cycling performance
of the battery. Moreover, the adoption of LTO-supported SSEs may play a pivotal role in
addressing the key challenges associated with SSLBs, including high interfacial resistance
and high SSE thickness [27–29]. Exploring the properties offered by LTO-supported SSE can
pave the way for the development of high-performance SSLBs characterized by improved
safety and stability.

One approach to enhance the ionic conductivity of LATP-based SSEs is through el-
ement doping [30–33], which involves partially replacing Ti4+ ions with metal ions. The
LATP framework can be modified by introducing foreign cations with different valence
states and ion radii, which causes lattice distortion and enhances ionic conductivity. This
present work aims to develop an efficient sol–gel synthesis method for producing metal-
doped Li1.3Al0.3(Ti1.7−xMx)(PO4)3, where Ti is partially replaced by other elements (M)
such as Co, Cu, Sn, V, and Zr with x = 0.3. These elements are the most common dopants
for battery electrodes and solid electrolyte materials, and the systematic comparison of
the doping effects in the LATP lattice has never been conducted. In the sol–gel process,
anhydrous ethanol is used to prevent the hydrolysis of the Ti precursor (i.e., titanium (IV)
butoxide) and shorten the reaction time. In this study, we develop CSEs incorporating vari-
ous metal-doped LATP fillers within polymeric matrixes for application in SSLBs. The CSE
consists of metal-doped LATP powder, poly(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-HFP), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Although some
studies have utilized polyethylene oxide (PEO), PEO-based systems tend to crystallize at
ambient temperature, which can hinder ionic transport. PVDF-HFP is preferred over PEO
due to its superior electrochemical stability and processability, as well as its chemical and
mechanical stability across a broader temperature range [34,35]. Furthermore, HFP serves
as an amorphous phase promoter, offering ion channels that increase the ionic conductivity
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of the electrolyte system [35]. We conduct a detailed investigation into the impact of these
CSEs on the specific capacity, rate capability, and cycling stability of Li||CSE||LTO cells.
The excellent compatibility of the CSEs with LTO anodes secures a robust battery structure
with low internal resistance and superior capacity retention during extended cycling.

2. Experimental Section
2.1. Sol–Gel Synthesis of Metal-Doped LATP Powders

The sol–gel synthesis of metal-doped Li1.3Al0.3(Ti1.7−xMx)(PO4)3 was carried out by
replacing Ti with other M elements, where x = 0.3 and M = Co, Cu, Sn, V, and Zr. The
synthesis procedures for metal-doped LATP powders are outlined as follows. All reagents
employed in this study are of an analytical grade. A Ti(C6H9O)4 (Sigma-Aldrich (St. Louis,
MO, USA)); purity: 97%) precursor was dissolved in anhydrous ethanol. Stoichiometric
amounts of LiNO3 (J.T. Baker (Phillipsburg, NJ, USA)); purity: 98%) and Al(NO3)3·9H2O
(Sigma-Aldrich; purity: 99.9%) were dissolved in a 0.2 M citric acid (Showa (Gyoda, Japan);
purity: 99.5%) solution and stirred at 90 ◦C for 1 h to form a stable and clear solution.
Simultaneously, various metal ions were separately introduced into the solution with a
stoichiometric ratio of Ti:M (1.4:0.3), where M = Co, Cu, Sn, V, and Zr. The Co(NO3)2 (Alfa
Aesar (Haverhill, MA, USA)); purity: 98%), CuSO4·5H2O (Alfa Aesar; purity: 98%), SnCl2
(Alfa Aesar; purity: 99%), VCl3 (Sigma-Aldrich; purity: 97%), and ZrCl4 (Sigma-Aldrich;
purity: 99.9%) precursors were used. Subsequently, step-wise citric acid addition was
performed to maintain a molar ratio of citric acid to total metal ions at 4:1. After adding a
saturated NH4H2PO4 (Alfa Aesar; purity: 99.995%) solution in a stoichiometric amount,
the pH value of the mixed solution was adjusted to 7 using NH3·H2O. After maintaining at
90 ◦C for 5 h, the solution became a homogeneous emulsion, which was then moved to an
oven at 120 ◦C until a dry gel was produced. The obtained dry gel was heated to 180 ◦C for
4 h and then 250 ◦C for 5 h to proceed with pyrolysis. The metal-doped LATP samples were
eventually calcined at 850 ◦C under air for 2 h, while the temperature ramping rate was 5 ◦C
min−1. Through ball-milling with a planetary mill (Fritsch Pulverisette 6 (Idar-Oberstein,
Germany)) at 700 rpm for 90 min with 1 mm diameter ZrO2 balls (the ball to LATP weight
ratio is 1:15), highly refined metal-doped LATP particles were obtained. The resulting
metal-doped LATP samples were designated as Co-LATP, Cu-LATP, Sn-LATP, V-LATP, and
Zr-LATP, according to the type of dopants. Pristine LATP powder without any dopants
was designated as 0-LATP for comparison.

