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Abstract: In this study, robust composite solid electrolytes were developed and employed to enhance
the performance of Li-metal batteries significantly. The robust composite solid electrolytes are
composed of a soft polymer, poly(ethylene oxide), a Li salt, bis(trifluoromethanesulfonyl)imide (LiTFSI),
and super ionic conductive ceramic fillers such as Li1.5Al0.5Ti1.5(PO4)3 (LATP), and Li6.4La3Zr1.4Ta0.6O12

(LLZTO). The main goal of this study is to enhance the electrochemical stability and ionic conductivity.
The ionic conductivities of the composite solid electrolytes were found to be 2.08 × 10−4 and
1.64 × 10−4 S cm−1 with the introduction of LATP and LLZTO fillers, respectively. The results prove
that the fabricated solid electrolyte was electrochemical stable at voltage exceeding 4.25 V vs. Li/Li+.
The internal resistance of the solid electrolyte significantly reduced compared to gel electrolyte. This
reduction can be attributed to the alleviation of bulk electrolyte, charge-transfer, and interfacial
electrolyte/electrode impedance. When LiFePO4 cathode sheets are coated with a composite solid
electrolyte containing LATP powders, the resulting Li-metal battery displays high capacity at 5 C
(with a capacity retention of 65.2% compared to the original capacity at 0.2 C) as well as superior
cyclic stability and excellent Coulombic efficiency (>99.5%, 200 cycles). These results confirm that the
composite solid electrolyte acts as a protective layer which has the ability to prevent the growth of Li
dendrites. Consequently, the fabricated electrolyte configuration can be engineered to enable high
energy/power density and electrochemical stable cyclability in Li-metal batteries.

Keywords: LATP powders; composite solid electrolytes; garnet-type powders; LLZTO powders;
lithium metal batteries

1. Introduction

Liquid organic electrolyte (LOE)-based lithium-ion batteries (LIBs) have gained a lot
of attentionfor many years and utilize a variety of applications owing to their outstanding
combination of high-power density and energy. They are ideal for use in electric vehicles,
portable electronic devices, and other industries [1,2]. However, LOE is a volatile and
flammable electrolyte, which elevates major problems for LIBs development. The risk
of thermal runaway and potential explosion or catastrophic fires associated with these
electrolytes has severely impacted their progress [3,4]. Thus, solid-state LIBs are regarded as
the most promising next-generation lithium batteries. Solid-state electrolytes are preferred
over liquid electrolytes because they eliminate safety concerns and allow for higher energy
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density by using high-capacity electrodes like high-voltage cathodes, Li metal anodes,
and conversion-type sulfur and oxygen electrodes [5–8]. Usually in solid state batteries, a
separator was introduced to avoid direct contact between two electrodes, while enabling
ion flow between them. The ion movements are crucial for battery performance as it
produces electrical energy, but solid-state electrolytes act as a both separator and electrolyte.
Like liquid electrolyte, separator can conduct ions as well as separate the electrolytes, which
simplifies the battery fabrication process. Additionally, separator can provide battery safety,
stability, and credibility. Moreover, solid state electrolyte has no chance of leakage and short
circuit during its uses, unlike liquid electrolyte [9]. Therefore, solid state electrolyte is a safer
option to use in batteries as electrolyte. Overall, the use of solid-state electrolytes as both
an electrolyte and a separator simplify the battery fabrication process, while improving its
safety and reliability. This is an important development in the field of battery technology,
as it can help to reduce the cost and complexity of manufacturing batteries while also
improving their performance and safety.

