A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials
Abstract
1. Introduction
2. Biomedical and Biomolecular Monitoring Applications
Criticism of Biomedical Monitoring Utilities
3. Environmental Monitoring Applications
3.1. Metal Ions Detection
3.2. Anions Quantification
3.3. Nitroaromatics Sensing
3.4. Screening of Pesticides and Herbicides
3.5. Other Environmental Contaminants Detection
3.6. Critical Views on Environmental Contaminants Detection
4. Advantages and Limitations
4.1. Advantages
- (1)
- Due to the presence of free amine (-NH2) and thiol (-SH) groups in cysteamine, the functionalization of nanomaterials using any of those groups leaves the other one as a free group to attract specific analytes.
- (2)
- By tuning the charge potential in cysteamine-functionalized nanomaterials, both aggregation and anti-aggregation can be achieved during analyte sensing, which is advantageous in delivering distinct responses for analytes.
- (3)
- (4)
- Cysteamine-functionalized nanomaterials could afford a large surface area with tunable charge potential to attract diversely charged analytes with high selectivity, which is advantageous in electrochemical and SERS-based sensing platforms over other functional nanomaterials and analytical methods [151,152,153].
- (5)
- (6)
4.2. Limitations
- (1)
- Cysteamine-functionalized nanomaterials’ stability and sensor response at harsh environmental conditions depend on surface potential and optimized results, which could limit the reliability and commercialization of those materials.
- (2)
- Many available electrochemical sensors, illustrated by cysteamine-functionalized nanomaterials, require complicated multi-step fabrication procedures, which could restrict their commercialization.
- (3)
- SAM-based sensor performance depends on its stability, which may be greater in longer -CH2- chain containing thiols than cysteamine [160]. This could limit the design of such sensors.
- (4)
- Enzymatic peroxidase-based sensors using cysteamine-functionalized nanomaterials are found to be a time-consuming process. Similarly, FRET probes require careful optimization of concentration. This could limit their operation in portable sensory devices.
- (5)
- Until now, reports using cysteamine-functionalized nanomaterials for biomedical and ecological monitoring wisely avoid the feasible interferences, which are impossible at real-time detection. This could restrict the fabrication of commercial devices without any valid trials.
- (6)
- To characterize cysteamine-functionalized nanomaterials at research and commercial levels, costlier instruments, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), zeta sizer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc., are required. This could limit the use of those materials in developing countries.
5. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Mahajan, P.; Alsubaie, A.S.; Khanna, V.; Chahal, S.; Thakur, A.; Yadav, A.; Arya, A.; Singh, A.; Singh, G. Next-Generation Nanomaterial-Based Biosensors: Real-Time Biosensing Devices for Detecting Emerging Environmental Pollutants. Mater. Today Sustain. 2025, 29, 101068. [Google Scholar] [CrossRef]
- Shawky, S.M.; Awad, A.M.; Allam, W.; Alkordi, M.H.; El-Khamisy, S.F. Gold Aggregating Gold: A Novel Nanoparticle Biosensor Approach for the Direct Quantification of Hepatitis C Virus RNA in Clinical Samples. Biosens. Bioelectron. 2017, 92, 349–356. [Google Scholar] [CrossRef]
- Mabrouk, M.; Das, D.B.; Salem, Z.A.; Beherei, H.H. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021, 26, 1077. [Google Scholar] [CrossRef] [PubMed]
