Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = biomolecular sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3285 KB  
Article
Design of Functionalized Photon Sieves for the Detection of Biomarkers in Running Fluids
by Veronica Pastor-Villarrubia, Luis Pablo Canul-Solis, Luis Carlos Ortiz-Dosal, José Gabriel Roberto Hernández-Arteaga, Eleazar Samuel Kolosovas-Machuca, Luis Miguel Sanchez-Brea and Javier Alda
Sensors 2026, 26(2), 409; https://doi.org/10.3390/s26020409 - 8 Jan 2026
Viewed by 125
Abstract
In this work, we present the design of a prototype fluid analyzer based on photon sieves, permeable diffractive optical elements capable of focusing light through diffraction. The photon sieve comprises a spatial distribution of circular apertures patterned onto an aluminum substrate, which provides [...] Read more.
In this work, we present the design of a prototype fluid analyzer based on photon sieves, permeable diffractive optical elements capable of focusing light through diffraction. The photon sieve comprises a spatial distribution of circular apertures patterned onto an aluminum substrate, which provides intrinsic fluid permeability and functions as either a lens or a mirror. In our approach, the aluminum surface is chemically functionalized to detect a specific biomolecular marker—human serum albumin—whose interaction with the surface induces measurable changes in the spectral reflectance. The operating wavelength is selected to maximize the reflectance contrast produced by the presence of the biomarker. The optical set-up is configured such that the light source and detector lie in the same plane when the photon sieve operates in reflection. A combined geometrical and diffractive analysis is conducted to optimize their positions. Upon detection of the biomarker, the measured signal decreases to 0.43 of its initial value prior to biomarker binding. These results highlight photon sieves as a promising platform for the development of compact, lightweight, and low-cost optical chemical sensors for running fluids. Full article
(This article belongs to the Special Issue Optical Sensors for Biological and Biomedical Applications)
Show Figures

Figure 1

29 pages, 10573 KB  
Review
Research Progress on Nanomaterials in SPR Sensors
by Hongji Zhang, Zhe Gao, Yulin Zhang, Runze Hou, Haoran Zhang, Ziqi Yan, Jiazhen Tian, Pengcheng Tao and Xinlei Zhou
Nanomaterials 2025, 15(24), 1847; https://doi.org/10.3390/nano15241847 - 8 Dec 2025
Viewed by 647
Abstract
While surface plasmon resonance (SPR) sensors serve as vital tools for biomolecular detection; conventional versions suffer from inherent limitations, including confined localized electromagnetic fields and inadequate sensitivity for detecting low-abundance analytes. Consequently, this paper reviews the progress of research in nanomaterial-enhanced SPR sensors [...] Read more.
While surface plasmon resonance (SPR) sensors serve as vital tools for biomolecular detection; conventional versions suffer from inherent limitations, including confined localized electromagnetic fields and inadequate sensitivity for detecting low-abundance analytes. Consequently, this paper reviews the progress of research in nanomaterial-enhanced SPR sensors to address these challenges. Initially, the review elaborates on the sensing principles and signal modulation strategies of SPR sensors. It systematically analyzes the enhancement mechanisms of noble metal nanoparticles (ranging from spherical 0D to advanced anisotropic 1D/2D nanostructures), magnetic nanoparticles (MNPs), and two-dimensional (2D) nanomaterials, alongside their applications in the detection of small molecules, nucleic acids, and biomacromolecules. Crucially, this review provides a comparative benchmarking of these materials, evaluating their trade-offs between sensitivity enhancement and practical stability. Furthermore, it identifies critical bottlenecks in industrialization, specifically addressing environmental challenges such as thermal cross-sensitivity and oxidative degradation, alongside issues of reproducibility and standardization. Finally, future research directions are proposed, including developing novel nanomaterials, exploring low-cost alternatives, and constructing flexible wearable sensing systems. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