Solid-state batteries must have solid-state electrolytes to achieve high electrochem-
ical and mechanical stability. This electrolyte not only enhances the performance of the
batteries but also provides a high compatible interface between two electrodes. Therefore,
selecting the appropriate type of solid electrolyte and developing the right composition
are critical factors for the battery’s performance. The most essential component i.e., solid
state electrolyte, can be broadly categorized into two types such as solid polymer elec-
trolytes and inorganic (i.e., ceramics) electrolytes [3,10,11]. There are numerous studies of
solid inorganic electrolyte such as Li1.5Al0.5Ti1.5(PO4)3 (LATP) and Li6.4La3Zr1.4Ta0.6O12
(LLZTO) owing to their wide electrochemical window, high conductivity i.e., ~10−4 S cm−1

at ambident temperature, and strong electrochemical stability [12,13]. However, its prac-
tical applications are hindered due to great interfacial resistance between brittle ceramic
electrodes and electrolytes [14–16]. In contrast, polymer-based composite solid electrolytes
which incorporate Li salts and diverse functional fillers have garnered significant interest
due to their favorable attributes for commercial applications. These include their ease
of processing and flexibility [17–20]. However, poly(ethylene oxide) (PEO)-based com-
posite solid electrolytes possessed low ionic conductivity (<10−5 S cm−1) and a narrow
electrochemical window (<3.9 V) at ambident temperature, which hindered its practical
uses [13,14]. Based on the above deduction, one strategy is to offer a synergistic effect
on the novel design of “ceramic-in-polymer” or “polymer-in-ceramic” electrolytes that
combines highly ionic conductive ceramics (e.g., LATP and LLZTO) and highly flexible
and processible polymers (e.g., PEO), capable of offering a feasibility for high-performance
solid-state Li-metal batteries [21,22]. Such a design can provide a feasible approach for
developing high-performance solid-state Li-metal batteries. To enhance the electrochemical
performance of solid-state batteries, the development of solid composite electrolytes (i.e.,
“ceramic-in-polymer” or “polymer-in-ceramic” electrolytes) has been explored, such as
PEO + LLZTO [23] and poly(vinylidene fluoride-co-hexafluoropropene) + LATP [11,24].
However, even though ionic conductivity has improved significantly in recent years, Li
dendrites and the possibility of penetration through “ceramic-in-polymer” electrolytes can
lead to short circuits in solid-state batteries, severely limiting their practical use.

The development of composite solid electrolytes has shown promise in enhancing
the cyclic stability of solid-state batteries, which is important in the context of the issues
experienced by solid-state batteries. However, issues such as Li dendrite formation and
short circuits still hinder their practical applications. This study aims to address these
issues and unlock the full potential of solid-state batteries as a reliable and sustainable
energy storage solution. To achieve this goal, this work proposes depositing “ceramic-
in-polymer” electrolytes on the cathode side to create conductive and stable interfaces,
minimizing interfacial resistance and mechanical stress during extended cycling. Two types
of composite solid electrolytes, PEO + LLZTO + LiTFSI and PEO + LATP + LiTFSI, are
coated on the LiFePO4 (LFP) cathode to create high-performance Li-metal batteries. This
research aids in the design of high-performance solid-state batteries by providing insight
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into the applicability of composite solid electrolytes for usage on both the LFP cathode and
Li anode side. High energy/power density and stable cyclability could be achieved with
these composite solid electrolytes because of their high compatibility with the cathode and
anode and their ability to inhibit Li dendrite growth.

2. Experimental Section
2.1. Fabrication of Composite Solid Electrolytes

In this work, poly(ethylene oxide) (PEO, formula: (-CH2CH2O-)n, molar mass =
3 × 105 g mol−1, melting point: 65 ◦C, Aladdin City, FL, USA) and lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI, formula: LiC2NO4F6S2, molar mass: 287.1 g
mol−1, Sigma-Aldrich, St. Louis, MO, USA, 99.95%) were dried at 80 ◦C for 12 h under
vacuum prior the fabrication of composite solid electrolytes. 1-methyl-2-pyrrolidone (NMP,
Sinopharm, Hong Kong) and acetonitrile (ACN, Aladdin, USA) were used as received.

