Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (565)

Search Parameters:
Keywords = biotic challenges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 891 KB  
Review
Functional and Mechanistic Insights into Plant VQ Proteins in Abiotic and Biotic Stress Responses
by Lili Zhang, Yi Wang, Zhiyong Ni and Yuehua Yu
Plants 2025, 14(24), 3855; https://doi.org/10.3390/plants14243855 - 17 Dec 2025
Abstract
Valine-glutamine motif proteins (VQ), plant-specific transcriptional co-regulators harboring the conserved FxxhVQxhTG motif, play pivotal roles in coordinating plant stress adaptation through dynamic interactions with WRKY transcription factors (WRKY), mitogen-activated protein kinases (MAPKs) cascades, and hormone signaling pathways. Evolutionary analyses reveal the characteristics of [...] Read more.
Valine-glutamine motif proteins (VQ), plant-specific transcriptional co-regulators harboring the conserved FxxhVQxhTG motif, play pivotal roles in coordinating plant stress adaptation through dynamic interactions with WRKY transcription factors (WRKY), mitogen-activated protein kinases (MAPKs) cascades, and hormone signaling pathways. Evolutionary analyses reveal the characteristics of their evolutionary protection and ancient origin, with lineage-specific expansion via genome duplication events. Structurally, compact genes lacking introns and the presence of intrinsic disordered regions (IDRs) facilitate rapid stress responses and versatile protein interactions. Functionally, VQ proteins orchestrate abiotic stress tolerance (e.g., drought, salinity, temperature extremes) by modulating reactive oxygen species (ROS) homeostasis, osmotic balance, and abscisic acid/salicylic acid (ABA/SA)-mediated signaling. Concurrently, they enhance biotic stress resistance via pathogen-responsive WRKY-VQ modules that regulate defense gene expression and hormone crosstalk. Despite advances, challenges persist in deciphering post-translational modifications, tissue-specific functions, and cross-stress integration mechanisms. Harnessing CRISPR-based editing and multi-omics approaches will accelerate the exploitation of VQ genes for developing climate-resilient crops. This review synthesizes the molecular architecture, evolutionary dynamics, and multifunctional regulatory networks of VQ proteins, providing a roadmap for their utilization in sustainable agriculture. Full article
Show Figures

Figure 1

28 pages, 3338 KB  
Review
Phenylalanine Ammonia-Lyase: A Core Regulator of Plant Carbon Metabolic Flux Redistribution—From Molecular Mechanisms and Growth Modulation to Stress Adaptability
by Xiaozhu Wu, Suqing Zhu, Lisi He, Gongmin Cheng, Tongjian Li, Wenying Meng and Feng Wen
Plants 2025, 14(24), 3811; https://doi.org/10.3390/plants14243811 - 14 Dec 2025
Viewed by 111
Abstract
Phenylalanine ammonia-lyase (PAL) is the core branch-point enzyme connecting plant primary aromatic amino acid metabolism to the phenylpropanoid pathway, which determines carbon flux redistribution between growth and defense and is essential for plant adaptation to various environments. Extensive research has clarified PAL’s conserved [...] Read more.
Phenylalanine ammonia-lyase (PAL) is the core branch-point enzyme connecting plant primary aromatic amino acid metabolism to the phenylpropanoid pathway, which determines carbon flux redistribution between growth and defense and is essential for plant adaptation to various environments. Extensive research has clarified PAL’s conserved homotetrameric structure, MIO cofactor-dependent catalytic mechanism, and its roles in plant growth, development, and stress responses. However, there is a lack of comprehensive review studies focusing on PAL-mediated carbon metabolic flux redistribution, specifically covering its structural and evolutionary foundations, the links between this flux regulation and plant growth/development, its multi-layered regulatory network, and its roles in stress adaptation, limiting a comprehensive understanding of its evolutionary and functional diversity. This review systematically covers four core aspects: first, the molecular foundation, encompassing PAL’s structural features and catalytic specificity governed by the MIO cofactor; second, evolutionary diversity spanning from algae to angiosperms, with emphasis on unique regulatory mechanisms and evolutionary significance across lineages; third, the multi-layered regulatory network, integrating transcriptional control, post-translational modifications, epigenetic regulation, and functional crosstalk with phytohormones; and fourth, functional dynamics, which elaborate PAL’s roles in organ development, including root lignification, stem mechanical strength, leaf photoprotection, flower and fruit quality formation, and lifecycle-wide dynamic expression, as well as its mediated stress adaptations and regulatory networks under combined stresses. These insights provide a theoretical basis for targeted manipulation of PAL to optimize crop carbon allocation, thus improving growth performance, enhance stress resilience, and promote sustainable agriculture. Full article
(This article belongs to the Special Issue Genetic and Omics Insights into Plant Adaptation and Growth)
Show Figures