15 pages, 4945 KB  
Article
Carbon Quantum Dot–Supported Nickel Nanoparticles as a Synergistic Interface for Electrochemical Creatinine Sensing
by Velia Osuna, César Leyva-Porras, Rocio B. Dominguez, Omar Isaac Torres-Soto, Alejandro Vega-Rios, Erasto Armando Zaragoza-Contreras and Claudia I. Piñón-Balderrama
Chemosensors 2025, 13(12), 416; https://doi.org/10.3390/chemosensors13120416 - 2 Dec 2025
Viewed by 401
Abstract
We report a non-enzymatic electrochemical sensing platform for creatinine based on a nickel-nanoparticle/carbon-quantum-dot (NiNP–CQD) hybrid interface. In this system, the analytical signal originates from the direct electrocatalytic oxidation of creatinine mediated by the Ni(II)/Ni(III) redox couple (Ni(OH)2/NiOOH), which forms during electrochemical [...] Read more.
We report a non-enzymatic electrochemical sensing platform for creatinine based on a nickel-nanoparticle/carbon-quantum-dot (NiNP–CQD) hybrid interface. In this system, the analytical signal originates from the direct electrocatalytic oxidation of creatinine mediated by the Ni(II)/Ni(III) redox couple (Ni(OH)2/NiOOH), which forms during electrochemical activation of nickel in alkaline media. These redox centers act as catalytic sites that oxidize creatinine without requiring enzymes or biomolecular labels. The CQDs provide a conductive sp2-rich network with abundant oxygenated groups that promote homogeneous nucleation and dispersion of NiNPs, enhancing both surface area and electron-transfer efficiency. Electrochemical characterization of the modified electrodes was performed using the ferricyanide/ferrocyanide redox couple as the electron-transfer probe. Structural and microscopic characterization confirms uniform NiNP deposition on the CQD layer, while electrochemical studies demonstrates that the composite outperforms CQDs or NiNPs alone in current density, linearity, and resistance to active-site saturation. The resulting sensor exhibits a wide linear range (10–1000 µM), high area-normalized sensitivity (1.41 µA µM−1 cm−2), and a low detection limit of 5 µM. Selectivity tests reveal minimal interference from common physiological species. By explicitly leveraging a catalyst-driven, enzyme-free oxidation pathway, this NiNP–CQD architecture provides a robust, stable, and scalable platform for clinically relevant creatinine detection. Full article
(This article belongs to the Special Issue Nanomaterial-Based Chemosensors and Biosensors for Smart Sensing)
Show Figures

Graphical abstract

13 pages, 1398 KB  
Article
Antibody-Based Biolayer Interferometry Platform for Rapid Detection of Neutrophil Gelatinase-Associated Lipocalin
by Somphot Saoin, Sawitree Nangola, Kannaporn Intachai, Eakkapote Prompunt, Chiraphat Kloypan, Trairak Pisitkun and Chatikorn Boonkrai
Biosensors 2025, 15(12), 781; https://doi.org/10.3390/bios15120781 - 27 Nov 2025
Viewed by 690
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a critical biomarker for the early diagnosis of acute kidney injury (AKI). The development of novel detection platforms that combine rapid analysis with high sensitivity is essential for improving clinical outcomes. In this study, we established [...] Read more.
Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a critical biomarker for the early diagnosis of acute kidney injury (AKI). The development of novel detection platforms that combine rapid analysis with high sensitivity is essential for improving clinical outcomes. In this study, we established an antibody-based detection system for NGAL using biolayer interferometry (BLI), a label-free optical biosensing technique that monitors real-time interference patterns generated by white light reflected from biomolecular binding events on a biosensor surface. A panel of six anti-NGAL monoclonal antibodies was generated and characterized for its binding properties, identifying candidates with high specificity for NGAL. For robust sensor functionalization, selected monoclonal antibodies were biotinylated and immobilized onto streptavidin-coated biosensor tips, establishing a stable and efficient detection interface. The optimized BLI platform demonstrated a limit of detection (LOD) of 46.1 ng/mL with wild dynamic range of 19 to 40,000 ng/mL. The platform’s accuracy was validated using human serum samples, with spike-and-recovery experiments yielding recovery rates of 96.6–104.6%. This demonstrates the capability to accurately quantify NGAL under physiologically relevant conditions with minimal matrix interference. Furthermore, the real-time kinetic measurements enabled rapid analysis, with the entire assay completed in less than half an hour. These findings establish a proof-of-concept for a BLI-based biosensor for NGAL detection, demonstrating sensitivity and specificity that show potential for clinical applications. Full article
(This article belongs to the Special Issue Immunosensors: Design and Applications)
Show Figures