2.2. Fabrication of CSEs on LTO Anode Sheets

Anode slurry was prepared by mixing 88 wt% LTO powder, 6 wt% PVDF binder, 4 wt%
Super-P, and 2 wt% KS-6 (conducting agent) in N-methyl-2-pyrrolidone (NMP) solution.
This slurry was casted onto Cu foil with a doctor blade and vacuum-dried at 90 ◦C for 12 h.
The coating layer was ~100 µm in thickness. The LTO anode sheets were roll-pressed and
then cut into the desired dimensions for battery assembly. To fabricate the LTO-supported
CSEs, LiTFSI (Sigma-Aldrich; purity: 99.95%) and PVDF-HFP (Sigma; molecular weight:
400,000) were dissolved in NMP and stirred well to form a homogeneous solution. The
metal-doped LATP powder was gradually added to the solution and the resulting slurry
was uniformly dispersed through a planetary milling process with a rotation speed of
700 rpm for 1 h. The obtained CSE slurry was then coated onto the LTO anode sheet using
a doctor blade. The sheets were subjected to drying at 140 ◦C under vacuum overnight to
form LTO-supported CSE samples. The thickness of the CSE layers was ~40 µm.

2.3. Material and Electrochemical Characterizations

The morphology of the metal-doped LATP samples was analyzed using field-emission
scanning electron microscopy (FE-SEM; Zeiss ULTRA 55 (White Plains, NY, USA)) and
transmission electron microscopy (TEM; FEI Talos F200s (Hillsboro, OR, USA)). The sample
crystallinity was examined using X-ray diffraction (XRD; Bruker D2 Phaser (Billerica, MA,
USA)). For electrochemical property measurements of LTO-supported CSE samples, coin
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cells of CR2032 type were utilized with Li metal foil as the counter electrodes. The coin cells
were assembled in an argon-filled glove box (Innovation Technology Co., Ltd. (Hong Kong,
China)), where both the moisture and oxygen content levels were maintained at ~0.1 ppm.
The charge–discharge capacities, rate capability, and cycling stability were evaluated at
ambient temperature. The durability of the cells was evaluated through repeated cycling at
0.2 C charging and 0.5 C discharging; once the capacity retention degraded to <80%, the
testing was terminated. The internal resistance of the coin cells assembled with various
LTO-supported CSEs was evaluated using electrochemical impedance spectroscopy (EIS;
CH Instruments 608C (Bee Cave, TX, USA)) within a frequency range of 100 kHz to 10 mHz.

3. Results and Discussion

Figure 1a–f show the FE-SEM images of pristine and metal-doped LATP powders. A
slight degree of agglomeration is apparent in the pristine and metal-doped LATP powders,
indicating a tendency of the particles to cluster together to some extent without substantial
interconnection. The images reveal that the particle sizes of the samples range from 1.2 to
2.5 µm. This size distribution reveals the decent homogeneity of the particles. Figure 1g
exhibits the XRD patterns of various LATP powders, which were prepared using the
citric-acid-assisted sol–gel synthesis route followed by thermal calcination. The XRD
pattern of the pristine LATP sample aligns with the standard NASICON-type structure (i.e.,
rhombohedral lattice; Card No.: ICDD 00-035-0754) [36]. The major characteristic peaks at
the diffraction angles of 20.8◦, 24.5◦, 29.7◦, and 33.3◦ correspond to the crystalline planes
of (104), (113), (024), and (116), respectively [37,38]. Notably, there is an absence of any
impurity phase in this pristine LATP sample. The metal-doped LATP samples demonstrate
the same rhombohedral structure, although a minor impurity phase of AlPO4 [30,33] is
observed for the V-LATP and Zr-LATP samples. This observation implies that the V and Zr
dopants could easily cause lattice distortion, leading to the extraction of aluminum atoms
from the lattice to form AlPO4.
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Figure 1. SEM images of (a) 0-LATP, (b) Co-LATP, (c) Cu-LATP, (d) Sn-LATP, (e) V-LATP, and
(f) Zr-LATP samples. (g) XRD pattern of various samples synthesized.