Figure 1

33 pages, 524 KB  
Review
Algae-Based Protective Coatings for Sustainable Infrastructure: A Novel Framework Linking Material Chemistry, Techno-Economics, and Environmental Functionality
by Charith Akalanka Dodangodage, Hirasha Premarathne, Jagath C. Kasturiarachchi, Thilini A. Perera, Dilan Rajapakshe and Rangika Umesh Halwatura
Phycology 2025, 5(4), 84; https://doi.org/10.3390/phycology5040084 - 10 Dec 2025
Viewed by 316
Abstract
Conventional petroleum-based protective coatings release high levels of volatile organic compounds (VOCs) and contribute to resource depletion, urging the development of environmentally responsible alternatives. Among the bio-based candidates, microalgae and Cyanobacteriophyta have recently gained attention for their ability to produce diverse biopolymers and [...] Read more.
Conventional petroleum-based protective coatings release high levels of volatile organic compounds (VOCs) and contribute to resource depletion, urging the development of environmentally responsible alternatives. Among the bio-based candidates, microalgae and Cyanobacteriophyta have recently gained attention for their ability to produce diverse biopolymers and pigments with intrinsic protective functionalities. However, existing literature has focused mainly on algal biofuels and general biopolymers, leaving a major gap in understanding their application as sustainable coating materials. This review addresses that gap by providing the first integrated assessment of algae-based protective coatings. It begins by defining abiotic and biotic surface degradation mechanisms, including microbiologically influenced corrosion, to establish performance benchmarks. The review then synthesizes recent findings on key algal components, including alginate, extracellular polymeric substances (EPS), and phycocyanin, linking biochemical composition to functional performance, techno-economic feasibility, and industrial scalability. It evaluates their roles in adhesion strength, UV stability, corrosion resistance, and antifouling activity. Reported performance metrics include adhesion strengths of 2.5–3.8 MPa, UV retention above 85% after 2000 h, and corrosion rate reductions of up to 40% compared with polyurethane systems. Furthermore, this study introduces the concept of carbon-negative, multifunctional coatings that simultaneously protect infrastructure and mitigate environmental impacts through CO2 sequestration and pollutant degradation. Challenges involving biomass variability, processing costs (>USD 500/ton), and regulatory barriers are critically discussed, with proposed solutions through hybrid cultivation and biorefinery integration. By bridging materials science, environmental engineering, and sustainability frameworks, this review establishes a foundation for transforming algae-based coatings from laboratory research to scalable, industrially viable technologies. Full article
Show Figures