Figure 1

13 pages, 7121 KB  
Article
A Portable QCM-Based Biosensor-Incorporated Graphene Oxide for Point-of-Care Prostate Cancer Marker Detection
by Suparat Tongpeng, Chayapat Weerapakdee, Thita Sonklin, Soodkhet Pojprapai and Sukanda Jiansirisomboon
Technologies 2025, 13(12), 544; https://doi.org/10.3390/technologies13120544 - 24 Nov 2025
Viewed by 395
Abstract
Prostate cancer remains one of the most prevalent malignancies among men worldwide, with late-stage diagnosis contributing significantly to mortality rates. In this study, we report the development of a graphene oxide (GO)-based QCM biosensor for the early and sensitive detection of Prostate Cancer [...] Read more.
Prostate cancer remains one of the most prevalent malignancies among men worldwide, with late-stage diagnosis contributing significantly to mortality rates. In this study, we report the development of a graphene oxide (GO)-based QCM biosensor for the early and sensitive detection of Prostate Cancer Antigen 3 (PCA3), a biomarker with higher specificity than conventional PSA tests. The sensor interface was fabricated via a layer-by-layer approach of L-cysteine, GO, and a capture probe onto a gold electrode, resulting in enhanced surface area and biomolecular recognition capacity. Structural and morphological characterizations using XRD, FE-SEM, AFM, and FT-IR confirmed the successful and uniform integration of GO and functional layers. Optimization of fabrication parameters, including EDC-NHS activation time, capture probe concentration, and target incubation time, was performed to achieve maximum sensitivity and binding efficiency. The biosensor demonstrated a distinct, concentration-dependent frequency shift upon hybridization with PCA3 targets over a range of 1.00 fM to 1.00 μM, with a calculated limit of detection (LOD) of 0.268 nM and a rapid response time of 20 min. These results underscore the potential of GO-modified QCM platforms for highly sensitive, rapid, and portable diagnostics, not only for prostate cancer screening but also for broader clinical applications involving biomarkers. Full article
Show Figures

Graphical abstract

13 pages, 3209 KB  
Article
Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite
by Min-Jun Kim, Jong-Hyun Bang, Hyeong-Min Kim, Jae-Hyoung Park and Seung-Ki Lee
Appl. Sci. 2025, 15(20), 10894; https://doi.org/10.3390/app152010894 - 10 Oct 2025
Viewed by 1051
Abstract
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to [...] Read more.
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to create a composite plasmonic surface. Compared with flat polymer-coated fibers, the micropillar array markedly increased the effective sensing surface and enhanced light trapping by providing anti-reflective conditions at the interface. Consequently, the sensor demonstrated superior performance in refractive index sensing, yielding a sensitivity of 4.54 with an R2 of 0.984, in contrast to 3.13 and 0.979 obtained for the flat counterpart. To validate its biosensing applicability, Interleukin-8 (IL-8), a cancer-associated cytokine, was selected as a model analyte. Direct immunoassays revealed quantitative detection across a broad dynamic range (0.1–1000 pg/mL) with a limit of detection of 0.013 pg/mL, while specificity was confirmed against non-target proteins. The proposed FO-LSPR platform thus offers a cost-effective and reproducible route to overcome the surface-area limitations of conventional designs, providing enhanced sensitivity and stability. These results highlight the potential of the micropillar-based FO-LSPR sensor for practical deployment in point-of-care diagnostics and real-time biomolecular monitoring. Full article
Show Figures