Two types of composite gel electrolytes were prepared using different ratios of PEO
and LiTFSI in weight/weight (w/w). The first ratio was 2/1 (PEO/LiTFSI), and the sec-
ond ratio was 3/1 (PEO/LiTFSI). The gel electrolytes were prepared by dissolving the
PEO/LiTFSI mixtures (3.678 gm) in 15 mL of ACN under continuous stirring at 30 ◦C for
6 h. The resulting slurries were used for fabricating gel electrolytes supported by LFP
cathode sheets. The samples with the PEO/LiTFSI ratio of 2/1 and 3/1 were denoted as
PL21 and PL31, respectively. Subsequently, the PL slurries were mixed with 20 wt% ceramic
powders, namely, lithium aluminum titanium phosphate (LATP) and lithium lanthanum
zirconium tantalum oxide (LLZTO), with stirring at 50 ◦C for 6 h to achieve a homogeneous
electrolyte slurry. The samples mixed with LATP and LLZTO powders were labeled as
PL31-LATP and PL31-LLZTO, respectively. Both slurries were then used for fabricating
composite solid electrolytes supported by LFP cathode.

2.2. Fabrication of LFP-Supported Composite Solid Electrolytes

In order to produce the LFP cathode, olivine-type LFP powders (particle size around
500 nm) were combined with a polyvinylidene fluoride binder (PVDF), and a conducting
medium (Super-P, Taiwan Maxwave Co., Taiwan) in NMP solvent (40 mL). The ratio of
the above components was 90:7:3 (w/w/w), respectively, resulting in the formation of an
LFP slurry. Then the slurry was mixed for 2 h using a 3D mixer (SPEX-8000D, Qingdao,
China) with Zr balls to ensure uniformity. The aforementioned slurry was applied to Al
foil using a doctor blade. The above produced LFP cathode sheets were dried overnight
in a vacuum oven at 110 ◦C, compacted, and then cut into the proper form for battery
assembly. The fabrication process for LFP-supported composite solid electrolytes involved
four configurations (PL21, PL31, PL31-LATP, and PL31-LLZTO). The electrolyte slurries
were deposited onto the LFP cathode, and the thickness (60 µm) of each composite layer
was precisely controlled using a doctor blade. To maintain good adhesion, all samples were
kept in a vacuum oven at 140 ◦C for overnight.

2.3. Materials and Electrochemical Characterization

The morphology of the LFP-supported composite solid electrolytes was investigated
through field-emission scanning electron microscopy (FE-SEM, JEOL JSM-6700F). The X-ray
diffraction (XRD) patterns of composite solid electrolytes were obtained using diffractome-
ter (Brucker D2, Karlsruhe, Germany) equipped with a copper (Cu) target. To determine
the maximum potential of each composite solid electrolyte in symmetric cells with Li metal,
linear scanning voltammetry was employed. Electrochemical impedance spectroscopy (EIS)
was used to evaluate the polarization of coin cells constructed with different LFP-supported
composite electrolytes in the 100 kHz to 10 mHz frequency range. EIS measurements were
done by utilizing a CH Instruments 608C instrument (Anatech Co. Ltd., Taiwan).

For electrochemical performance measurements of the LFP-supported composite
solid electrolytes, coin cells (CR2032 type) were utilized. The fabricated LFP-supported
composite electrolytes were inserted into the coin-cell kits, and Li-metal batteries were
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assembled within a glove box (MBARUN, China). The charge/discharge cycle tests used to
evaluate the real-time performance of the LFP-supported composite electrolytes ranged
from 0.2 to 5 C within the voltage range of 2.4–4.0 V at room temperature. The cyclic
performance of Li-metal batteries was tested for 200 cycles at 0.2 C (charging) and 0.5 C
(discharging).