Graphical abstract

49 pages, 6957 KB  
Review
Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study
by Wagner Meza-Maicelo, César R. Balcázar-Zumaeta, Henry W. Santillan Culquimboz, Manuel Oliva-Cruz and Flavio Lozano-Isla
Int. J. Plant Biol. 2025, 16(4), 135; https://doi.org/10.3390/ijpb16040135 - 3 Dec 2025
Viewed by 390
Abstract
Common bean (Phaseolus vulgaris L.) is a cornerstone of global food security, yet its production is persistently challenged by biotic and abiotic stresses. This study conducted a bibliometric analysis following PRISMA guidelines on 549 documents published between 1971 and mid-2025, using Biblioshiny, [...] Read more.
Common bean (Phaseolus vulgaris L.) is a cornerstone of global food security, yet its production is persistently challenged by biotic and abiotic stresses. This study conducted a bibliometric analysis following PRISMA guidelines on 549 documents published between 1971 and mid-2025, using Biblioshiny, VOSviewer, and CiteSpace. Results reveal a scientific output concentrated in leading institutions such as Michigan State University (MSU, USA) and the International Center for Tropical Agriculture (CIAT, Colombia). Collaboration networks are dominated by influential authors including Beebe, S. and Kelly, J.D., with Euphytica and Crop Science emerging as primary publication outlets. Research trends highlight salinity tolerance, oxidative stress, and chromosomal mapping, where advanced technologies such as SNP chips have supplanted RAPD markers. Critical challenges remain, including limited phenotyping capacity and the complexity of polygenic resistance, with urgent implications for developing countries where beans are vital for food security but face barriers to technology adoption and restricted participation in global research networks. Concurrently, mitigation strategies have shifted toward sustainable approaches, incorporating beneficial microorganisms for biotic stress and bio-stimulants or plant extracts for abiotic stress. Since 2020, the field has increasingly embraced multifunctional strategies leveraging natural mechanisms to enhance crop resilience. This analysis offers a comprehensive knowledge base to guide future research agendas. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

26 pages, 1720 KB  
Review
Toward Resilience in Broadacre Agriculture: A Methodological Review of Remote Sensing in Crop Productivity, Phenology, and Environmental Stress Detection
by Jianxiu Shen, Hai Wang and Hasnein Tareque
Remote Sens. 2025, 17(23), 3886; https://doi.org/10.3390/rs17233886 - 29 Nov 2025
Viewed by 363
Abstract
Large-scale rainfed cropping systems (broadacre agriculture) face intensifying climate and resource stresses that undermine yield stability and farm livelihoods. Remote sensing (RS) offers critical tools for improving resilience by monitoring crop performance—productivity, phenology, and environmental stress—across large areas and timeframes. This review aims [...] Read more.
Large-scale rainfed cropping systems (broadacre agriculture) face intensifying climate and resource stresses that undermine yield stability and farm livelihoods. Remote sensing (RS) offers critical tools for improving resilience by monitoring crop performance—productivity, phenology, and environmental stress—across large areas and timeframes. This review aims to synthesize methodological advances over the past two decades in applying RS for broadacre crop monitoring and to identify key challenges and integration opportunities. Peer-reviewed studies across diverse crops and regions were systematically examined to evaluate the strengths, limitations, and emerging trends across the three RS application themes. The review finds that (1) RS enables spatially explicit yield estimation from regional to paddock scales, with vegetation indices (VIs) and phenology-adjusted metrics closely correlated with yield. (2) Time-series analyses of RS data effectively capture phenological transitions critical for forecasting, supported by advances in curve fitting, sensor fusion, and machine learning. (3) Thermal and multispectral indices support the early detection of abiotic (drought, heat, salinity) and biotic (pests, disease) stresses, though specificity remains limited. Across themes, methodological silos and sensor integration barriers hinder holistic application. Emerging approaches, such as multi-sensor/scale fusion, RS–crop model data assimilation, and operational and big data integration, provide promising pathways toward resilience-focused decision support. Future research should define quantifiable resilience metrics, cross-theme predictive integration, and accessible tools to guide climate adaptation. Full article
Show Figures

