The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review
Abstract
1. Introduction
2. The Coffee Crop: Origin and Significance
3. Coffee Production and Trade in Saudi Arabia
4. Climate Change and Its Impact on Coffee Farming
5. Precision Coffee Farming Techniques
| Technological Component | Application in Coffee Growing | References |
|---|---|---|
| Geostatistics, Remote Sensing, Spatial Variability Analysis | Analyze soil, canopy, and environmental variability to guide resource allocation; detect biotic/abiotic stress and climate-related shifts. | [44,45,46,47] |
| Artificial Intelligence (AI) & Machine Learning (ML) | Process large datasets to identify yield patterns, optimize irrigation and fertilization, recommend pest control, and predict coffee yield and quality. | [44,45,46,47,52,53,54,55] |
| Internet of Things (IoT) & Wireless Sensor Networks (WSNs) | Enable real-time data transmission on soil, plant, and weather conditions for informed decision-making; support stress detection and predictive analytics. | [44,45,46,52,53,54,55,56] |
| Geographic Information Systems (GIS) | Integrate spatial and temporal data (soil, crop, topography) to create detailed farm and soil maps, analyze terroir effects, and monitor environmental impacts. | [51,55,58,59,60] |
| Satellite Imagery & Remote Sensing | Provide disease mapping, soil quality and plant-health data; detect temporal changes and climate impacts on plantations. | [58] |
| Variable Rate Technology (VRT) | Apply inputs (fertilizers, water, pesticides, seeds) at variable rates based on field heterogeneity to improve yield, reduce costs, and minimize runoff. | [56,58,59,60,61,62,63] |
| Sensors (Optical, Thermal, Ultrasonic, Electrochemical) | Measure soil moisture, nutrient levels, canopy temperature, and chlorophyll to enable site-specific management and precision irrigation/fertilization. | [44,45,52] |
| Drones (UAVs) | Collect high-resolution spatial/temporal imagery for monitoring crop health, irrigation efficiency, pest and disease detection, and precision spraying. | [59,62,63,64,65] |
| Big Data Analytics & Decision Support Systems | Integrate multiple datasets (climate, soil, yield) for sustainable management, policy planning, and environmental optimization. | [46,47,52,55,57] |
| Predictive Modeling & Deep Learning | Forecast yield and quality; automate detection of biotic stresses and support targeted treatment strategies. | [45,65,66] |
5.1. Geographic Information Systems (GIS), Remote Sensing, Satellite Imagery, and Variable Rate Technology (VRT)
5.2. Predictive Modeling and Machine Learning
6. Biotic Stress Factors in Precision Coffee Farming
6.1. Pest Management Strategies
6.2. Disease Detection and Prevention
7. Precision Coffee Farming Under Abiotic Stress
7.1. Water Management Against Drought
7.2. Mitigation of Temperature and Heat Stress
7.3. Soil Fertility Management
8. Benefits and Limitations of Precision Coffee Farming
8.1. Increased Yield and Bean Quality
8.2. Resource Optimization and Sustainability
8.3. Economic Viability
9. Examples of Successful Mitigation Projects
10. Successful Implementation of Precision Coffee Farming
11. Future Directions and Recommendations for Coffee Cultivation in the Kingdom of Saudi Arabia
- -
- Data analytics: Utilizing advanced analytical tools allows farmers to interpret complex data and make well-informed decisions based on current, real-time field conditions.
- -
- Sustainable farming practices: Emphasizing eco-friendly methodologies that conserve resources while maintaining productivity.
- -
- Technological innovation: Continuous investment in and adaptation of new technologies will further enhance efficiency and effectiveness in coffee farming.
- -
- Legislative interventions: Advocating for policies that support PA initiatives can create a conducive environment for innovation and investment.
12. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wintgens, J.N. The Coffee Plant. In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders and Researchers, 2nd ed.; Wintgens, J.N., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- ICO. Coffee Report and Outlook; International Coffee Organization: London, UK, 2023; Available online: https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf (accessed on 13 October 2025).