Figure 2a,b illustrate the TEM micrographs of the Sn-LATP and Zr-LATP samples
together with their elemental mapping data. Notably, these particles exhibit irregular
morphology with a diameter of up to a few microns. Elements such as Al, Ti, P, and O are
discernible across the metal-doped LATP samples. Of note, both the Sn and Zr dopants are
uniformly dispersed within the particles. The energy-dispersive spectroscopy data also
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confirmed that the M concentrations are 11.1 at%, 16.4 at%, 17.0 at%, 10.8 at%, and 11.5 at%
for Co-LATP, Cu-LATP, Sn-LATP, V-LATP, and Zr-LATP samples, respectively.
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Figure 2. TEM micrographs of (a) Sn-LATP and (b) Zr-LATP samples and their corresponding
elemental mapping data.

The oxidation states of Ti in the pristine and metal-doped LATP samples were inves-
tigated using X-ray photoelectron spectroscopy (XPS). The obtained data are shown in
Figure 3. The two prominent peaks at approximately 459.6 and 465.5 eV correspond to Ti
2p3/2 and Ti 2p1/2, respectively [39,40]. As shown, for all of the LATP samples, Ti4+ is the
major component, which is consistent with the literature [39–41]. However, two shoulder
peaks at lower binding energies indicate the presence of Ti3+ [32,42]. The Ti4+/Ti3+ ratios
for various samples do not show significant difference. The high-resolution Co 2p, Cu 2p,
Sn 3d, V 2d, and Zr 3d spectra for the Co-, Cu-, Sn-, V-, and Zr-LATP samples are shown
in Figure 4. The Co 2p spectrum (Figure 4a) shows Co 2p3/2 and Co 2p1/2 signals [43].
Two satellite peaks are at 788.7 and 805.6 eV. The data show the coexistence of Co2+ and
Co3+. The Cu 2p spectrum (Figure 4b) shows two spin-orbital signals of Cu 2p3/2 and Cu
2p1/2 [44]. The co-existence of Cu+ and Cu2+ are confirmed. The two satellite peaks of Cu
2p3/2 are centered at 940.0 and 944.6 eV, respectively. In the Sn 3d spectrum (Figure 4c), the
peaks at 487.7 eV (Sn 3d5/2) and 496.1 eV (Sn 3d3/2) belong to Sn4+ [45]. Figure 4d shows
the characteristic peaks at 518.3 and 525.5 eV, which are ascribed to V 2p3/2 and V 2p1/2 of
V5+, respectively [46]. The Zr 3d spectrum in Figure 4e shows the characteristic signals of
Zr 3d5/2 and Zr 3d3/2 at 185.8 and 183.6 eV, respectively. Both peaks belong to Zr4+ [47].
The data confirm that the cations are indeed doped in the LATP lattice.
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The EIS measurements were carried out with Li||CSE||LTO cells and conducted
at ambient temperature in a frequency range of 100 kHz to 10 mHz. The represen-
tative data and the equivalent circuit used to fit the data are shown in Figure S1
(supporting information). The equivalent series resistance (ESR = resistance of bulk
electrolyte + electrolyte/electrode interfacial resistance + charge-transfer resistance) was
assessed to determine the overall internal resistance of the cells [48]. As shown in Figure 5a,
the ESR values of the cells exhibit a strong dependence on the type of dopant. The order of
ESR values is as follows: Zr -LATP (296 Ω) > Co-LATP (274 Ω) > Cu-LATP (240 Ω) > 0-LATP
(215 Ω) > V-LATP (198 Ω) > Sn-LATP (195.5 Ω). These results highlight that the ESR value,
representing the overall cell resistance, is significantly reduced for the cells containing the
Sn-LATP and V-LATP CSEs.
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The ionic conductivity (σ) of various CSEs can be quantified to clarify the effects of the
design of LATP powders by utilizing the high-frequency impedance (R) obtained from the
EIS analysis. The ionic conductivity is determined using the formula σ = l/(R × A), where
l is the thickness of the CSE and A is the projected area [49,50]. This calculation allows for
the evaluation of the ionic conductivity of various CSEs. As depicted in Figure 5b, the σ
values of the CSE samples follow the order of Sn-LATP (1.88 × 10−4 S cm−1) > V-LATP
(1.66 × 10−4 S cm−1) > 0-LATP (1.52 × 10−4 S cm−1) > Cu-LATP (1.40 × 10−4 S cm−1) >
Co-LATP (1.38 × 10−4 S cm−1) > Zr-LATP (1.21 × 10−4 S cm−1). These results highlight
the clear improvement in ionic conductivity achieved through the chemical composition
design of the ceramic fillers. As compared to the σ value of the LATP-0 sample, the Sn and
V dopants in the LATP lattice show positive effects in increasing the ionic conductivity of
the CSEs. Numerous factors influence the ionic conductivity of the doped LATP, including
the dopant size, electronegativity, lattice volume, Li+ concentration, lattice vacancies, and
the interactions with the polymer phase [42,51,52]. Consequently, it is challenging to
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precisely determine which factor dominates the conductivity of Sn-LATP at the current
stage. Although we have experimentally examined the order of conductivity, the exact
causes and underlying mechanisms for the superior conductivity observed still require
further investigation.