Figure 1

16 pages, 1256 KB  
Review
Proactive Strategies to Prevent Biofilm-Associated Infections: From Mechanistic Insights to Clinical Translation
by María Teresa Hernández-Huerta, Eduardo Pérez-Campos, Laura Pérez-Campos Mayoral, Itzel Patricia Vásquez Martínez, Wendy Reyna González, Efrén Emmanuel Jarquín González, Hanan Aldossary, Ibrahim Alhabib, Lamya Zohair Yamani, Nasreldin Elhadi, Ebtesam Al-Suhaimi and Hector A. Cabrera-Fuentes
Microorganisms 2025, 13(12), 2726; https://doi.org/10.3390/microorganisms13122726 - 29 Nov 2025
Viewed by 343
Abstract
Biofilms are structured microbial communities that adhere to biotic and abiotic surfaces embedded in an autonomous extracellular matrix. These structures contribute to persistent infections, especially in patients with indwelling medical devices, due to their resistance to antimicrobial agents; they have evolved to evade [...] Read more.
Biofilms are structured microbial communities that adhere to biotic and abiotic surfaces embedded in an autonomous extracellular matrix. These structures contribute to persistent infections, especially in patients with indwelling medical devices, due to their resistance to antimicrobial agents; they have evolved to evade host immune responses. Despite advances in antimicrobial therapies, biofilm-associated infections remain a major challenge in clinical infectious diseases. This perspective explores the underlying mechanisms of biofilm resilience and immune evasion, emphasizing the limitations of conventional treatments and the need to develop pre-emptive measures that focus on preventing biofilm formation rather than implementing a treatment. This work discusses emerging strategies, such as quorum-sensing inhibition, hormonal modulation, matrix-degrading enzymes, anti-adhesive surface modifications, and nanotechnology-based drug delivery, that offer promising avenues to disrupt biofilm formation and maturation. Also offers a shift from the paradigm, looking into proactive prevention rather than treatment, emphasizing clinical translation, scalability, and biocompatibility. Embedding these strategies into routine care could significantly reduce healthcare-associated infections, improve patient outcomes, and mitigate the development of antimicrobial resistance. Our analysis highlights biofilm prevention as a critical frontier in the future of infectious disease management. Full article
(This article belongs to the Section Biofilm)
Show Figures

Graphical abstract

31 pages, 7623 KB  
Review
Nanotechnology Strategies in Plant Genetic Engineering: Intelligent Delivery and Precision Editing
by Chun-Mei Lai, Xiao-Shan Xiao, Li-Wei Liu, Xin-Da Lin, Dan-Lin Dou, Han-Yang Cai, Zhi-Feng Mei, Fan Yang, Yan Cheng and Yuan Qin
Plants 2025, 14(23), 3625; https://doi.org/10.3390/plants14233625 - 28 Nov 2025
Viewed by 630
Abstract
Plant genetic engineering is crucial for enhancing crop yield, quality, and resilience to both abiotic and biotic stresses, thereby promoting sustainable agriculture. Agrobacterium-mediated, biolistic bombardment, electroporation, and poly (ethylene glycol) (PEG)-mediated genetic transformation systems are widely applied in plant genetic engineering. However, these [...] Read more.
Plant genetic engineering is crucial for enhancing crop yield, quality, and resilience to both abiotic and biotic stresses, thereby promoting sustainable agriculture. Agrobacterium-mediated, biolistic bombardment, electroporation, and poly (ethylene glycol) (PEG)-mediated genetic transformation systems are widely applied in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, gene-delivery methods based on nanotechnology have been developed for plant genetic transformation. This nanostrategy demonstrates remarkable transformation efficiency, excellent biocompatibility, effective protection of exogenous nucleic acids, and the potential for plant regeneration. However, the application of nanomaterial-mediated gene-delivery systems in plants is still in its early stages and faces numerous challenges for widespread adoption. Herein, the conventional genetic transformation techniques utilized in plants are succinctly examined. Subsequently, the advancements in nanomaterial-based gene-delivery systems are reviewed. The applications of CRISPR-Cas-mediated genome editing and its integration with plant nanotechnology are also examined. The innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein are expected to facilitate the progress of plant genetic engineering in modern agriculture. Full article
Show Figures