- Mussatto, S.I.; Machado, E.M.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef]
- Ghebris, M. The History of Arabic Coffee; Al Muheet Publishing: Fujairah, United Arab Emirates, 2021; p. 158. [Google Scholar]
- Van der Vossen, H.; Bertrand, B.; Charrier, A. Next Generation Variety Development for Sustainable Production of Arabica Coffee (Coffea arabica L.): A Review. Euphytica 2015, 204, 243–256. [Google Scholar] [CrossRef]
- Davis, A.P.; Chadburn, H.; Moat, J.; O’Sullivan, R.; Hargreaves, S.; Nic Lughadha, E. High Extinction Risk for Wild Coffee Species and Implications for Coffee Sector Sustainability. Sci. Adv. 2019, 5, eaav3473. [Google Scholar] [CrossRef] [PubMed]
- Ngure, G.M.; Watanabe, K.N. Coffee Sustainability: Leveraging Collaborative Breeding for Variety Improvement. Front. Sustain. Food Syst. 2024, 8, 1431849. [Google Scholar] [CrossRef]
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S. Modeling Drought Impacts on Coffee Production in Viet Nam: A System Dynamics Approach. In International Congress on Modelling and Simulation; University of Southern Queensland: Toowoomba, Australia, 2019. [Google Scholar]
- Bianco, G.B. Climate Change Adaptation, Coffee, and Corporate Social Responsibility: Challenges and Opportunities. Int. J. Corp. Soc. Responsib. 2020, 5, 3. [Google Scholar] [CrossRef]
- Bilen, C.; El-Chami, D.; Mereu, V.; Trabucco, A.; Marras, S.; Spano, D. A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. Plants 2023, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why Could the Coffee Crop Endure Climate Change and Global Warming to a Greater Extent Than Previously Estimated? Clim. Change 2019, 152, 167–178. [Google Scholar] [CrossRef]
- Yahiya, A.B. Environmental Degradation and Its Impact on Tourism in Jazan, KSA Using Remote Sensing and GIS. Int. J. Environ. Sci. 2012, 3, 421. [Google Scholar]
- Montagnon, C.; Mahyoub, A.; Solano, W.; Sheibani, F. Unveiling a Unique Genetic Diversity of Cultivated Coffea arabica L. in its Main Domestication Center: Yemen. Genet. Resour. Crop Evol. 2021, 68, 2411–2422. [Google Scholar] [CrossRef]
- Montagnon, C.; Sheibani, F.; Benti, T.; Daniel, D.; Bote, A.D. Deciphering Early Movements and Domestication of Coffea Arabica Through a Comprehensive Genetic Diversity Study Covering Ethiopia and Yemen. Agronomy 2022, 12, 3203. [Google Scholar] [CrossRef]
- Herrera, J.C.; Lambot, C. The Coffee Tree—Genetic Diversity and Origin. In The Craft and Science of Coffee; Folmer, B., Ed.; Academic Press: New York, NY, USA, 2017; pp. 1–16. [Google Scholar]
- Tounekti, T.; Mahdhi, M.; Al-Turki, T.A.; Khemira, H. Genetic Diversity Analysis of Coffee (Coffea arabica L.) Germplasm Accessions Growing in the Southwestern Saudi Arabia Using Quantitative Traits. Nat. Resour. 2017, 8, 321–336. [Google Scholar]
- Al-Asmari, K.M.; Zeid, I.M.A.; Al-Attar, A.M. Coffea Arabica in Saudi Arabia: An Overview. Int. J. Pharm. Phytopharmacol. Res. 2020, 10, 71–78. [Google Scholar]
- Jalal, S.M.; Alsebeiy, S.H.; Aleid, H.A.; Alhamad, S.A. Effect of Arabic Qahwa on Blood Pressure in Patients with Stage One Hypertension in the Eastern Region of Saudi Arabia. J. Pers. Med. 2023, 13, 1011. [Google Scholar] [CrossRef]
- FAO-KSA. Comprehensive Review of the Coffee Sector in the Kingdom of Saudi Arabia (CFE/051/2021/1). Strengthening MoEWA’s Capacity to Implement Its Sustainable Rural Agricultural Development Program (2019–2025) (UTF/SAU/051/SAU). 2021. Available online: https://reef.edu.sa/attachments/%D9%82%D8%B7%D8%A7%D8%B9%20%D8%A7%D9%84%D8%B9%D8%B3%D9%84/CEF-2021-Coffee%20sector%20review-TC.pdf (accessed on 10 June 2025).
- MEWA. Statistic Book 2021; Ministry of Environment Water & Agriculture: Riyadh, Saudi Arabia, 2021.
- Statista. Coffee—Saudi Arabia|Market Forecast. 2024. Available online: https://www.statista.com/outlook/cmo/hot-drinks/coffee/saudi-arabia (accessed on 10 September 2025).
- Al-Ghamedi, K.; Alaraidh, I.; Afzal, M.; Mahdhi, M.; Al-Faifi, Z.; Oteef, M.D.; Tounekti, T.; Alghamdi, S.S.; Khemira, H. Assessment of Genetic Diversity of Local Coffee Populations in Southwestern Saudi Arabia Using SRAP Markers. Agronomy 2023, 13, 302. [Google Scholar] [CrossRef]
- Khemira, H.; Mahdhi, M.; Afzal, M.; Oteef, M.D.; Tounekti, T.; Zarraq, A.F.; Alsolami, W. Assessment of Genetic Diversity and Phylogenetic Relationship of Local Coffee Populations in Southwestern Saudi Arabia Using DNA Barcoding. PeerJ 2023, 11, e16486. [Google Scholar] [CrossRef]
- Khemira, H.; Mahdhi, M.; Tounekti, T.; Oteef, M.D.; Afzal, M.; Alfaifi, Z.; Shargi, D. Diversity among Coffea arabica Populations in Southwestern Saudi Arabia as Revealed by Their Morphometric Features. Notulae Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13452. [Google Scholar] [CrossRef]
- World Coffee Portal. Saudi Arabia Invests $320m To Boost Domestic Coffee Production—World Coffee Portal. 2024. Available online: https://www.worldcoffeeportal.com/news/saudi-arabia-invests-320m-to-boost-domestic-coffee-production/ (accessed on 23 September 2025).