3. Results and Discussion

Figure 1 displays the FESEM images (Top- and cross-sectional) of the PL31-LATP and
PL31-LLZTO electrolytes. The top-view images reveal a roughened surface consisting of
numerous ceramic particles embedded in flexible PEO polymer. The cross-sectional views
demonstrate that the composite solid electrolytes are tightly attached to the LFP cathode
sheets, with a thickness of approximately 25–30 µm for both solid electrolytes. There is
no visible distinction observed at the interface between the composite solid electrolytes
and the LFP cathode sheets, which are covered by a smooth coating of composite solid
electrolytes. These findings led to the conclusion that the “ceramic-in-polymer” electrolytes
are very cohesive and highly flexible.
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Figure 1. Top and cross-sectional views of FE-SEM images: (a,b) PL31-LATP and (c,d) PL31-LLZTO
sample on LFP cathode sheets.

The XRD patterns of PL31-LATP and PL31-LLZTO samples on LFP cathode sheets
are displayed in Figure 2. The LFP sample exhibited various diffraction peaks which are
well matched with the standard orthorhombic olivine phase of LFP (JCPDS Card No.:
83-2092: a = 10.334 Å, b = 6.010 Å, and c = 4.693 Å) [25], confirming the highly crystalline
nature of the LFP powders [26]. The XRD patterns also show two diffraction peaks at 19.2
and 23.6◦, which can be assigned to the (120) and (112) crystalline planes of PEO crystals,
respectively [27]. The weak diffraction peaks are attributed to the ceramics (i.e., LATP
and LLZTO) inserted into the PEO network, which reduces the crystalline degree of PEO
polymers [28]. The XRD pattern of LATP powder for the PL31-LATP sample matches the
typical NASICON-type structure with rhombohedral lattice (Card No.: ICDD 00-035-0754).
The XRD peaks are positioned at 24.5, 29.7, and 36.5◦, which correspond to (104), (113), and
(116), respectively [29,30]. However, the PL31-LLZTO sample’s diffraction peaks closely
correspond to the typical pattern of cubic-LLZTO (ICSD Card No.: 45-109), confirming the
existence of a cubic phase LLZTO [31,32]. Overall, the XRD patterns of both PL31-LATP
and PL31-LLZTO samples confirm the solid composite nature of the materials, consisting
of olivine-type LFP, amorphous PEO, and crystalline ceramics (LATP and LLZTO crystals)
without any impurity.
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LSV is an important technique used to study the electrochemical behavior materials
by sweeping the potential applied to an electrode or electrolyte at a constant rate. In the
context of characterizing composite solid electrolytes, LSV was employed to determine
the breakdown potential of each electrolyte sample. This was done by subjecting the elec-
trolyte at a scan rate of 0.1 mV s−1, as illustrated in Figure 3a. The following experiment’s
LSV profiles demonstrated composite electrolytes’ electrochemical stability. The results
revealed that composite electrolytes possessed high breakdown potentials exceeding 4.25 V
compared to the Li/Li+ reference electrode. This finding is crucial because it indicates that
these solid electrolytes can withstand high potentials without undergoing significant degra-
dation or decomposition. The tendency of solid electrolytes to maintain stability at high
potentials implies that they may efficiently assist the operation of high-voltage cathodes,
allowing the development of new energy storage systems with enhanced performance and
energy density. Figure 3b,c demonstrates the Nyquist plots of LFP-supported composite
electrolytes before and after cycling test (50 cycles), respectively. Over the frequency range,
Nyquist plots show one charge-transfer impedance depressed semicircle comprising the
electrode/electrolyte contact across the frequency range [33]. Accordingly, one equiva-
lent circuit model (see Figure 3d) can be proposed with the combination of components