Figure 1

38 pages, 17385 KB  
Review
Breeding for Disease Resistance in Cucumber: Current Status, Genetic Insights, and Genomic Resources
by Simranjot Kaur, Shallu Thakur, Prerna Sabharwal and Geoffrey Meru
Horticulturae 2025, 11(12), 1440; https://doi.org/10.3390/horticulturae11121440 - 28 Nov 2025
Viewed by 854
Abstract
Cucumber (Cucumis sativus L.) is a globally important crop valued for both fresh consumption and processing, particularly in the United States. It was the first specialty crop among horticultural crops with a publicly available draft genome, providing a foundation for molecular breeding [...] Read more.
Cucumber (Cucumis sativus L.) is a globally important crop valued for both fresh consumption and processing, particularly in the United States. It was the first specialty crop among horticultural crops with a publicly available draft genome, providing a foundation for molecular breeding and trait discovery. However, cucumber production faces significant yield losses due to a wide range of biotic stresses. The crop is highly susceptible to fungal, viral, and bacterial pathogens throughout its lifecycle. To combat these challenges, breeders deploy conventional and contemporary breeding strategies to develop disease-resistant cultivars. Advances in high-throughput sequencing and genomic tools, such as quantitative trait loci mapping, genome-wide association studies, and genomic selection, have accelerated the identification and subsequent integration of resistance genes and loci into elite cucumber germplasm. This review highlights recent progress in resistance breeding for biotic stress management in cucumber, with a focus on major diseases caused by fungal, viral, and bacterial pathogens. It emphasizes the role of genomic tools, the discovery of key resistance genes and QTLs, and the potential of modern breeding approaches to improve crop resilience. Continued innovation and integration of emerging technologies will be essential for developing durable, broad-spectrum resistance in future cucumber cultivars. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

26 pages, 7731 KB  
Review
The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review
by Hanan Abo El-Kassem Bosly, Rehab A. Dawoud, Tahany Noreldin, Rym Hassani and Habib Khemira
Sustainability 2025, 17(23), 10550; https://doi.org/10.3390/su172310550 - 25 Nov 2025
Viewed by 619
Abstract
In Saudi Arabia, coffee (Coffea arabica L.) has been grown for centuries on the mountain terraces of the southwestern regions. Jazan region accounts for about 80% of the total production. The acreage allocated to coffee is comparatively small but it is expanding [...] Read more.
In Saudi Arabia, coffee (Coffea arabica L.) has been grown for centuries on the mountain terraces of the southwestern regions. Jazan region accounts for about 80% of the total production. The acreage allocated to coffee is comparatively small but it is expanding rapidly thanks to a strong government-supported drive to increase local coffee production. Despite the initial success, the effort is hampered by the limited water supply available for irrigating the new plantings and the increased incidence of pests and diseases. The magnitude of these natural handicaps appears to have increased as of late, apparently due to climate change (CC). This review examines strategies to mitigate the consequences of CC on the coffee sector through the implementation of precision agriculture (PA) techniques, with the focus on addressing the challenges posed by biotic and abiotic stresses. The impact of CC is both direct by rendering present growing regions unsuitable and indirect by amplifying the severity of biotic and abiotic tree stressors. Precision agriculture (PA) techniques can play a key role in tackling these challenges through data-driven tools like sensors, GIS, remote sensing, machine learning and smart equipment. By monitoring soil, climate, and crop conditions, PA enables targeted irrigation, fertilization, and pest control thus improving efficiency and sustainability. This approach reduces costs, conserves resources, and minimizes environmental impact, making PA essential for building climate-resilient and sustainable coffee production systems. The review synthesizes insights from case studies, research papers, and other scientific literature concerned with precision farming practices and their effectiveness in alleviating biotic and abiotic pressures on coffee trees. Additionally, it evaluates technological advances, identifies existing knowledge gaps, and suggests areas for future research. Ultimately, this study seeks to contribute to enhancing the resilience of coffee farming in Saudi Arabia amidst ongoing CC challenges by educating farmers about the potential of PA technologies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
Untargeted Metabolomics Identifies Faecal Filtrate-Derived Metabolites That Disrupt Clostridioides difficile Metabolism and Confer Gut Barrier Cytoprotection
by Fatimah I. Qassadi, Charlotte Johnson, Karen Robinson, Ruth Griffin, Christos Polytarchou, Dina Kao, Dong-Hyun Kim, Rian L. Griffiths, Zheying Zhu and Tanya M. Monaghan
Int. J. Mol. Sci. 2025, 26(22), 11221; https://doi.org/10.3390/ijms262211221 - 20 Nov 2025
Viewed by 786
Abstract
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components [...] Read more.
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components such as soluble metabolites remains unclear. Therefore, further investigation is needed to identify the mechanistic drivers of FMT efficacy and clarify how non-bacterial factors contribute to therapeutic outcomes. Here, we applied untargeted three-dimensional Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) to profile faecal metabolic reprogramming in rCDI patients pre- and post-FMT, alongside C. difficile cultures exposed to sterile faecal filtrates. FMT induced extensive metabolic shifts, restoring glyoxylate/dicarboxylate and glycerophosphoinositol pathways and normalising disrupted bile acid and amino acid profiles. Faecal filtrate exposure caused strain-specific metabolic disruption in C. difficile, depleting proline, fumarate and succinate while enriching tryptophan. While multiple metabolite classes were profiled, the most significant functional changes were observed in lipids. Lipidomics identified >3.8-fold enrichment of phosphatidylinositol (PI) species, which localised to bacterial membranes and conferred cytoprotection against C. difficile toxins and other epithelial insults. Spatial metabolomics imaging revealed, for the first time, metabolite compartmentalisation within C. difficile, with proline and succinate broadly distributed across the cell surface and fumarate confined to distinct microdomains, highlighting functional heterogeneity in pathogen metabolism. Collectively, these findings demonstrate that soluble metabolites within faecal filtrates mediate pathogen suppression and epithelial barrier protection, establishing metabolite-driven mechanisms underlying FMT efficacy and identifying PI lipids as candidate post-biotic therapeutics for rCDI. Full article
(This article belongs to the Special Issue Interplay Between the Human Microbiome and Diseases)
Show Figures