Figure 1

32 pages, 4265 KB  
Review
A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials
by Muthaiah Shellaiah
Micromachines 2025, 16(10), 1144; https://doi.org/10.3390/mi16101144 - 8 Oct 2025
Cited by 2 | Viewed by 1206
Abstract
Functionalizing agents enhance the photophysical properties of nanomaterials, thereby broadening their applications. Among these agents, cysteamine (SH-(CH2)2-NH2) is unique because of its free thiol (-SH) and amino (-NH2) groups. The presence of free -SH or [...] Read more.
Functionalizing agents enhance the photophysical properties of nanomaterials, thereby broadening their applications. Among these agents, cysteamine (SH-(CH2)2-NH2) is unique because of its free thiol (-SH) and amino (-NH2) groups. The presence of free -SH or -NH2 groups significantly enhances the functionalization of highly stable nanomaterials. These stable nanomaterials, which contain free -SH or -NH2 groups, can effectively bind with biomedical, biomolecular, and environmental analytes, improving sensor performance and making them valuable materials. In this context, cysteamine-functionalized nanoparticles (NPs), quantum dots (QDs), nanoclusters (NCs), nanocomposites, and other nanostructures have been demonstrated to be useful for quantifying biomedical, biomolecular, and environmental analytes. To date, no review has outlined the functionalizing ability of cysteamine or the application of cysteamine-functionalized nanomaterials in biomedical, biomolecular, and environmental analyte monitoring. This review emphasizes the role of cysteamine in producing stable nanomaterials and detecting specific biomedical, biomolecular, and ecological analytes. It also covers general protocols for functionalizing with cysteamine, the mechanistic basis of analyte detection, and their advantages, limitations, and prospects. Full article
Show Figures

Figure 1

20 pages, 8469 KB  
Review
Electrochemical Biosensors for Oilseed Crops: Nanomaterial-Driven Detection and Smart Agriculture
by Youwei Jiang, Kun Wan, Aiting Chen, Nana Tang, Na Liu, Tao Zhang, Qijun Xie and Quanguo He
Foods 2025, 14(16), 2881; https://doi.org/10.3390/foods14162881 - 20 Aug 2025
Cited by 1 | Viewed by 1637
Abstract
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or [...] Read more.
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or produce invisible metabolic toxins, leading to substantial yield losses before visible symptoms occur. This review summarises recent advances in the field of nanomaterial-assisted electrochemical sensing for oilseed crop diseases, with a particular focus on sensor mechanisms, interface engineering, and biomolecular recognition strategies. The following innovations are highlighted: nanostructured electrodes, aptamer- and antibody-based probes, and signal amplification techniques. These innovations have enabled the detection of pathogen DNA, enzymes, and toxins at ultra-low concentrations. Notwithstanding these achievements, challenges persist, including signal interference from plant matrices, limitations in device miniaturization, and the absence of standardized detection protocols. Future research should explore the potential of AI-assisted data interpretation, the use of biodegradable sensor materials, and the integration of these technologies with agricultural IoT networks. The aim of this integration is to enable real-time, field-deployable disease surveillance. The integration of laboratory innovations with field applications has been demonstrated to have significant potential in supporting sustainable agriculture and strengthening food security through intelligent crop health monitoring. Full article
Show Figures

