Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the DESs
2.3. Differential Scanning Calorimetry (DSC)
2.4. Thermogravimetric Analysis (TGA)
2.5. Flammability Test
2.6. Fourier Transform Infrared (FT-IR) Analysis
2.7. Viscosity
2.8. Density
2.9. Ionic Conductivity
3. Results and Discussions
3.1. Thermal Properties
3.2. Flammability Test
3.3. FT-IR Analysis
3.4. Transport Properties of the As-Prepared DESs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.X.; Liang, Q.H.; Yu, X.L.; Lu, Q.F.; Ma, L.B.; Qin, X.Y.; Chen, G.H.; Li, B.H. Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Adv. Funct. Mater. 2021, 31, 2011102. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Lu, Z.; Lin, K.; Lyu, Y.-Q.; Li, B.; Ciucci, F.; Kim, J.-K. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Mater. 2019, 23, 8–16. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Bao, Q.; Yao, Y.; Xiao, M.; Xu, Z.; Yang, J.; Liu, W. Environmentally Stable, Robust, Adhesive, and Conductive Supramolecular Deep Eutectic Gels as Ultrasensitive Flexible Temperature Sensor. Adv. Mater. 2023, 35, 2300114. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Yu, G. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Acc. Chem. Res. 2020, 53, 1648–1659. [Google Scholar] [CrossRef]
- Ozdemir, N.; Zengin, H.; Yavuz, A. Electropolymerization of pyrrole from a deep eutectic solvent for supercapacitor applications. Mater. Chem. Phys. 2020, 256, 123645. [Google Scholar] [CrossRef]
- Cruz, H.; Jordão, N.; Amorim, P.; Dionísio, M.; Branco, L.C. Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices. ACS Sustain. Chem. Eng. 2018, 6, 2240–2249. [Google Scholar] [CrossRef]
- Shi, J.Q.; Sun, T.J.; Bao, J.Q.; Zheng, S.B.; Du, H.H.; Li, L.; Yuan, X.M.; Ma, T.; Tao, Z.L. “Water-in-Deep Eutectic Solvent” Electrolytes for High-Performance Aqueous Zn-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2102035. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2024, 114, 11060–11082. [Google Scholar] [CrossRef]
- Ogawa, H.; Mori, H. Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: Electrochemical, thermal and computational study. Phys. Chem. Chem. Phys. 2020, 22, 8853–8863. [Google Scholar] [CrossRef]
- Hu, Z.; Xian, F.; Guo, Z.; Lu, C.; Du, X.; Cheng, X.; Zhang, S.; Dong, S.; Cui, G.; Chen, L. Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chem. Mater. 2020, 32, 3405–3413. [Google Scholar] [CrossRef]
- Ogawa, H.; Sato, Y.; Mori, H. Tetramethylurea dimer/lithium salt-based deep eutectics as a novel class of eutectic electrolytes. Mater. Chem. Front. 2021, 5, 8078–8085. [Google Scholar] [CrossRef]
- Song, J.; Si, Y.; Guo, W.; Wang, D.; Fu, Y. Organosulfide-Based Deep Eutectic Electrolyte for Lithium Batteries. Angew. Chem. Int. Ed. 2021, 60, 9881–9885. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.T.A.; Huynh, T.T.K.; Le, L.T.M.; Truong, T.T.T.; Nguyen, O.H.; Tran, K.T.T.; Tran, M.V.; Tran, P.H.; Kaveevivitchai, W.; Le, P.M.L. Deep Eutectic Solvent Based on Lithium Bis[(trifluoromethyl)sulfonyl] Imide (LiTFSI) and 2,2,2-Trifluoroacetamide (TFA) as a Promising Electrolyte for a High Voltage Lithium-Ion Battery with a LiMn2O4 Cathode. ACS Omega 2020, 5, 23843–23853. [Google Scholar] [CrossRef]