including R1 (the resistance of bulk electrolyte), R2 (the interfacial impedance of the elec-
trolyte/electrode interface, i.e., the resistance of solid electrolyte interphase (SEI) layer)),
R3 (the interfacial impedance of charge transfer resistance), and CPE (the constant phase
elements for double layer capacitance) [34]. Z-view software was used to investigate the
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EIS spectra of LFP-supported composite solid electrolytes. The experimental impedance
spectra and model predictions were within 10% throughout the frequency range. The
equivalent series resistance (ESR = R1 + R2 + R3) could be calculated from Figure 4a to
estimate the cells’ total internal resistance [35]. Before cycling, the ESR values of PL21,
PL31, PL31-LATP, and PL31-LLZTO samples are found to be 726, 536, 141, and 162 Ω,
respectively. After cycling, the ESR values are decreased to 199, 192, 87, and 113 Ω for PL21,
PL31, PL31-LATP, and PL31-LLZTO samples, respectively. The reduced magnitude in ESR
measurements when compared to before cycling may be ascribed to the formation of an
ionically conductive electrolyte. This result reveals that the ESR value (i.e., the overall inner
resistance) is significantly decreased by the robust design of composite solid electrolytes
(i.e., PL31-LATP and PL31-LLZTO) as compared to gel electrolyte, attributed to the fact
that the bulk electrolyte, interfacial electrolyte/electrode impedance, and charge-transfer
is substantially alleviated. Overall, the analysis of Nyquist plots and ESR values pro-
vides valuable information regarding the internal resistance and electrochemical behavior
of composite solid electrolytes, which is critical for designing high-performance energy
storage devices. Further, ionic conductivity (σ) was evaluated using EIS plots using this
formula σ = l/(R1 × A), where ‘l’ is the thickness of the film in the electrolyte, and ‘A’ is
the projected active area [27,36]. The σ values follows the following order: PL31-LATP
(2.08 × 10−4 S cm−1) > PL31-LLZTO (1.64 × 10−4 S cm−1) > PL31 (8.58 × 10−5 S cm−1) >
PL21 (5.10 × 10−5 S cm−1) and are presented in Figure 4b. Further, we compared our ionic
conductivity results with previous studies and provided a comparative table in supplemen-
tary information (Table S1). The PL31-LATP and PL31-LLZTO samples have better ionic
conductivities than the PL21 and PL31 samples owing to the formation of a dense layered
structure (Figure 1b,d). PEO polymer matrixes and ceramic particles construct this layer
structure [37,38]. Solid electrolytes for Li-metal batteries provide the aforesaid high ionic
conductivity. The crystalline degree of PEO polymers reduced due to the introduction of
moderate amounts of LATP and LLZTO fillers. The ionic segmental motion is enhanced
due to the reduction of crystalline in composite electrolytes. This enhanced segmental
motion promotes ion mobility inside the composite electrolyte, resulting in greater ionic
conductivity. Moreover, percolation behavior phenomenon was observed at the interface
between LATP/LLZTO particles and PEO polymer matrix [39,40]. This percolation be-
havior further enhances the movement of Li+ ions, facilitating faster ionic conduction and
contributing to enhanced ionic conductivity [23,41]. Accordingly, the quantification of
ionic conductivity using EIS analysis reveals that the design of composite solid electrolytes,
particularly those incorporating LATP and LLZTO fillers, significantly enhances the ionic
conductivity in Li-metal batteries. The 3D ionic conductive network formed within the
composite electrolyte, along with the reduced crystalline degree of the polymer and perco-
lation behavior at the interface, collectively contribute to the improved ionic conductivity
and have the potential for developing high-performance energy storage technology.