Figure 1

15 pages, 1256 KB  
Article
Solanum lycopersicoides Introgression Lines Used as Rootstocks Uncover QTLs Affecting Tomato Morphological and Fruit Quality Traits
by Aylin Kabas, Selman Uluisik, Hayri Ustun, Jaime Prohens and Ibrahim Celik
Horticulturae 2025, 11(11), 1364; https://doi.org/10.3390/horticulturae11111364 - 13 Nov 2025
Viewed by 539
Abstract
Tomato (Solanum lycopersicum) is the most important vegetable crop globally; however, its production is often hindered by soil-borne biotic and abiotic stresses. The use of rootstocks provides an effective strategy to mitigate these soil-related challenges. Hence, the development of new rootstock [...] Read more.
Tomato (Solanum lycopersicum) is the most important vegetable crop globally; however, its production is often hindered by soil-borne biotic and abiotic stresses. The use of rootstocks provides an effective strategy to mitigate these soil-related challenges. Hence, the development of new rootstock cultivars remains crucial to meet the demands of rapidly changing environmental conditions. Wild tomato species represent valuable genetic resources for rootstock improvement and are increasingly utilized in rootstock breeding programs. Nevertheless, the genetic mechanisms, particularly quantitative trait loci (QTL), underlying rootstock–scion interaction, remain poorly understood. In this study, 38 introgression lines (ILs) derived from S. lycopersicoides were used as rootstock and grafted with the commercial cultivar ‘Torry F1’ to evaluate their effects on morphological and fruit quality traits under greenhouse conditions. The evaluations included assessments of morphological and fruit quality traits for QTL analysis. A total of 19 QTLs were identified, associated with 11 traits such as yield, antioxidant capacity, flavonoid content, and fruit color parameters (L*, a*, b*, C*, h°), with the phenotypic variance explained ranging from 12% to 61%. Of these QTLs, seven favorable alleles originated from S. lycopersicoides, notably including a major yield-associated locus (Fy5.1). In addition, the identification of a QTL for scion stem thickness (Tsc3.1) highlights the genetic contribution of the rootstock to scion development. This study represents the first evaluation of the rootstock potential of S. lycopersicoides ILs and provides novel insights into the genetic basis of rootstock–scion interaction in tomato. The identified QTLs offer valuable information for future breeding efforts aimed at developing improved rootstock cultivars for sustainable tomato production. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