- Heydari-Bafrooei, E.; Ensafi, A.A. Nanomaterials-Based Biosensing Strategies for Biomarkers Diagnosis, A Review. Biosens. Bioelectron. X 2023, 13, 100245. [Google Scholar] [CrossRef]
- Yoon, J.; Shin, M.; Lee, T.; Choi, J.-W. Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. Materials 2020, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Z.; Ge, Y.; Liu, Z. Portable Upconversion Nanoparticles-Based Paper Device for Field Testing of Drug Abuse. Anal. Chem. 2016, 88, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024, 13, 1277. [Google Scholar] [CrossRef]
- He, Z.; Liu, C.; Li, Z.; Chu, Z.; Chen, X.; Chen, X.; Guo, Y. Advances in the Use of Nanomaterials for Nucleic Acid Detection in Point-of-Care Testing Devices: A Review. Front. Bioeng. Biotechnol. 2022, 10, 1020444. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Najm, L.; Ladouceur, L.; Ebrahimi, F.; Shakeri, A.; Al-Jabouri, N.; Didar, T.F.; Dellinger, K. Functional Nanomaterials for the Diagnosis of Alzheimer’s Disease: Recent Progress and Future Perspectives. Adv. Funct. Mater. 2023, 33, 2302673. [Google Scholar] [CrossRef]
- Willner, M.R.; Vikesland, P.J. Nanomaterial Enabled Sensors for Environmental Contaminants. J. Nanobiotechnol. 2018, 16, 95. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Luminescent Metal Nanoclusters for Potential Chemosensor Applications. Chemosensors 2017, 5, 36. [Google Scholar] [CrossRef]
- Shellaiah, M.; Manikandan, E.; Sun, K.W.; Venkatachalam, V. Luminescent Probes/Conjugates Derived from Quantum Dots, Nanoparticles, and Nanoclusters for Cyanide (CN−) Detection. Nano Exp. 2024, 5, 04200. [Google Scholar] [CrossRef]
- Kumar, V.; Vaid, K.; Bansal, S.A.; Kim, K.-H. Nanomaterial-Based Immunosensors for Ultrasensitive Detection of Pesticides/Herbicides: Current Status and Perspectives. Biosens. Bioelectron. 2020, 165, 112382. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors 2021, 21, 633. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, S.; Wang, L. Nanomaterials for Luminescence Detection of Nitroaromatic Explosives. TrAC Trends Anal. Chem. 2015, 65, 13–21. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Li, J.-W.; Huang, C.-Y.; Yang, S.-S.; Soong, Y.-C.; Lin, C.-L.; Lee, J.C.-M.; Lee Sanchez, W.A.; Cheng, C.-C.; Suen, M.-C. Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors. Nanomaterials 2020, 10, 1009. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Guo, Z.; Huang, X.-J. Regulation of Intrinsic Physicochemical Properties of Metal Oxide Nanomaterials for Energy Conversion and Environmental Detection Applications. J. Mater. Chem. A 2020, 8, 17326–17359. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar] [CrossRef]
- Li, H.; Ye, X.; Guo, X.; Geng, Z.; Wang, G. Effects of Surface Ligands on the Uptake and Transport of Gold Nanoparticles in Rice and Tomato. J. Hazard. Mater. 2016, 314, 188–196. [Google Scholar] [CrossRef]
- Palencia, M.S.; Berrio, M.E.; Palencia, S.L. Effect of Capping Agent and Diffusivity of Different Silver Nanoparticles on Their Antibacterial Properties. J. Nanosci. Nanotechnol. 2017, 17, 5197–5204. [Google Scholar] [CrossRef]
- Awada, C.; Traboulsi, H. Effect of pH and Nanoparticle Capping Agents on Cr (III) Monitoring in Water: A Kinetic Way to Control the Parameters of Ultrasensitive Environmental Detectors. Micromachines 2020, 11, 1045. [Google Scholar] [CrossRef] [PubMed]
- Yüce, M.; Kurt, H. How to Make Nanobiosensors: Surface Modification and Characterisation of Nanomaterials for Biosensing Applications. RSC Adv. 2017, 7, 49386–49403. [Google Scholar] [CrossRef]
- Taylor, M.G.; Mpourmpakis, G. Thermodynamic Stability of Ligand-Protected Metal Nanoclusters. Nat. Commun. 2017, 8, 15988. [Google Scholar] [CrossRef]