To evaluate the high-rate capability, galvanostatic charge-discharge profiles of solid
electrolytes were recorded, which is equipped with Li-metal batteries and presented in
Figure 5a–d. The Li-metal batteries were cycled through voltages of 2.4 to 4.0 V (vs.
Li/Li+) at charge and discharge rates of 0.2, 0.5, 1, 2, and 5 C. At 0.2 C, all batteries
showed a distinct flat plateau, suggesting a two-phase reversible process: LiFePO4 ↔
(1 − x)LiFePO4 + xFePO4 + xLi+ + xe−. The estimated specific capacity for this reaction is
around 170 mAh g−1, measured at Ca. 3.2 − 3.6 V vs. Li/Li+ [42]. All battery discharge
capacities attained approximately 160 mAh g−1, which is close to the estimated capacity.
Furthermore, symmetry was observed in the 0.2 C charge/discharge curves, indicating Li
ions in the olivine-type LFP crystals.
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Figure 5. Typical charge-discharge curves of Li-metal batteries equipped with (a) PL21, (b) PL31,
(c) PL31-LATP, and (d) PL31-LLZTO electrolytes at various rates.

Electrode polarization (represented by the potential difference between charging and
discharging plateaus, ∆E) was significantly influenced by the electrolyte type, particularly
at high-rate capacities such as 2 C and 5 C. With higher C rates, the ∆E increased due to the
apparent polarization resulting from ionic diffusion and charge transfer resistance in the
Li-metal batteries. As shown by the discharge capacity vs C rate plot, the Li-metal battery
fabricated using the PL31-LATP electrolyte displayed improved rate capability across the
entire 0.2–5 C rate range (see Figure 6a). The capacity retentions were 96.2% (0.5 C), 83.9%
(1 C), 75.8% (2 C), and 65.2% (5 C) compared to the discharge capacity at 0.2 C, confirming
its high-rate capabilities. After the rate capability test, all Li-metal batteries recovered to
their original capacity at 0.2 C, indicating excellent Li+ reversibility through the robust
design of the hierarchical composite solid layer, even after high-rate cycling experiments. In
contrast, both PL21 and PL31 samples displayed poor high-rate capability at 5 C, indicating
significant electrode polarization. The enhanced rate capacity compared to the PL31-LATP
sample underlined the relevance of LATP fillers in the construction of composite solid
electrolytes.
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Figure 6b–d demonstrate galvanostatic cycles of Li symmetric cells using several
solid-state electrolytes (PL31, PL31-LATP, and PL31-LLZTO samples) at a current density
of 0.2 mA cm−2 to evaluate the durability. This analysis was carried out to evaluate the
electrochemical stability of the composite electrolytes in the presence of Li metal. The
whole galvanostatic cycling analysis was done at ambient temperature. According to
the findings, Li symmetric cells equipped with composite electrolytes that contained soft
PEO electrolytes without LLZTO fillers (PL31) displayed unstable Li plating/stripping
cycling for about 60 h before incurring a short circuit. Notably, the Li-dendrite-suppression
capability of the composite electrolyte gradually improved with the incorporation of LATP
and LLZTO fillers. Particularly noteworthy, the Li symmetric cells fabricated with PL31-
LATP and PL31-LLZTO electrolytes demonstrated stable cycling without short circuits
for 60 h. These results suggest the potential of these batteries for enhanced safety and
improved electrochemical stability in Li metal. This enhancement is due to the high amount
of LLZTO ceramic, which has a shear modulus of up to 55 GPa, significantly more than the
minimal value (8.5 GPa), necessary to inhibit Li dendrite growth [43]. As per the previous
finding, LATP powders modulus of elasticity and hardness values vary from 107–150 GPa
to 5.5–10.0 GPa, respectively [44]. Therefore, it is necessary to introduce highly conductive
ceramics as fillers into composite electrolytes in order to increase the mechanical strength,
which acts as a physical barrier to suppress Li dendrites [45].