28 pages, 5847 KB  
Article
Integrated Probiotic Benefits of Bacillus velezensis AAHM-BV2302 Drive Growth, Antioxidant Enhancement, and Immune Protection Against Streptococcus agalactiae in Tilapia (Oreochromis spp.)
by Pakapon Meachasompop, Benchawan Kumwan, Putita Chokmangmeepisarn, Phornphan Phrompanya, Phunsin Kantha, Patcharapong Thangsunan, Prapansak Srisapoome, Pattanapong Thangsunan, Passakorn Kingwascharapong, Kentaro Imaizumi, Natthapong Paankhao, Kanokporn Saenphet, Supap Saenphet, Wararut Buncharoen and Anurak Uchuwittayakul
Antioxidants 2025, 14(11), 1356; https://doi.org/10.3390/antiox14111356 - 13 Nov 2025
Viewed by 638
Abstract
Intensive aquaculture practices heighten oxidative stress and infectious disease risk, necessitating sustainable alternatives to antibiotics. This study evaluated the integrative probiotic and postbiotic potential of Bacillus velezensis AAHM-BV2302 in red tilapia (Oreochromis spp.), focusing on growth, antioxidant defense, immune modulation, and resistance [...] Read more.
Intensive aquaculture practices heighten oxidative stress and infectious disease risk, necessitating sustainable alternatives to antibiotics. This study evaluated the integrative probiotic and postbiotic potential of Bacillus velezensis AAHM-BV2302 in red tilapia (Oreochromis spp.), focusing on growth, antioxidant defense, immune modulation, and resistance to Streptococcus agalactiae. Whole-genome sequencing confirmed its classification as B. velezensis (4.16 Mb, GC 45.9%, ANI 99.4% with NRRL B-41580). Fish were fed diets supplemented with probiotic cells (Cell), cell-free supernatant (Cfs), or their combination (Cell + Cfs) for 30 days, followed by 30 days without probiotic supplementation. Growth performance significantly improved in Cell and Cell + Cfs groups at both Day 30 and Day 60 (p < 0.05). Antioxidant enzymes (SOD, CAT, GSH) increased significantly across tissues at Day 30, while malondialdehyde (MDA) declined (p < 0.05), indicating enhanced redox homeostasis. Humoral immunity was elevated, with higher lysozyme, bactericidal activity, and total IgM persisting post-supplementation (p < 0.05). Expression of il1b, il6, and il8 was upregulated in immune-related and mucosal tissues, reflecting robust immune activation (p < 0.05). After S. agalactiae challenge, survival rates were 55% in Cfs, 60% in Cell, and 70% in Cell + Cfs, corresponding to relative percent survivals (RPS) of 43.8%, 50.0%, and 62.5%, respectively (p < 0.05). These results demonstrate that B. velezensis AAHM-BV2302 enhances growth, antioxidant capacity, and immune resilience through complementary probiotic–postbiotic mechanisms, supporting its application as a safe, multifunctional biotic for antibiotic-free tilapia aquaculture. Full article
(This article belongs to the Special Issue Antioxidants Benefits in Aquaculture—3rd Edition)
Show Figures

Figure 1

26 pages, 14048 KB  
Review
The Gut Microbiome as a Biomarker and Therapeutic Target of Immune Checkpoint Inhibitors: A Review for Oncologists
by Thiti Susiriwatananont, Panuch Eiamprapaporn, Maria Vazquez Roque, Francis A. Farraye, Adam Perlman and Saranya Chumsri
Cells 2025, 14(22), 1779; https://doi.org/10.3390/cells14221779 - 12 Nov 2025
Viewed by 2502
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet their benefits remain limited to a subset of patients, underscoring the need for more reliable biomarkers and novel therapeutic strategies. The gut microbiome has emerged as a critical modulator of systemic immunity and a [...] Read more.
Immune checkpoint inhibitors (ICIs) have transformed cancer therapy, yet their benefits remain limited to a subset of patients, underscoring the need for more reliable biomarkers and novel therapeutic strategies. The gut microbiome has emerged as a critical modulator of systemic immunity and a promising determinant of ICI response. Evidence links specific microbial features, taxa, and bioactive metabolites to enhanced antitumor immunity, whereas disruptions, such as antibiotic exposure, are associated with poorer outcomes. Advances in sequencing and multi-omics technologies have provided more profound insights into microbiome-immune crosstalk, though methodological heterogeneity continues to challenge reproducibility. Translational studies demonstrate that microbiome-based intervention, including fecal microbiota transplantation (FMT), biotics supplementation, and engineered microbial strains, can enhance ICI efficacy or mitigate immune-related toxicities. Despite encouraging early clinical signals, broader implementation requires methodological rigor, standardized protocols, and innovative trial designs that account for host and environmental factors. For clinicians, the most immediate strategies involve prudent antibiotic stewardship and patient enrollment in microbiome-focused clinical trials. Overall, the gut microbiome is a promising biomarker and a therapeutic target, representing a new frontier for personalizing immunotherapy and improving patient outcomes in oncology. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Anti-Cancer Therapies)
Show Figures