- Ngernpimai, S.; Puangmali, T.; Kopwitthaya, A.; Tippayawat, P.; Chompoosor, A.; Teerasong, S. Enhanced Stability of Gold Nanoparticles with Thioalkylated Carboxyl-Terminated Ligands for Applications in Biosensing. ACS Appl. Nano Mater. 2024, 7, 13124–13133. [Google Scholar] [CrossRef]
- Chen, S.; Dong, H.; Yang, J. Surface Potential/Charge Sensing Techniques and Applications. Sensors 2020, 20, 1690. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Vogel, R.; Pal, A.K.; Jambhrunkar, S.; Patel, P.; Thakur, S.S.; Reátegui, E.; Parekh, H.S.; Saá, P.; Stassinopoulos, A.; Broom, M.F. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing. Sci. Rep. 2017, 7, 17479. [Google Scholar] [CrossRef]
- Salamone, T.A.; Rutigliano, L.; Pennacchi, B.; Cerra, S.; Matassa, R.; Nottola, S.; Sciubba, F.; Battocchio, C.; Marsotto, M.; Del Giudice, A.; et al. Thiol Functionalised Gold Nanoparticles Loaded with Methotrexate for Cancer Treatment: From Synthesis to In Vitro Studies on Neuroblastoma Cell Lines. J. Colloid Inter. Sci. 2023, 649, 264–278. [Google Scholar] [CrossRef]
- Hsiao, I.-L.; Fritsch-Decker, S.; Leidner, A.; Al-Rawi, M.; Hug, V.; Diabaté, S.; Grage, S.L.; Meffert, M.; Stoeger, T.; Gerthsen, D.; et al. Biocompatibility of Amine-Functionalized Silica Nanoparticles: The Role of Surface Coverage. Small 2019, 15, 1805400. [Google Scholar] [CrossRef]
- Geißler, D.; Nirmalananthan-Budau, N.; Scholtz, L.; Tavernaro, I.; Resch-Genger, U. Analyzing the Surface of Functional Nanomaterials—How to Quantify the Total and Derivatizable Number of Functional Groups and Ligands. Microchim. Acta 2021, 188, 321. [Google Scholar] [CrossRef]
- Du, J.-Z.; Li, H.-J.; Wang, J. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles to Overcome Delivery Barriers in Cancer Nanomedicine. Acc. Chem. Res. 2018, 51, 2848–2856. [Google Scholar] [CrossRef]
- Darabi, H.R.; Roozkhosh, A.; Jafar Tehrani, M.; Aghapoor, K.; Sayahi, H.; Balavar, Y.; Mohsenzadeh, F. Characterization of Ester- or Thioamide-Functionalized Single-Walled Carbon Nanotube-Azithromycin Conjugates. Appl. Surf. Sci. 2014, 288, 122–129. [Google Scholar] [CrossRef]
- Sakellari, G.I.; Hondow, N.; Gardiner, P.H.E. Factors Influencing the Surface Functionalization of Citrate Stabilized Gold Nanoparticles with Cysteamine, 3-Mercaptopropionic Acid or l-Selenocystine for Sensor Applications. Chemosensors 2020, 8, 80. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.U.; Ao, Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef]
- Shellaiah, M.; Thirumalaivasan, N.; Sun, K.W.; Wu, S.-P. A pH Cooperative Strategy for Enhanced Colorimetric Sensing of Cr(III) Ions Using Biocompatible L-Glutamic Acid Stabilized Gold Nanoparticles. Microchem. J. 2021, 160, 105754. [Google Scholar] [CrossRef]
- Ramírez, M.L.; Tettamanti, C.S.; Gutierrez, F.A.; Gonzalez-Domínguez, J.M.; Ansón-Casaos, A.; Hernández-Ferrer, J.; Martínez, M.T.; Rivas, G.A.; Rodríguez, M.C. Cysteine Functionalized Bio-Nanomaterial for the Affinity Sensing of Pb(II) As An Indicator of Environmental Damage. Microchem. J. 2018, 141, 271–278. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Gonzalez-Dominguez, J.M.; Ansón-Casaos, A.; Hernández-Ferrer, J.; Rubianes, M.D.; Martínez, M.T.; Rivas, G. Single-Walled Carbon Nanotubes Covalently Functionalized with Cysteine: A New Alternative for the Highly Sensitive and Selective Cd(II) Quantification. Sens. Actuators B 2017, 249, 506–514. [Google Scholar] [CrossRef]
- Dou, Y.; Yang, X.; Liu, Z.; Zhu, S. Homocysteine-Functionalized Silver Nanoparticles for Selective Sensing of Cu2+ Ions and Lidocaine Hydrochloride. Colloids Surf. A 2013, 423, 20–26. [Google Scholar] [CrossRef]