- FAO. Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- PIF. PIF launches the Saudi Coffee Company to Further Enable Saudi Arabia’s Food & Agriculture Sector. 2024. Available online: https://www.pif.gov.sa/en/pages/newsdetails.aspx?newsid-212/pif-launches-the-saudi-coffee-company-to-further-enable-saudi-arabias-food-&-agriculture-sector (accessed on 10 October 2025).
- NASA. What Is Climate Change. 2024. Available online: https://science.nasa.gov/climate-change/what-is-climate-change/ (accessed on 10 October 2024).
- Zittis, G.; Hadjinicolaou, P.; Almazroui, M.; Bucchignani, E.; Driouech, F.; El Rhaz, K.; Cretat, J.; Kurnaz, M.L.; Nikulin, G.; Stenchikov, G.; et al. Business-as-Usual Will Lead to Super and Ultra-Extreme Heatwaves in the Middle East and North Africa. npj Clim. Atmos. Sci. 2021, 4, 20. [Google Scholar] [CrossRef]
- Varela, R.; Rodríguez-Díaz, L.; DeCastro, M. Persistent Heat Waves Projected for Middle East and North Africa by the End of the 21st Century. PLoS ONE 2020, 15, e0242477. [Google Scholar] [CrossRef]
- United Nations Economic and Social Commission for Western Asia (ESCWA). Regional Climate Modelling Outputs for Saudi Arabia: Key Findings; RICCAR Technical Report, E/ESCWA/CL1.CCS/2023/RICCAR/Technical Report; ESCWA: Beirut, Lebanon, 2023; Volume 18. [Google Scholar]
- Ramadhillah, B.; Masjud, Y.I. Climate Change Impacts on Coffee Production in Indonesia: A review. J. Crop Ecosyst. Manag. 2024, 1, 1–7. [Google Scholar] [CrossRef]
- Negre, L. The World of Coffee: 21st Century Solutions for a Commodity Facing Climate Change Risks. Consilience 2023, 26. [Google Scholar] [CrossRef]
- Meter, A.; Penot, E.; Vaast, P.; Etienne, H.; Ponçon, E.; Bertrand, B. «Coffee Agroforestry Business-Driven Clusters»: An Innovative Social and Environmental Organisational Model for Coffee Farm Renovation. Open Res. Eur. 2023, 2, 61. [Google Scholar] [CrossRef]
- Guerrero, I.Q.; Vázquez, A.P.; Sánchez, C.L.; López, F.G.; Velasco, J.V.; Badillo, G.B. Resilience of Coffee Agroecosystems in Light of Climate Change. Trop. Subtrop. Agroecosyst. 2022, 25. [Google Scholar] [CrossRef]
- Della Peruta, R.; Mereu, V.; Spano, D.; Marras, S.; Trabucco, A. Coffee Agrosystems and Climate Change. In EGU General Assembly Conference Abstracts; EGU-15681; EGU: Munich, Germany, 2023. [Google Scholar] [CrossRef]
- Birthwright, A.T.; Mighty, M. Risky Business: Modeling the Future of Jamaica’s Coffee Production in a Changing Climate. Climate 2023, 11, 122. [Google Scholar] [CrossRef]
- Da Mota, R.P.; Ferraz-Almeida, R.; Camargo, R.; Franco, M.H.R.; Delvaux, J.C.; Lana, R.M.Q. Organomineral Fertilizer in Coffee Plant (Coffea arabica L.): Fertilizer Levels and Application Times. Coffee Sci. 2023, 18, e182098. [Google Scholar] [CrossRef]
- de Freitas, C.H.; Coelho, R.D.; de Oliveira Costa, J.; Sentelhas, P.C. A bitter Cup of Coffee? Assessing the Impact of Climate Change on Arabica Coffee Production in Brazil. Sci. Total Environ. 2024, 957, 177546. [Google Scholar] [CrossRef]
- Bracken, P.; Burgess, P.J.; Girkin, N.T. Opportunities for Enhancing the Climate Resilience of Coffee Production Through Improved Crop, Soil and Water Management. Agroecol. Sustain. Food Syst. 2023, 47, 1125–1157. [Google Scholar] [CrossRef]
- DaMatta, F.M. Coffee Tree Growth and Environmental Acclimation. In Achieving Sustainable Cultivation of Coffee; Lashermes, P., Ed.; Burleigh Dodds Science: Cambridge, UK, 2018; pp. 21–48. [Google Scholar]
- DaMatta, F.M.; Martinsa, C.V.; José, D.C.; Ramalhob Ronchi, C.P. Ecophysiology of Coffee Growth and Production in a Context of Climate Changes. Adv. Bot. Res. 2024, 144, 97–139. [Google Scholar] [CrossRef]