Graphical abstract

17 pages, 1629 KB  
Article
Understanding Biotic Constraints to Taro (Colocasia esculenta) Production in the Derived Savanna and Humid Forest Agroecosystems of Nigeria
by Joy Jesumeda Oladimeji, Ranjana Bhattacharjee, Ayodeji Abe, Bolaji Osundahunsi, Ramesh Raju Vetukuri and P. Lava Kumar
Plants 2025, 14(22), 3457; https://doi.org/10.3390/plants14223457 - 12 Nov 2025
Viewed by 590
Abstract
Taro (Colocasia esculenta) is a socioeconomically and nutritionally important crop that is predominantly cultivated in the derived savanna and humid forest agroecosystems of Nigeria. Taro production in the country has declined since the taro leaf blight (TLB) outbreak caused by Phytophthora [...] Read more.
Taro (Colocasia esculenta) is a socioeconomically and nutritionally important crop that is predominantly cultivated in the derived savanna and humid forest agroecosystems of Nigeria. Taro production in the country has declined since the taro leaf blight (TLB) outbreak caused by Phytophthora colocasiae Raciborski. This study conducted field surveys during the 2021–2022 production season to assess the status of taro diseases, as well as a structured questionnaire to capture farmers’ management practices and the socio-economic determinants of taro cultivation across seven major taro-producing states in Nigeria. Data was collected from 63 randomly selected farmers across 53 farms, and 449 corms were sampled from farms and markets to assess corm-borne diseases. Sixty-three percent of farmers identified biotic constraints as the major production challenge, with TLB recognized as the most significant threat. Virus-symptomatic plants were not observed in the farmers’ fields, but the occurrence of Dasheen mosaic virus (or Potyvirus dasheenis) (DsMV, genus Potyvirus) was detected among the plants regenerated from corms collected from farms and markets. The widespread occurrence of TLB and DsMV suggests that these two pathogens pose a serious threat to taro production and that there is a risk of further spread through the continuous recycling of self-sourced planting materials across seasons. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 699 KB  
Review
Artificial Intelligence in Forest Pathology: Opportunities and Challenges
by Pauline Hessenauer
Forests 2025, 16(11), 1714; https://doi.org/10.3390/f16111714 - 11 Nov 2025
Viewed by 564
Abstract
Forest diseases threaten tree health, biodiversity, and ecosystem services, with impacts amplified by climate change and global trade. Understanding and managing these threats is difficult due to the longevity of trees, the size and inaccessibility of forests, and the often cryptic or delayed [...] Read more.
Forest diseases threaten tree health, biodiversity, and ecosystem services, with impacts amplified by climate change and global trade. Understanding and managing these threats is difficult due to the longevity of trees, the size and inaccessibility of forests, and the often cryptic or delayed expression of symptoms. This review first introduces the field of forest pathology and the key challenges it faces, including multifactorial declines, root and vascular diseases, and emerging invasive pathogens. We then examine how artificial intelligence (AI) can be applied to biotic, abiotic, and decline-related diseases, integrating remote sensing, imaging, genomics, and ecological data across spatial and temporal scales. Lessons from agricultural systems are discussed, highlighting potential tools and pitfalls for forestry. Finally, we outline future directions, emphasizing the need for interpretable models, incorporation of ecological context, cross-species validation, and coordinated data infrastructures to ensure AI delivers actionable, scalable solutions for complex forest ecosystems. Full article
Back to TopTop