The experimental results presented above indicate that the metal dopants for LATP
play a significant role in enhancing the ionic conductivity of the solid electrolyte. Neverthe-
less, a more comprehensive investigation is needed to further understand how dopants
such as Sn and V contribute to the improvement in Li+ conduction in the LATP lattice.
Theoretically, three primary Li+ migration mechanisms in the crystal may be involved:
(i) the ion migrating directly from one lattice site to a neighboring vacant site, (ii) the ion
migrating from one site to a neighboring metastable vacant site through an interstitial
site, and (iii) the ion migrating into a neighboring metastable vacant site followed by the
occupation of its original site by an ion from the neighboring metastable site [53]. Based
on these migration mechanisms, the Sn and V dopants are likely to create vacant sites
(or grain boundaries), promoting ionic migration in the lattice and thereby enhancing Li+

conductivity. This leads to a unique ion transport mechanism where Li+ ions hop from
one coordinating site to another, facilitated by the movement of defect sites, similar to the
studies reported previously [12,54,55]. Figure 6 illustrates the bonding structures of Li-Co,
Li-Cu, Li-Sn, and Li-Zr with the corresponding formation energies, as programmed by The
Materials Project [56–58]. Particularly noteworthy is the most negative formation energies
of the Li-Sn bonding structure (i.e., −0.326 eV/atom), indicating the most favorable forma-
tion relative to their bonds. This suggests that the Li+ conducting pathways are relatively
easy to form for Sn-LATP, leading to its superior ionic conductivity.
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The charge–discharge profiles of the LTO half cells equipped with the CSEs con-
taining 0-LATP and Sn-LATP are shown in Figure 7a,b, respectively. The charging and
discharging tests were carried out within a voltage range of 0.5 to 2.8 V (vs. Li/Li+)
at different rates ranging from 0.2 to 5 C. At 0.2 C, the cells exhibit distinct voltage
plateaus, signifying a two-phase reversible reaction at approximately 1.5 V vs. Li/Li+.
The intercalation/de-intercalation process can be expressed as [7] Li3[LiTi54+]O12 + 3 e− +
3 Li+ ↔ Li6[LiTi33+Ti24+]O12. During the electrode lithiation process, the Li ions insert into
the octahedral (16c) sites of Li4Ti5O12 lattices, forming a rock-salt structure [8]. Theoreti-
cally, a typical LTO electrode offers a reversible capacity of 175 mAh g−1, based on the Li+