- Tounekti, T.; Mahdhi, M.; Al-Turki, T.A.; Khemira, H. Water Relations and Photo-Protection Mechanisms during Drought Stress in Four Coffee (Coffea arabica) Cultivars from Southwestern Saudi Arabia. S. Afr. J. Bot. 2018, 117, 17–25. [Google Scholar]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Khose, S.B.; Dhokale, K.B.; Shekhar, S. The Role of Precision Farming in Sustainable Agriculture: Advancements and Impacts. Agric. Food E-Newsl. 2023, 5, 115–119. [Google Scholar]
- Nath, S. A Vision of Precision Agriculture: Balance between Agricultural Sustainability and Environmental Stewardship. Agron. J. 2024, 116, 1126–1143. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.; Santos, S.A.D.; Dias, J.E.L. Precision Coffee Growing: A Review. Coffee Sci. 2022, 17. [Google Scholar] [CrossRef]
- Fagundes, R.B.; Bolfe, É.L. Diagnosis of The Perspectives of Precision Applications of Coffee Growing Technologies in Municipalities of Bahia, Brazil. Coffee Sci. 2022, 17. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.E.S.; Teodoro, A.J.D.S.; Santana, M.S.; Rossi, G.; Palchetti, E. Advances in Precision Coffee Growing Research: A Bibliometric Review. Agronomy 2021, 11, 1557. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef] [PubMed]
- Schieler, M.; Riemer, N.; Racca, P.; Kleinhenz, B.; Saucke, H.; Veith, M.; Meese, B. GIS-based Tool for Pest Specific Area-Wide Planning of Crop Rotation Distance with Land Use Data. Insects 2024, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Geetha, P.; Karthikeyan, R. Embracing IoT and Precision Agriculture for Sustainable Crop Yields. In Intelligent Robots and Drones for Precision Agriculture; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 139–158. [Google Scholar]
- Rissatti, M.E.P.; de Oliveira Rodrigues, E.; Barbosa, L.A. Geotechnology Applied to the Remote Mapping of Coffee and Digital Currency Investment Simulations. Rev. Agrogeoambiental 2022, 14, e20221710. [Google Scholar]
- Weddell, B.J. Precision Agriculture. Int. J. Comput. Algorithm 2023, 12. [Google Scholar] [CrossRef]
- UNDP. Precision Agriculture for Smallholder Farmers. 2021. Available online: https://www.undp.org/sites/g/files/zskgke326/files/2021-10/UNDP-Precision-Agriculture-for-Smallholder-Farmers.pdf (accessed on 3 November 2024).
- Hunt, D.A.; Tabor, K.; Hewson, J.H.; Wood, M.A.; Reymondin, L.; Koenig, K.; Schmitt-Harsh, M.; Follett, F. Review of Remote Sensing Methods to Map Coffee Production Systems. Remote Sens. 2020, 12, 2041. [Google Scholar] [CrossRef]
- Kushwaha, M.; Singh, S.; Singh, V.; Dwivedi, S. Precision Farming: A Review of Methods, Technologies, and Future Prospects. Int. J. Environ. Agric. Biotechnol. 2024, 9. [Google Scholar] [CrossRef]
- Fiaz, S.; Noor, M.A.; Aldosri, F.O. Achieving Food Security in the Kingdom of Saudi Arabia through Innovation: Potential Role of Agricultural Extension. J. Saudi Soc. Agric. Sci. 2018, 17, 365–375. [Google Scholar] [CrossRef]
- Angnes, G.; Martello, M.; Faulin, G.D.C.; Molin, J.P.; Romanelli, T.L. Energy Efficiency of Variable Rate Fertilizer Application in Coffee Production in Brazil. Agri. Eng. 2021, 3, 815–826. [Google Scholar] [CrossRef]
- Unde, S.S.; Kurkute, V.K.; Chavan, S.S.; Mohite, D.D.; Harale, A.A.; Chougle, A. The expanding role of Multirotor UAVs in Precision Agriculture with Applications AI Integration and Future Prospects. Discov. Mech. Eng. 2025, 4, 38. [Google Scholar] [CrossRef]
- USDA. Precision Agriculture in Crop Production. 2025. Available online: https://www.nifa.usda.gov/grants/programs/precision-geospatial-sensor-technologies-programs/precision-agriculture-crop-production (accessed on 15 September 2025).