Figure 1

24 pages, 3191 KB  
Article
Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting
by Cosimo Bartolini, Martina Tozzetti, Cristina Gellini, Marilena Ricci, Stefano Menichetti, Piero Procacci and Gabriella Caminati
Nanomaterials 2025, 15(16), 1230; https://doi.org/10.3390/nano15161230 - 12 Aug 2025
Viewed by 1075
Abstract
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a [...] Read more.
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a custom-designed receptor to selectively capture FKBP12. QCM measurements revealed a two-step Langmuir adsorption behavior, enabling sensitive mass quantification with a low limit of detection. Concurrently, in situ SERS analysis on the same sensor provided vibrational fingerprints of FKBP12, resolved through comparative studies of the free protein, surface-bound receptor, and surface-bound receptor–protein complex. Ethanol-induced denaturation confirmed protein-specific peaks, while shifts in receptor vibrational modes—linked to FKBP12 binding—demonstrated dynamic molecular interactions. A ratiometric parameter, derived from key peak intensities, served as a robust, concentration-dependent signature of complex formation. This platform bridges quantitative (QCM) and structural (SERS) biosensing, offering real-time mass tracking and conformational insights. The nanodendritic substrate’s dual functionality, combined with the receptor’s selectivity, advances label-free protein detection for applications in drug diagnostics, with potential adaptability to other target analytes. Full article
Show Figures

Graphical abstract

14 pages, 2802 KB  
Article
Quasi-Bound States in the Continuum-Enabled Wideband Terahertz Molecular Fingerprint Sensing Using Graphene Metasurfaces
by Jing Zhao and Jiaxian Wang
Nanomaterials 2025, 15(15), 1178; https://doi.org/10.3390/nano15151178 - 30 Jul 2025
Viewed by 978
Abstract
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based [...] Read more.
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based on quasi-bound states in the continuum (Quasi-BIC), which enhances molecular fingerprint recognition through resonance amplification. We designed a symmetric graphene double-split square ring metasurface structure. By modulating the Fermi level of graphene, this system generated continuously tunable Quasi-BIC resonance peaks across a broad THz spectral range, achieving precise spectral overlap with the characteristic absorption lines of lactose (1.19 THz and 1.37 THz) and tyrosine (0.958 THz). The results demonstrated a remarkable 763-fold enhancement in absorption peak intensity through envelope analysis for analytes with 0.1 μm thickness, compared to conventional bare substrate detection. This terahertz BIC metasurface sensor demonstrates high detection sensitivity, holding significant application value in fields such as biomedical diagnosis, food safety, and pharmaceutical testing. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Graphical abstract

34 pages, 6553 KB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Cited by 15 | Viewed by 4917
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

33 pages, 4158 KB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 4 | Viewed by 3588
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

21 pages, 13615 KB  
Article
Real-Time SPR Biosensing to Detect and Characterize Fast Dissociation Rate Binding Interactions Missed by Endpoint Detection and Implications for Off-Target Toxicity Screening
by William Martelly, Rebecca L. Cook, Chidozie Victor Agu, Lydia R. Gushgari, Salvador Moreno, Sailaja Kesiraju, Mukilan Mohan and Bharath Takulapalli
Biomolecules 2025, 15(6), 882; https://doi.org/10.3390/biom15060882 - 17 Jun 2025
Cited by 1 | Viewed by 1954
Abstract
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint [...] Read more.
Accurate detection of biomolecular interactions is essential in many areas, from the detection of the presence of biomarkers in the clinic to the development of therapeutic drugs and biologics in biopharma to the understanding of various biological processes in basic research. Traditional endpoint approaches can suffer from false-negative results for biomolecular interactions with fast kinetics. By contrast, real-time detection techniques like surface plasmon resonance (SPR) monitor interactions as they form and disassemble, reducing the risk of false-negative results. By leveraging cell-free expressed proteins captured on either glass or SPR biosensors and using two different commercial antibodies with variable off-rates that both target HaloTag antigens as a model, we compare and contrast results from a fluorescence endpoint assay versus real-time sensor-integrated proteome on chip (SPOC®) SPR-based detection. In this study, we illustrate the limitations of the representative immunofluorescent endpoint assay when investigating transient interactions characterized by fast dissociation rates. We highlight the importance of choosing reagents well suited to the selected assay, as well as the importance of considering binding kinetics and protein ligand conformational states when interpreting results from binding assays, especially for applications as critical as the off-target screening of therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

