Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Process
2.3. Optical Measurement Setup
3. Results and Discussion
3.1. Fabrication Results
3.2. Characterization of the FO-LSPR
3.3. Application as a Biosensor for Cancer Detection (IL-8)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos, A.; Troc, N.; Cottancin, E.; Pellarin, M. Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nat. Phys. 2019, 15, 275–280. [Google Scholar]
- Wu, Y.; Li, G.; Camden, J.P. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 2017, 117, 4929–4960. [Google Scholar]
- Chen, B.; Liu, C.; Hayashi, K. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR sensor. IEEE Sens. J. 2014, 14, 3458–3464. [Google Scholar] [CrossRef]
- Sugawa, K.; Tahara, H.; Yamashita, A.; Otsuki, J.; Sagara, T.; Harumoto, T.; Yanagida, S. Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material. ACS Nano 2015, 9, 1895–1904. [Google Scholar] [CrossRef]
- Spasopoulos, D.; Kaziannis, S.; Danakas, S.; Ikiades, A.; Kosmidis, C. LSPR based optical fiber sensors treated with nanosecond laser irradiation for refractive index sensing. Sens. Actuators B Chem. 2018, 256, 359–366. [Google Scholar]
- Shabaninezhad, M.; Ramakrishna, G. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells. J. Chem. Phys. 2019, 150, 144116. [Google Scholar] [CrossRef]
- Lee, S.; Song, H.; Ahn, H.; Kim, S.; Choi, J.-R.; Kim, K. Fiber-optic localized surface plasmon resonance sensors based on nanomaterials. Sensors 2021, 21, 819. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Geng, Z. Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.H.; Erdene, N.; Park, J.H.; Jeong, D.H.; Lee, H.Y.; Lee, S.K. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens. Bioelectron. 2013, 39, 346–351. [Google Scholar] [CrossRef]
- Kim, H.M.; Yang, S.H.; Park, J.H.; Lee, S.K. Fabrication of top-down-based optical fiber nanoprobes and their diagnostic application for pancreatic cancer. IEEE Sens. J. 2024, 24, 11966–11973. [Google Scholar] [CrossRef]
- Paul, D.; Dutta, S.; Saha, D.; Biswas, R. LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing. Sens. Actuators B Chem. 2017, 253, 735–742. [Google Scholar] [CrossRef]
- Kim, H.M.; Nam, K.T.; Lee, S.K.; Park, J.H. Fabrication and measurement of microtip-array-based LSPR sensor using bundle fiber. Sens. Actuators A Phys. 2018, 271, 146–152. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, H.J.; Park, J.H.; Lee, S.K. Bimetallic nanodisk-based fiber-optic plasmonic nanoprobe for gas detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 306, 123575. [Google Scholar] [CrossRef]
- Urrutia, A.; Goicoechea, J.; Arregui, F.J. Optical fiber sensors based on nanoparticle-embedded coatings. J. Sens. 2015, 2015, 805053. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Li, X.; Gong, P.; Zhang, Y.; Zhao, Y. Recent advancements of LSPR fiber-optic biosensing: Combination methods, structure, and prospects. Biosensors 2023, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Krasnok, A.; Zhang, T.; Scarabelli, L.; Liu, H.; Wu, Z.; Liz-Marzán, L.M.; Terrones, M.; Alù, A.; Zheng, Y. Tunable Fano resonance and plasmon–exciton coupling in single Au nanotriangles on monolayer WS2 at room temperature. Adv. Mater. 2018, 30, 1705779. [Google Scholar] [CrossRef]
- Kim, H.-M.; Jeong, D.H.; Lee, H.-Y.; Park, J.-H.; Lee, S.-K. Design and validation of fiber optic localized surface plasmon resonance sensor for thyroglobulin immunoassay with high sensitivity and rapid detection. Sci. Rep. 2021, 11, 15985. [Google Scholar] [CrossRef]
- Zheng, P.; Cushing, S.K.; Suri, S.; Wu, N. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 2015, 17, 21211–21219. [Google Scholar] [CrossRef]
- Focsan, M.; Craciun, A.M.; Potara, M.; Leordean, C.; Vulpoi, A.; Maniu, D.; Astilean, S. Flexible and tunable 3D gold nanocups platform as plasmonic biosensor for specific dual LSPR-SERS immuno-detection. Sci. Rep. 2017, 7, 14240. [Google Scholar] [CrossRef]
- Cha, S.; Mun, J.; Chang, T.; Kim, S.Y.; Kim, J.; Jin, H.; Lee, J.Y.; Shin, J.; Kim, K.H.; Kim, S. Au–Ag core–shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 2015, 9, 5536–5543. [Google Scholar]
- Sekhon, J.S.; Malik, H.; Verma, S. Tailoring surface plasmon resonance wavelengths and sensoric potential of core–shell metal nanoparticles. Sens. Lett. 2013, 11, 512–518. [Google Scholar] [CrossRef]