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, And Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
- Abreu Júnior, C.A.; Martins, M.d.; Martins, G.D.; Xavier, L.C.M.; Vieira, B.S.; Gallis, R.B.A.; Fraga Junior, E.F.; Martins, R.S.; Paes, A.P.B.; Mendonça, R.C.P.; et al. Estimating Coffee Plant Yield Based on Multispectral Images and Machine Learning Models. Agronomy 2022, 12, 3195. [Google Scholar] [CrossRef]
- Esgario, J.G.; Krohling, R.A.; Ventura, J.A. Deep Learning for Classification and Severity Estimation of Coffee Leaf Biotic Stress. Comput. Electron. Agric. 2020, 169, 105162. [Google Scholar] [CrossRef]
- Reddy, G.M.; Kumar, A.R.; Kumar, B.R.; Dhanam, M. Pests and Their Management in Coffee. In Trends in Horticultural Entomology; Springer: Singapore, 2022; pp. 1513–1528. [Google Scholar]
- Infante, F.; Armbrecht, I.; Constantino, L.M.; Benavides, P. Coffee Pests. In Forest Microbiology; Academic Press: New York, NY, USA, 2023; pp. 213–225. [Google Scholar]
- Fanton, C.J.; Queiroz, R.B.; Zambolim, L. Integrated Management of Soil-Borne Insect and Fungal Pests of Coffee; Burleigh Dodds Science Publishing: Cambridge, UK, 2022. [Google Scholar]
- Alhudaib, K.; Ismail, A.M. First Occurrence of Coffee Leaf Rust Caused by Hemileia vastatrix on Coffee in Saudi Arabia. Microbiol. Res. 2024, 15, 164–173. [Google Scholar] [CrossRef]
- Alsubaie, M.; Al-Askar, A.A.; Al-Otibi, F.O.; Maniah, K.; Alkathiri, A.; Yassin, M.T. Exploring the Efficacy of Endophytic Diaporthe caatingaensis as a Biocontrol Agent Targeting Fusarium Strains Afflicting Coffee Plants in Saudi Arabia. J. King Saud Univ. Sci. 2024, 36, 103396. [Google Scholar] [CrossRef]
- Chandana, C.R.; Nadagouda, S.; Sreenivas, A.G.; Chandana, T.P.; Hallikeri, V.F. Climate-Smart Pest Management Strategies Under Changing Climatic Scenarios. J. Adv. Biol. Biotechnol. 2024, 27, 364–377. [Google Scholar] [CrossRef]
- Jiang, C.; Miao, K.; Hu, Z.; Gu, F.; Yi, K. Image Recognition Technology in Smart Agriculture: A Review of Current Applications Challenges and Future Prospects. Processes 2025, 13, 1402. [Google Scholar] [CrossRef]
- Andrew, J.; Eunice, J.; Popescu, D.E.; Chowdary, M.K.; Hemanth, J. Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy 2022, 12, 2395. [Google Scholar] [CrossRef]
- Taha, M.F.; Abdalla, A.; ElMasry, G.; Gouda, M.; Zhou, L.; Zhao, N.; Liang, N.; Niu, Z.; Hassanein, A.; Al-Rejaie, S.; et al. Using Deep Convolutional Neural Network for Image-Based Diagnosis of Nutrient Deficiencies in Plants Grown in Aquaponics. Chemosensors 2022, 10, 45. [Google Scholar] [CrossRef]
- Yi, J.; Krusenbaum, L.; Unger, P.; Hüging, H.; Seidel, S.J.; Schaaf, G.; Gall, J. Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images. Sensors 2020, 20, 5893. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of Climate Change on Agricultural Insect. Pests Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Whittaker, J.B. Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Pinto, D.; Lishma, A.; Ligina, M.; Manasa, P.; Sandhya, D. The Real-Time Mobile Application for Identification of Diseases in Coffee Leaves using the CNN Model. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021. [Google Scholar] [CrossRef]
- Grimaldo, G.; Rodriguez, H.; Cabrera, V.L. Convolutional Neural Network Model for the Detection of Diseases and Pests in Coffee Crops. In Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 19–21 October 2022; IEEE: New York, NY, USA, 2022; pp. 684–690. [Google Scholar]
- Ramamurthy, K.; Thekkath, R.D.; Batra, S.; Chattopadhyay, S. A Novel Deep Learning Architecture for Disease Classification in Arabica Coffee Plants. Concurr. Comput. Pract. Exp. 2023, 35, e7625. [Google Scholar] [CrossRef]
- Sharma, A.; Azeem, N.A.; Sharma, S. Coffee Leaf Disease Detection Using Transfer Learning. In Proceedings of the International Conference on Advanced Network Technologies and Intelligent Computing, Varanasi, India, 22–24 December 2022; Springer Nature: Cham, Switzerland, 2022; pp. 227–238. [Google Scholar]