12 pages, 2629 KB  
Article
High-Q Resonances Enabled by Bound States in the Continuum for a Dual-Parameter Optical Sensing
by Hongshun Liu, Yuntao Pan, Hongjian Lu, Zongyu Chen, Xuguang Huang and Changyuan Yu
Photonics 2025, 12(6), 554; https://doi.org/10.3390/photonics12060554 - 30 May 2025
Viewed by 1320
Abstract
Optical sensing technologies, particularly refractive index and temperature sensing, are pivotal in biomedical, environmental, and industrial applications. This study introduces a dual-parameter all-dielectric transmissive grating sensor leveraging symmetry-protected bound states in the continuum (BICs). A one-dimensional silicon grating on a silica substrate was [...] Read more.
Optical sensing technologies, particularly refractive index and temperature sensing, are pivotal in biomedical, environmental, and industrial applications. This study introduces a dual-parameter all-dielectric transmissive grating sensor leveraging symmetry-protected bound states in the continuum (BICs). A one-dimensional silicon grating on a silica substrate was designed and analyzed using finite element analysis software. The proposed grating structure enables the excitation of two distinct BICs, both exhibiting high quality factors (Q-factors) of QI=8.03×104 for Mode I and QII=4.48×104 for Mode II. These modes demonstrate significantly different sensing characteristics due to their unique field distributions: Mode I predominantly confines its electromagnetic field within the grating slits, achieving an outstanding refractive index (RI) sensitivity of SRII=406 nm/RIU with a minor thermal sensitivity of STI=0.052 nm/°C. In contrast, Mode II concentrates its field energy in the silicon substrate, resulting in enhanced thermal sensitivity of STII=0.078 nm/°C while maintaining a refractive index sensitivity of SRIII=220 nm/RIU. This complementary sensitivity profile between the two modes establishes an ideal platform for developing a dual-parameter sensing system capable of simultaneously monitoring both refractive index variations and temperature changes. These results highlight the correlation between mode field distribution characteristics and sensing sensitivity performance, and enabling high Q-factor dual-parameter sensing with potential applications in lab-on-a-chip systems and real-time biomolecular monitoring. Full article
Show Figures

Figure 1

45 pages, 15218 KB  
Review
Comprehensive Analysis of Advancement in Optical Biosensing Techniques for Early Detection of Cancerous Cells
by Ayushman Ramola, Amit Kumar Shakya and Arik Bergman
Biosensors 2025, 15(5), 292; https://doi.org/10.3390/bios15050292 - 5 May 2025
Cited by 24 | Viewed by 3615
Abstract
This investigation presents an overview of various optical biosensors utilized for the detection of cancer cells. It covers a comprehensive range of technologies, including surface plasmon resonance (SPR) sensors, which exploit changes in refractive index (RI) [...] Read more.
This investigation presents an overview of various optical biosensors utilized for the detection of cancer cells. It covers a comprehensive range of technologies, including surface plasmon resonance (SPR) sensors, which exploit changes in refractive index (RI) at the sensor surface to detect biomolecular interactions. Localized surface plasmon resonance (LSPR) sensors offer high sensitivity and versatility in detecting cancer biomarkers. Colorimetric sensors, based on color changes induced via specific biochemical reactions, provide a cost-effective and simple approach to cancer detection. Sensors based on fluorescence work using the light emitted from fluorescent molecules detect cancer-specific targets with specificity and high sensitivity. Photonics and waveguide sensors utilize optical waveguides to detect changes in light propagation, offering real-time and label-free detection of cancer biomarkers. Raman spectroscopy-based sensors utilize surface-enhanced Raman scattering (SERS) to provide molecular fingerprint information for cancer diagnosis. Lastly, fiber optic sensors offer flexibility and miniaturization, making them suitable for in vivo and point-of-care applications in cancer detection. This study provides insights into the principles, applications, and advancements of these optical biosensors in cancer diagnostics, highlighting their potential in improving early detection and patient outcomes. Full article
(This article belongs to the Special Issue Fiber Optic Biosensors: Advancements and Applications)
Show Figures

Graphical abstract

Back to TopTop