- Moayyed, H.; Leite, I.; Coelho, L.; Santos, J.L.; Viegas, D. Analysis of a plasmonic based optical fiber optrode with phase interrogation. Photon. Sens. 2016, 6, 221–233. [Google Scholar]
- Chen, X.; Wang, X. Near-field thermal transport in a nanotip under laser irradiation. Nanotechnology 2011, 22, 075204. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Anulytė, J.; Bužavaitė-Vertelienė, E.; Vertelis, V.; Stankevičius, E.; Vilkevičius, K.; Balevičius, Z. Influence of a gold nano-bumps surface lattice array on the propagation length of strongly coupled Tamm and surface plasmon polaritons. J. Mater. Chem. C 2022, 10, 13234–13241. [Google Scholar] [CrossRef]
- Cuartero-González, A.; Sanders, S.; Zundel, L.; Fernández-Domínguez, A.I.; Manjavacas, A. Super- and subradiant lattice resonances in bipartite nanoparticle arrays. ACS Nano 2020, 14, 11876–11887. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-H.; Oh, G.; Kim, H.; Lee, T.-K.; Kim, D.-G.; Chung, T.; Choi, Y.-W. Design and fabrication of nano-plasmonics based high sensitivity sensor. In Proceedings of the IEEE-NANO 2012, Birmingham, UK, 20–23 August 2012; pp. 1–5. [Google Scholar]
- Rifat, A.; Ahmed, R.; Yetisen, A.; Butt, H.; Sabouri, A.; Mahdiraji, G.; Yun, S.; Adikan, F. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 2017, 243, 311–325. [Google Scholar]
- He, H.; Wei, X.; He, Y.; Liang, Y.; Fang, Y.; Peng, W. Plasmonic resonance coupling of nanodisk array/thin film on the optical fiber tip for integrated and miniaturized sensing detection. Sensors 2023, 23, 4163. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Shang, L.; Feng, S.; Tang, Z.; Bi, C.; Zhao, H.; Liu, G. Optical fiber optrodes with silver-coated gold nanocavity ordered arrays for highly sensitive surface enhanced Raman spectrum. Sens. Actuators B Chem. 2023, 380, 133314. [Google Scholar] [CrossRef]
- Yan, X.; Han, L.; Zhao, R.; Fatima, S.; Zhao, L.; Gao, F. Prognosis value of IL-6, IL-8, and IL-1β in serum of patients with lung cancer: A fresh look at interleukins as a biomarker. Heliyon 2022, 8, e11352. [Google Scholar] [CrossRef]
- Bazzichetto, C.; Milella, M.; Zampiva, I.; Simionato, F. Interleukin-8 in colorectal cancer: A systematic review and meta-analysis of its potential role as a prognostic biomarker. Biomedicines 2022, 10, 2631. [Google Scholar] [CrossRef]
- Callaway, C.S.; Delitto, A.E.; D’Lugos, A.C.; Patel, R.; Nosacka, R.L.; Delitto, D.; Deyhle, M.R.; Trevino, J.G.; Judge, S.M.; Judge, A.R. IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers 2019, 11, 1863. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-M.; Lee, S.-J.; Kim, C.-L. Assessment of the physical, mechanical, and tribological properties of PDMS thin films based on different curing conditions. Materials 2021, 14, 4489. [Google Scholar] [CrossRef]
- Wei, J.; Shi, J.; Wang, B.; Tang, Y.; Tu, X.; Roy, E.; Ladoux, B.; Chen, Y. Fabrication of adjacent micropillar arrays with different heights for cell studies. Microelectron. Eng. 2016, 158, 22–25. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Xiao, W.; Wang, R.; Xiong, J.; Luo, J.; He, Z. Wideband multimode fiber with an optimized core size and fluorine-doped cladding for high-speed SWDM and CWDM transmission. Opt. Express 2019, 27, 15433–15443. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Lee, D. Surface modification of glass and glass fibres by plasma surface treatment. Surf. Interface Anal. 2004, 36, 254–258. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, X.; Yu, J.; Guo, Z.-X. Amine-functionalized thermoplastic polyurethane electrospun fibers prepared by co-electrospinning with 3-aminopropyltriethoxysilane and preparation of conductive fiber mats. Polymer 2012, 53, 5190–5196. [Google Scholar] [CrossRef]
- Verma, H.N.; Singh, P.; Chavan, R. Gold nanoparticle: Synthesis and characterization. Vet. World 2014, 7, 72–77. [Google Scholar] [CrossRef]
- Cao, C.; Sim, S.J. Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen–antibody interaction. Lab Chip 2009, 9, 1836–1839. [Google Scholar] [PubMed]
- Jian, Y.; He, Y.; Jiang, T.; Li, C.; Yang, W.; Nie, J. Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method. J. Coat. Technol. Res. 2013, 10, 231–237. [Google Scholar]