- Alhudaib, K.; Ismail, A.M.; Magistà, D. Multi-Locus Phylogenetic Analysis Revealed the Association of Six Colletotrichum Species with Anthracnose Disease of Coffee (Coffea arabica L.) in Saudi Arabia. J. Fungi 2023, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Al-Faifi, Z.; Alsolami, W.; Abada, E.; Khemira, H.; Almalki, G.; Modafer, Y. Fusarium oxysporum and Colletotrichum musae Associated with Wilt Disease of Coffea arabica in Coffee Gardens in Saudi Arabia. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3050495. [Google Scholar] [CrossRef]
- Torres, L.F.; Dechamp, E.; Alves, G.S.C.; Diniz, L.E.C.; Paiva, L.V.; Breitler, J.C.; Andrade, A.C.; Marraccini, P.; Etienne, H. Influence of Abiotic Stresses in the Phenotypic Expression of Transgenic Plants of Coffea arabica under Action CcDREB1D Promoter. In Proceedings of the 26th International Conference on Coffee Science, ASIC 2016, Kunming, China, 13–19 November 2016. [Google Scholar]
- Basu, P.S.; Srivastava, M.; Singh, P.; Porwal, P.; Kant, R.; Singh, J. High-precision Phenotyping under Controlled Versus Natural Environments. In Phenomics in Crop Plants: Trends, Options and Limitations; Springer: New Delhi, India, 2015; pp. 27–40. [Google Scholar]
- Marcheafave, G.G.; Tormena, C.D.; Afonso, S.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. Integrated Chemometric Approach to Optimize Sample Preparation for Detecting Metabolic Changes Provoked by Abiotic Stress in Coffea arabica L. Leaf Fingerprints. J. Braz. Chem. Soc. 2019, 30, 2085–2094. [Google Scholar] [CrossRef]
- Dinh Nghiep, N.; Minh Chien, L.; Hoang, N.V.; Hai, P.H.; Hieu, D.T.; Thuan, N.T.T.; Huyen, H.D. Perception and Adaptation to Climate Change of the K’Ho People Related to Coffee Production in Lâm Đồng Province, Vietnam. Cogent Soc. Sci. 2025, 11. [Google Scholar] [CrossRef]
- Ho, T.Q.; Hoang, V.N.; Wilson, C. Sustainability Certification and Water Efficiency in Coffee Farming: The Role of Irrigation Technologies. Resour. Conserv. Recycl. 2022, 180, 106175. [Google Scholar] [CrossRef]
- Shimber, G.T.; Mohd Razi Ismail, M.R.I.; Kausar, H.; Marziah, M.; Ramlan, M.F. Plant Water Relations, Crop Yield and Quality in Coffee (Coffea arabica L.) as Influenced by Partial Root Zone Drying and Deficit Irrigation. Aust. J. Crop Sci. 2013, 7, 1361–1368. [Google Scholar]
- Mahdhi, M.; Tounekti, T.; Al-Turki, T.A.; Khemira, H. Composition of the Root Mycorrhizal Community Associated with Coffea arabica in Fifa Mountains (Jazan Region, Saudi Arabia). J. Basic Microbiol. 2017, 57, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Pan, L.; Zipori, I.; Mao, J.; Li, R.; Li, Y.; Chen, H. Arbuscular Mycorrhizal Fungi Enhanced the Growth, Phosphorus Uptake and Pht Expression of Olive (Olea europaea L.) Plantlets. PeerJ 2022, 10, e13813. [Google Scholar] [CrossRef]
- Martins, M.Q.; Rodrigues, W.P.; Fortunato, A.S.; Leitão, A.E.; Rodrigues, A.P.; Pais, I.P.; Martins, L.D.; Silva, M.J.; Reboredo, F.H.; Partelli, F.L.; et al. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Front. Plant Sci. 2016, 7, 947. [Google Scholar]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; et al. Long-term Elevated Air [CO2] Strengthens Photosynthetic Functioning and Mitigates the Impact of Supra-Optimal Temperatures in Tropical Coffea arabica and C. canephora Species. Glob. Change Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Beans? Front. Plant Sci. 2018, 9, 338159. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, M.N.; Ahmed, F.; Moussa, T.A.A.; Abulfaraj, A.A.; Jalal, R.S.; Noor, S.O.; Baeshen, N.; Huelsenbeck, J. A Comparative Analysis of De Novo Transcriptome Assembly to Understand the Abiotic Stress Adaptation of Desert Plants in Saudi Arabia. Appl. Ecol. Environ. Res. 2021, 19, 1753–1782. [Google Scholar] [CrossRef]
- Marias, D.E.; Meinzer, F.C.; Still, C. Impacts of Leaf Age and Heat Stress Duration on Photosynthetic Gas Exchange and Foliar Nonstructural Carbohydrates in Coffea arabica. Ecol. Evol. 2017, 7, 1297–1310. [Google Scholar] [CrossRef]
- Eponon, E.C.G.; Kouamé, K.D.; Snoeck, D.; Konaté, Z.; Camara, M.; Cherif, M.; Kone, D. Mapping Coffee Tree Fertilizer Requirements in Côte d’Ivoire. Asian J. Soil Sci. Plant Nutr. 2023, 9, 34–44. [Google Scholar] [CrossRef]