- Mezzomo, L.; Pianta, N.; Ostroman, I.; Aloni, N.; Golodnitsky, D.; Peled, E.; Mustarelli, P.; Ruffo, R. Deep eutectic solvent electrolytes based on trifluoroacetamide and LiPF6 for Li-metal batteries. J. Power Sources 2023, 561, 232746. [Google Scholar] [CrossRef]
- Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Hardin, N.Z.; Duca, Z.; Imel, A.; Ward, P.A. Methyl Carbamate—Lithium Salt Deep Eutectic Electrolyte for Lithium—Ion Batteries. ChemElectroChem 2022, 9, e202200628. [Google Scholar] [CrossRef]
- Yu, D.; Lu, Y.; Li, G.; Fu, L.; Mu, T. Volatility of Deep Eutectic Solvent Choline Chloride: N-Methylacetamide at Ambient Temperature and Pressure. Ind. Eng. Chem. Res. 2019, 58, 7308–7317. [Google Scholar]
- Luo, J.; Van Tan, T.; Conrad, O.; Vankelecom, I.F.J. 1H-1,2,4-Triazole as solvent for imidazolium methanesulfonate. Phys. Chem. Chem. Phys. 2012, 14, 11441–11447. [Google Scholar] [CrossRef]
- Luo, J.; Hu, J.; Saak, W.; Beckhaus, R.; Wittstock, G.; Vankelecom, I.F.J.; Agert, C.; Conrad, O. Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes. J. Mater. Chem. 2011, 21, 10426–10436. [Google Scholar]
- Fulcher, G.S. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Tammann, G.; Hesse, W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chemie 1926, 156, 245–257. [Google Scholar] [CrossRef]
- Vogel, D.H. Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten. Phys. Z. 1921, 22, 645. [Google Scholar]
- Omar, K.A.; Sadeghi, R. Novel diglycolic acid-based deep eutectic solvents and their applications as a rust remover. J. Mol. Liq. 2020, 312, 113380. [Google Scholar]
- Omar, K.A.; Sadeghi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar]
- Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chem. Eur. J. 2007, 13, 6495–6501. [Google Scholar] [CrossRef]
- Wippermann, K.; Wackerl, J.; Lehnert, W.; Huber, B.; Korte, C. 2-Sulfoethylammonium Trifluoromethanesulfonate as an Ionic Liquid for High Temperature PEM Fuel Cells. J. Electrochem. Soc. 2016, 136, F25–F37. [Google Scholar]
- Xu, W.; Cooper, E.I.; Angell, C.A. Ionic Liquids: Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003, 107, 6170–6178. [Google Scholar]
Component | σ0/mS cm−1 | T0/K | Bσ/K | BσR/kJ mol−1 | R2 |
---|---|---|---|---|---|
DES-3:1 | 97.51 | 195 | 568.25 | 4.72 | 0.9987 |
DES-4:1 | 130.32 | 190 | 547.81 | 4.55 | 0.9989 |
Component | η0/mPa s | T0/K | Bη/K | BηR/kJ mol−1 | R2 |
---|---|---|---|---|---|
DES-3:1 | 0.38 | 195 | 635.44 | 5.28 | 0.9976 |
DES-4:1 | 0.39 | 190 | 525.36 | 4.37 | 0.9996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, G.; Korte, C.; Luo, J. Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity. Materials 2025, 18, 2048. https://doi.org/10.3390/ma18092048
Lyu G, Korte C, Luo J. Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity. Materials. 2025; 18(9):2048. https://doi.org/10.3390/ma18092048
Chicago/Turabian StyleLyu, Guihong, Carsten Korte, and Jiangshui Luo. 2025. "Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity" Materials 18, no. 9: 2048. https://doi.org/10.3390/ma18092048
APA StyleLyu, G., Korte, C., & Luo, J. (2025). Deep Eutectic Solvents Based on N-Methyltrifluoroacetamide and Lithium Bis(trifluoromethanesulfonyl)imide as New Electrolytes with Low Viscosity and High Ionic Conductivity. Materials, 18(9), 2048. https://doi.org/10.3390/ma18092048