- Kim, H.-M.; Park, J.-H.; Lee, S.-K. Fiber Optic Plasmonic Sensors Based on Nanodome Arrays with Nanogaps. ACS Sens. 2022, 7, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Focsan, M.; Craciun, A.M.; Potara, M.; Vulpoi, A.; Leordean, C.; Soritau, O.; Maniu, D.; Astilean, S. Gold nanoparticle-decorated multilamellar liposomes as plasmonic vehicles for the photothermal release of doxorubicin. Biosensors 2023, 13, 512. [Google Scholar]
- Yang, X.; Ileri, N.; Larson, C.; Carlson, T.; Britten, J.; Chang, A.; Gu, C.; Bond, T. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Opt. Express 2012, 20, 24819–24826. [Google Scholar] [CrossRef]
- Ringe, E.; McMahon, J.M.; Sohn, K.; Cobley, C.; Xia, Y.; Huang, J.; Schatz, G.C.; Marks, L.D.; Van Duyne, R.P. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. J. Phys. Chem. C 2010, 114, 12511–12516. [Google Scholar] [CrossRef]
- Yuan, A.; Chen, J.J.W.; Yao, P.L.; Yang, P.C. The role of interleukin-8 in cancer cells and microenvironment interaction. Front. Biosci. 2005, 10, 853–865. [Google Scholar] [CrossRef]
- Kozłowski, L.; Zakrzewska, I.; Tokajuk, P.; Wojtukiewicz, M. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz. Akad. Med. Białymstoku 2003, 48, 82–84. [Google Scholar]
- Ogi, H.; Fukunishi, Y.; Nagai, H.; Okamoto, K.; Hirao, M.; Nishiyama, M. Nonspecific-adsorption behavior of polyethylenglycol and bovine serum albumin studied by 55-MHz wireless-electrodeless quartz crystal microbalance. Biosens. Bioelectron. 2009, 24, 3148–3152. [Google Scholar]
- Huber, W. Basic calculations about the limit of detection and its optimal determination. Accredit. Qual. Assur. 2003, 8, 213–217. [Google Scholar]
- Promega Corporation. Lumit® IL-8 (Human) Immunoassay. Available online: https://worldwide.promega.com/products/cell-health-assays/inflammation-assay/lumit-il-8-human-immunoassay/ (accessed on 6 October 2025).
- Rashidova, S.; Anokhin, I.; Parfenov, D.; Abdurakhmanov, A.; Venediktov, V.; Bozhevolnyi, S.I.; Sypabekova, M.; Tosi, D. Functionalized optical fiber ball-shaped biosensor for label-free, low-limit detection of IL-8 protein. Biomed. Opt. Express 2024, 15, 523–535. [Google Scholar]
- Verma, R.; Gupta, B.D. Anti-IL8/AuNPs/rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. Biosens. Bioelectron. 2017, 89, 175–183. [Google Scholar] [CrossRef]
- Alrebaish, S.; Althagafi, S.; Alfadhel, H.; Alshehri, A.; Alyami, H.; Alamer, M.; Alqahtani, F. Au-IDE-Based Non-Faradaic Electrochemical Biosensor for Early Detection of Interleukin-8 Protein. Micromachines 2025, 16, 395. [Google Scholar] [CrossRef] [PubMed]
- Zhakypbekova, A.; Matayev, D.; Alimbek, D.; Shukirbekov, M.; Tursynbek, A.; Artykbekov, A.; Korganbayev, S.; Molardi, C.; Blanc, W.; Ayupova, T.; et al. Parallel fiber-optic semi-distributed biosensor for detection of IL-6 and IL-8 cancer biomarkers in saliva at femtomolar limit. Opt. Laser Technol. 2025, 182, 110264. [Google Scholar] [CrossRef]
Method | Detection Range | LOD | Ref. |
---|---|---|---|
ELISA (Lumit® IL-8, Human Immunoassay, Promega) | 7.29 pg/mL–10,000 pg/mL | 1 pg/mL | [52] |
Optical fiber ball resonator biosensor | 273 aM–59 fM | 0.91 fM | [53] |
AuNPs-rGO/ITO biosensor | 500 fg/mL–50 ng/mL | 72.73 pg/mL | [54] |
Au IDE-based non-Faradaic biosensors | 1 ng/mL–10,000 ng/mL | 90 pg/mL | [55] |
Semi-distributed FO interferometer (FBG-assisted) | 10 aM–100 nM | 23.4 fM | [56] |
Micropillar FO-LSPR sensor | 0.1 pg/mL–1000 pg/mL | 0.013 pg/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-J.; Bang, J.-H.; Kim, H.-M.; Park, J.-H.; Lee, S.-K. Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite. Appl. Sci. 2025, 15, 10894. https://doi.org/10.3390/app152010894
Kim M-J, Bang J-H, Kim H-M, Park J-H, Lee S-K. Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite. Applied Sciences. 2025; 15(20):10894. https://doi.org/10.3390/app152010894
Chicago/Turabian StyleKim, Min-Jun, Jong-Hyun Bang, Hyeong-Min Kim, Jae-Hyoung Park, and Seung-Ki Lee. 2025. "Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite" Applied Sciences 15, no. 20: 10894. https://doi.org/10.3390/app152010894
APA StyleKim, M.-J., Bang, J.-H., Kim, H.-M., Park, J.-H., & Lee, S.-K. (2025). Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite. Applied Sciences, 15(20), 10894. https://doi.org/10.3390/app152010894