- Mukankomeje, R. Practical Tools on Sustainable Agriculture; Rwanda Environment Management Authority: Kigali, Republic of Rwanda, 2010; p. 27. [Google Scholar]
- Khan, N.; Bolan, N.; Jospeh, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Borchard, N.; Sánchez-Monedero, M.A.; Jindo, K.; Solaiman, Z.M.; et al. Complementing Compost with Biochar for Agriculture, Soil Remediation and Climate Mitigation. Adv. Agron. 2023, 179, 1–90. [Google Scholar]
- Khemira, H.; Medebesh, A.; Mehrez, K.H.; Hamadi, N. Effect of Fertilization on Yield and Quality of Arabica Coffee Grown on Mountain Terraces in Southwestern Saudi Arabia. Sci. Hortic. 2023, 321, 112370. [Google Scholar] [CrossRef]
- Casanova Olaya, J.F.; Rodríguez Salcedo, J.; Ordoñez, M.C. Impact of Nutritional Management on Available Mineral Nitrogen and Soil Quality Properties in Coffee Agroecosystems. Agriculture 2019, 9, 260. [Google Scholar] [CrossRef]
- Bedadi, B.; Beyene, S.; Erkossa, T.; Fekadu, E. Soil Management. In The Soils of Ethiopia; Springer International Publishing: Cham, Switzerland, 2023; pp. 193–234. [Google Scholar]
- Netsere, A.; Takala, B. Progress of Soil Fertility and Soil Health Management Research for Arabica Coffee Production in Ethiopia. Plant 2021, 9, 70–80. [Google Scholar] [CrossRef]
- Li, R.; Liu, X.; Wang, Z.; Cui, N. Optimizing Drip Fertigation at Different Periods to Improve Yield, Volatile Compounds, And Cup Quality of Arabica Coffee. Front. Plant Sci. 2023, 14, 1148616. [Google Scholar] [CrossRef]
- Campos, A.D.S.N.; Satolo, E.G.; Mac-Lean, P.A.B.; Júnior, S.S.B. Economic Sustainability Analysis of the Specialty Coffee Farmers in Garça/SP. Coffee Sci. 2021, 16, e161993. [Google Scholar]
- Swami, S.; Patgiri, P. Diagnosis of Nutrient Deficiencies through Artificial Intelligence. In Souvenir, National Seminar on “Recent Developments in Nutrient Management Strategies for Sustainable Agriculture: The Indian Context”; Bihar Agricultural University: Bhagalpur, India, 2022; p. 63. [Google Scholar]
- Al-Zaidi, A.A.; Baig, M.B.; Shalaby, M.Y.; Hazber, A. Level of Knowledge and Its Application by Coffee Farmers in the Udeen Area, Governorate of Ibb, Republic of Yemen. J. Anim. Plant Sci. 2016, 26, 1797–1804. [Google Scholar]
- Faria, R.D.O.; Silva, F.M.; Ferraz, G.A.; Herrera, M.A.D.; Barbosa, B.D.S.; Alonso, D.J.C.; Soares, D.V. Technical and Economic Viability of Manual Harvesting Coffee Yield Maps. Coffee Sci. 2020, 15. [Google Scholar] [CrossRef]
- González-Osorio, H.; Sadeghian, S.; Medina, R.; Furia, L. Response of Granulated Polyhalite on Yield and Quality of Coffee (Coffea arabica). Commun. Soil Sci. Plant Anal. 2023, 54, 1525–1536. [Google Scholar] [CrossRef]
- Gois, C.M.N.; Ferreira, S.; Gois, J.L.; Malta, M.R. Evaluation of Harvest Yield and Beverage Quality of Coffee Under Ethylene Application. Rev. Agrogeoambiental 2022, 14, e20221707. [Google Scholar]
- Muñoz-Belalcazar, J.A.; Benevides-Cardona, C.A.; Lagos-Burbano, T.C.; Criollo-Velázquez, C.P. Agronomic Management on the Yield and Quality of Coffee (Coffea arabica) Variety Castillo in Nariño, Colombia. Mesoamerican Agron. 2021, 32, 750–763. [Google Scholar] [CrossRef]
- Pereira, L.F.B.; Barbosa, C.K.R.; Franco Junior, K.S. The influence of Natural Fermentation on Coffee Drink Quality. Coffee Sci. 2020, 15, e151673. [Google Scholar] [CrossRef]
- Setyoningtyas, Y.D.; Darmawati, E. Optimized Utilization of Post-Harvest Coffee Agricultural Equipment and Machines. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012070. [Google Scholar] [CrossRef]
- Méndez, R.C.; Salazar Benítez, J.; Rengifo Rodas, C.F.; Corrales, J.C.; Figueroa Casas, A. A Multidisciplinary Approach Integrating Energy Analysis and Process Modeling for Agricultural Systems Sustainable Management—Coffee Farm Validation. Sustainability 2022, 14, 8931. [Google Scholar] [CrossRef]
- Panggabean, Y.B.S.; Arsyad, M. Sustainability Agricultural Supply Chain in Improving the Welfare of North Toraja Arabica Coffee Farmers. IOP Conf. Ser. Earth Environ. Sci. 2022, 1107, 012065. [Google Scholar] [CrossRef]
- Kaya, B. Global Coffee Production and Sustainability; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; pp. 3–20. [Google Scholar] [CrossRef]