The typical charge-discharge curves of Li-metal batteries fabricated with LFP-supported
solid-state electrolytes (PL31-LATP and PL31-LLZTO) are presented in Figure 7a,b.
Charge/discharge analysis of the Li-metal batteries was conducted under ambient temper-
ature with potential window 2.4–4.0 V vs. Li/Li+. The batteries were charged at a rate of
0.2 C and discharged at a rate of 0.5 C. Significantly, both Li-metal batteries exhibit a stable
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reversible capacity spanning from 153 to 160 mAh g−1 in 200 cycles, which represents over
90% energy storage within the olivine LFP lattices. In addition, the charge/discharge curves
exhibit symmetry at 0.2 C/0.5 C, indicating that Li+ intercalation and de-intercalation are
reversible. Figure 7c,d displays the capacity retention and Coulombic efficiency as a func-
tion of cycle number for both Li-metal batteries fabricated with LFP-supported solid-state
electrolytes in order to evaluate their cyclic performance. Coulombic efficiency and ca-
pacity retention are commonly electrochemical parameters of an energy device, which are
used to assess the cyclic stability of composite solid electrolytes during charge/discharge
cycling. These parameters (Coulombic efficiency and capacity retention) are estimated as
per the previous study [46]. Remarkably, in 200 cycles, both Li-metal batteries demonstrate
superior cyclic performance with excellent Coulombic efficiency (>99.5%). This satisfactory
result confirms that the composite solid electrolyte consisting of PEO, ceramics (LATP and
LLZTO), and LiTFSI offers a protective layer against Li dendrite growth. Consequently,
it induces desirable cyclic stability and superior rate capability, ensuring the long-term
performance of the batteries.
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Figure 7. Typical charge-discharge curves of different Li-metal batteries using (a) PL31-LATP and
(b) PL31-LLZTO electrolytes at 0.2 C (charging) and 0.5 C (discharging). Cyclic performance of
different Li-metal batteries using (c) PL31-LATP and (d) PL31-LLZTO electrolytes at 0.2 C (charging)
and 0.5 C (discharging). The inset shows the photographs of Li-metal batteries using PL31-LATP
electrolytes reaching to ca. 3.51 V) and light-emitting diode lighted on by the solid-state battery.

To facilitate the practical applications, a pouch cell was assembled using an LFP-
supported dual composite solid electrolyte (PL31-LATP) and a graphite anode, as shown
in the inset of Figure 7c. The digital photograph image demonstrates that the pouch cell
successfully powers a light-emitting diode. The pouch cell configuration, comprising
LFP cathodes, graphite anodes, and composite solid electrolytes with a thickness around
30 µm, achieves an energy density of around 116 Wh kg−1. Energy density, cyclic stability,
and high-rate capacity are all significantly increased thanks to the cathode-supported
hierarchical electrolyte architecture. An improved ionic conductivity and lower interfacial
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electrolyte/electrode resistance are the results of this ideal design for composite solid
electrolytes. This provides a potentially useful approach to improving energy density, cycle
stability, and rate capability in real-world battery applications.

4. Conclusions

This research illustrates the efficacy of a strong composite solid electrolyte design for
high-performance Li-metal batteries using LFP cathode sheets, soft polymer (PEO), and
Li salt (LiTFSI). The designed solid electrolytes showed superior electrochemical stability
above 4.25 V vs. Li/Li+. The ESR value exhibits a noteworthy reduction compared to gel
electrolytes, owing to the resilient architecture of composite solid electrolytes containing
LATP and LLZTO fillers. The observed reduction can be ascribed to the mitigation of bulk
electrolyte, charge-transfer, and interfacial electrolyte/electrode impedance. Based on the
analysis of EIS measurements, the ionic conductivities of PL31-LATP and PL31-LLZTO
electrolytes reach high values of 2.08 × 10−4 and 1.64 × 10−4 S cm−1, respectively, at
ambient temperature. The Li-metal battery equipped with LFP-supported PL31-LATP
electrolyte exhibits not only high-rate capability at 5 C (with a capacity retention of 65.2%
compared to the original capacity at 0.2 C), but also superior cyclic stability with excellent
Coulombic efficiency (>99.5%) in 200 cycles. These results confirm that the fabricated
composite solid electrolyte, composed of PEO, ceramics (LATP and LLZTO), and LiTFSI,
acts as a protective layer against the growth of Li dendrites during extended cycling
tests, leading to enhanced cyclic stability and desirable rate capability. The composite
solid electrolytes developed in this study offer a promising solution for the design of
high-performance solid-state electrolytes utilizing LATP ceramic particles.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/batteries9100490/s1, Table S1: A comparison table of ionic
conductivity based on PEO solid-state electrolyte [47–49].
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