insertion/de-insertion process mentioned above. Figure 7c compares the rate capability of
various cells across the range of 0.2–5 C. As evident from the plot, all of the LTO electrodes
exhibit high specific capacities of ~170 mAh g−1 at 0.2 C, very close to the theoretical value.
At a high rate of 5 C, the cells with CSEs containing 0-LATP, Co-LATP, Cu-LATP, Sn-LATP,
V-LATP, and Zr-LATP fillers showed reversible capacities of 120, 76, 85, 146, 131, and
38 mAh g−1, respectively, corresponding to 70%, 44%, 49%, 86%, 77%, and 23% capacity
retention compared to the values measured at 0.2 C. When the current rate decreased back
to 0.2 C, the capacities were restored, as shown in Figure 7c. The cells equipped with the
CSEs containing Sn-LATP and V-LATP demonstrated superior rate capability owing to
the relatively low ESR and high Li+ conductivity of the electrolyte layers. This promising
outcome (i.e., high electrode performance at high rate) underscores that the LTO-supported
CSEs have paved the way for realizing a high-power SSLB.
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Figure 8a,b compare the charge–discharge curves of the LTO cells equipped with the
CSEs containing 0-LATP and Sn-LATP fillers, respectively. The objective of this experiment
was to assess the electrochemical stability of the cells through galvanostatic cycling at
ambient temperature. An observable plateau at ~1.5 V and stable discharge performance
upon cycling for the Sn-LATP cell reflect the robustness of the CSE layer. In addition,



Polymers 2024, 16, 1251 10 of 13

the high reversibility of Li+ intercalation and de-intercalation into/from the spinel LTO
structure was confirmed. Figure 8c shows the capacity retention and Coulombic efficiency
as a function of cycle number for various LTO-supported CSE cells. These metrics serve
as indicators to assess the cycling stability of the cells. The cycling tests continued until
the capacity retention fell below 80%. Notably, all of the cells demonstrated acceptable
durability, maintaining over 80% capacity after at least 170 cycles. The comparative anal-
ysis indicates that the cell durability ranks as follows: Sn-LATP (510 cycles) > V-LATP
(450 cycles) > Co-LATP (275 cycles) > Zr-LATP (240 cycles) > Cu-LATP (200 cycles) > 0-
LATP (170 cycles). Compared to other dopants, the ionic radius of Sn4+ (0.69 Å) is closer to
that of Ti4+ (0.605 Å). Therefore, the crystal structure does not experience excessive lattice
distortion [59]. Furthermore, Sn4+ with higher Pauling electronegativity (1.96) can improve
the stability of the NASICON framework [42,59]. Consequently, the cell equipped with
the Sn-LATP CSE demonstrated optimal performance and maintained high Coulombic
efficiency (>99.0%) over 510 cycles. These data also reveal the potential of these CSEs for
improved electrochemical stability against Li metal electrodes (since Li metal foil was used
as the counter electrodes for the LTO-supported CSE cells). After cell testing, no cation
reduction reaction is observed. This phenomenon is likely attributed to the presence of
the polymer phase in the CSE. The polymer phase plays a crucial role in the system to
encapsulate the LATP particles, thus forming a protective barrier that isolates the LATP
particles from direct contact with the lithium metal. The ceramic fillers enhance the mechan-
ical strength of the CSEs, acting as the capping layers to suppress Li dendrite formation.
Sn doping in LATP has been confirmed as an agreeable strategy to improve the CSE per-
formance, which is highly compatible with both Li metal and LTO electrodes, enabling
superior rate capability and desirable cycling stability of the solid-state cell.
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4. Conclusions

This study demonstrates the proper selection of metal-doped NASICON-type LATP
SSE in enabling LTO anodes with high rate capability and great cycling performance. The
Li+-conducting LATP particles were successfully synthesized through a modified sol–gel
method followed by thermal calcination. Five types of dopant (i.e., Co, Cu, Sn, V, and Zr)
clearly influenced the substitution of Al for Ti, with the dopant type serving as a crucial
factor in tuning the Li+ conductivity and the ESR of the LTO-supported CSE cells. The CSE
containing the Sn-LATP particles exhibited an ionic conductivity of 1.88 × 10−4 S cm−1

at ambient temperature. This enhanced conductivity could be attributed to the alteration
in lattice parameters and the Li+ transport pathways due to the Sn doping. The solid-
state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrated
both high rate capability at 5 C (with a capacity retention of 86% compared to the value
measured at 0.2 C) and superior cycling stability, maintaining 80% of the initial capacity
after 510 cycles. The close ionic radii of Sn4+ and Ti4+ prevent excessive lattice distortion,
and the higher Pauling electronegativity of Sn4+ enhances the stability of the NASICON
framework, leading to the optimal cell performance. These findings indicate that the CSE,
composed of Sn-LATP ceramics, PVDF-HFP, and LiTFSI, is highly promising for use in
SSLBs featuring high performance and high durability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16091251/s1, Figure S1: EIS data of Li||CSE (with 0-
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