- Rusadi, N.W.P.; Parramatta, P.M.A.A. Financial Study of Coffee Commodities. J. Sustain. Dev. Sci. 2023, 5, 17–24. [Google Scholar] [CrossRef]
- Moat, J.; Williams, J.; Baena, S.; Wilkinson, T.; Gole, T.W.; Challa, Z.K.; Demissew, S.; Davis, A.P. Resilience Potential of the Ethiopian Coffee Sector under Climate Change. Nat. Plants 2017, 3, 17081. [Google Scholar] [CrossRef] [PubMed]
- Azhar, I.; Saraan, M.; Taufik, M.; Aulin, F.R.; Situmeang, D.J.; Barus, K. Marketing Analysis and Feasibility Analysis of Coffee (Coffea sp). IOP Conf. Ser. Earth Environ. Sci. 2021, 782, 022033. [Google Scholar] [CrossRef]
- Thuy, P.T.; Niem, L.D.; Lebailly, P. The transition of Small-Scale Coffee Farming Systems and New Pathways for Coffee Production: A Case Study in the Central Highlands of Vietnam. J. Plant. Crop. 2022, 50, 115–124. [Google Scholar] [CrossRef]
- Al-Najjar, A.; Dijkxhoorn, Y.; Zubiry, R.; Ruben, R. Understanding Coffee Farming Practices and Prospects in Yemen: Case Study from Bani Matar (No. 2023-044); Wageningen Economic Research: Den Haag, The Netherlands, 2023. [Google Scholar]
- Pires, V.; de Mello, R.D.C.; Kogut, C.S. Fazenda Ninho da Águia (Eagle’s Nest Farm) case. CASE J. 2023, 19, 599–613. [Google Scholar] [CrossRef]
- Häger, A.; Little, M.; Amel, E.; Calderón, G. Transformation Toward Sustainability on a Costa Rican Coffee Farm: Environmental, Socioeconomic, and Psychological Perspectives. Case Stud. Environ. 2021, 5, 1227777. [Google Scholar] [CrossRef]
- Zaman, Q.U. Precision Agriculture Technology: A Pathway toward Sustainable Agriculture. In Precision Agriculture; Zaman, Q., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–17. [Google Scholar] [CrossRef]






| Region/Country | Main Study Sources | Projected Suitability Changes | Altitude or Area Shifts | Main Drivers (Climatic Variables) | Adaptation Recommendations |
|---|---|---|---|---|---|
| East Africa (Ethiopia, Kenya, Uganda, Tanzania) | [6,10,11] |
| Upward migration of coffee zones by 300–600 m above current optimal range. | ↑Temperature (+1.5–3 °C); ↓ rainfall reliability; ↑ fungal disease risk (leaf rust). |
|
| Central & South America (Brazil, Colombia, Costa Rica, Nicaragua, Mexico) | [9,10,11] |
| Altitude shift +200–400 m; possible southward movement of viable zones. | ↑ Temperature; irregular rainfall; longer dry seasons; ↑ pests (berry borer). |
|
| Southeast Asia (Vietnam, Indonesia, Philippines) | [8,9,10,11] |
| Suitable zones shift 100–300 m upward; reduction in total area by 10–20%. | ↓ Soil moisture; ↑ dry-season length; rising night-time temperatures. |
|
| West Africa (Côte d’Ivoire, Ghana, Cameroon) | [9,10] |
| Contraction southward; potential upward migration limited by topography. | ↑ Mean temperature > 27 °C; ↓ annual rainfall; ↑ heat stress index. |
|
| Arabian Peninsula (Yemen, Saudi Arabia—Jazan Highlands) | [10,11] |
| Upward migration of 200–300 m; reduced area but possible quality improvement in cool pockets. | ↑ Temperature; ↓ rainfall; episodic drought; high evapotranspiration. |
|
| Pacific Islands & Papua New Guinea | [10] |
| Minor upward shift (< 200 m). | ↑ Rainfall variability; ↑ temperature. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosly, H.A.E.-K.; Dawoud, R.A.; Noreldin, T.; Hassani, R.; Khemira, H. The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review. Sustainability 2025, 17, 10550. https://doi.org/10.3390/su172310550
Bosly HAE-K, Dawoud RA, Noreldin T, Hassani R, Khemira H. The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review. Sustainability. 2025; 17(23):10550. https://doi.org/10.3390/su172310550
Chicago/Turabian StyleBosly, Hanan Abo El-Kassem, Rehab A. Dawoud, Tahany Noreldin, Rym Hassani, and Habib Khemira. 2025. "The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review" Sustainability 17, no. 23: 10550. https://doi.org/10.3390/su172310550
APA StyleBosly, H. A. E.-K., Dawoud, R. A., Noreldin, T., Hassani, R., & Khemira, H. (2025). The Role of Precision Coffee Farming in Mitigating the Biotic and Abiotic Stresses Related to Climate Change in Saudi Arabia: A Review. Sustainability, 17(23), 10550. https://doi.org/10.3390/su172310550