- Sutradhar, S.; Jacob, G.V.; Patnaik, A. Structure and Dynamics of A DL-Homocysteine Functionalized Fullerene-C60–Gold Nanocomposite: A Femtomolar L-Histidine Sensor. J. Mater. Chem. B 2017, 5, 5835–5844. [Google Scholar] [CrossRef]
- Yu, Y.; Hong, Y.; Gao, P.; Nazeeruddin, M.K. Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb2+ Ions in Rainwater Polluted by Leaking Perovskite Solar Cells. Anal. Chem. 2016, 88, 12316–12322. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, H.; Liu, P.; Yao, Y.; Wu, Y.; Zhang, J.; Li, H.; Gong, X.; Chang, J. An Ultra-Sensitive and Colorimetric Sensor for Copper and Iron Based on Glutathione-Functionalized Gold Nanoclusters. Anal. Chim. Acta 2016, 948, 73–79. [Google Scholar] [CrossRef]
- Feng, B.; Zhu, R.; Xu, S.; Chen, Y.; Di, J. A Sensitive LSPR Sensor Based on Glutathione-Functionalized Gold Nanoparticles on A Substrate for the Detection of Pb2+ Ions. RSC Adv. 2018, 8, 4049–4056. [Google Scholar] [CrossRef]
- Testa, G.; Fontana, L.; Venditti, I.; Fratoddi, I. Functionalized Platinum Nanoparticles with Surface Charge Trigged by pH: Synthesis, Characterization and Stability Studies. Beilstein J. Nanotechnol. 2016, 7, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. Biosensors 2023, 13, 335. [Google Scholar] [CrossRef] [PubMed]
- Jafarnejad, M.; Asli, M.D.; Taromi, F.A.; Manoochehri, M. Synthesis of Multi-Functionalized Fe3O4-NH2-SH Nanofiber Based on Chitosan for Single and Simultaneous Adsorption of Pb(II) and Ni(II) From Aqueous System. Inter. J. Biol. Macromol. 2020, 148, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, R.E. Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. Biosensors 2022, 12, 581. [Google Scholar] [CrossRef]
- Yang, Q.; Nguyen, E.P.; Panáček, D.; Šedajová, V.; Hrubý, V.; Rosati, G.; Silva, C.d.C.C.; Bakandritsos, A.; Otyepka, M.; Merkoçi, A. Metal-Free Cysteamine-Functionalized Graphene Alleviates Mutual Interferences in Heavy Metal Electrochemical Detection. Green Chem. 2023, 25, 1647–1657. [Google Scholar] [CrossRef]
- Paul, B.D.; Snyder, S.H. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front. Neurol. 2019, 10, 1315. [Google Scholar] [CrossRef]
- Wu, C.; Shi, L.; Wu, C.; Guo, D.; Selke, M.; Wang, X. Enhanced In Vitro Anticancer Activity of Quercetin Mediated by Functionalized CdTe QDs. Sci. China Chem. 2014, 57, 1579–1588. [Google Scholar] [CrossRef]
- Sri Rethinavel, H.; Selvaraj, D.B.; Balakrishnan, S.J.; Vergil Andrews, J.F.; Joseph, J.H.M.; Kandasamy, M. Omeprazole Treatment Manifests Anxiolytic Effects in A Cysteamine Hydrochloride Induced Mouse Model of Gastrointestinal Disorder. Heliyon 2022, 8, e09787. [Google Scholar] [CrossRef]
- Diyana Jamaluddin, N.; Ibrahim, N.; Yuziana Mohd Yusof, N.; Ta Goh, C.; Ling Tan, L. Optical Reflectometric Measurement of SARS-CoV-2 (COVID-19) RNA Based on Cationic Cysteamine-Capped Gold Nanoparticles. Optics Laser Technol. 2023, 157, 108763. [Google Scholar] [CrossRef]
- Farshchi, F.; Hasanzadeh, M.; Mokhtarzadeh, A. A Novel Electroconductive Interface Based on Fe3O4 Magnetic Nanoparticle and Cysteamine Functionalized AuNPs: Preparation and Application as Signal Amplification Element to Minoring of Antigen-Antibody Immunocomplex and Biosensing of Prostate Cancer. J. Mol. Recognit. 2020, 33, e2825. [Google Scholar] [CrossRef]
- Soleymani, J.; Hasanzadeh, M.; Somi, M.H.; Jouyban, A. Differentiation and Targeting of HT 29 Cancer Cells Based on Folate Bioreceptor Using Cysteamine Functionalized Gold Nano-Leaf. Mater. Sci. Eng. C 2020, 107, 110320. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Rahimi, S.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Soleymani, J.; Mahboob, S. Probing the Antigen-Antibody Interaction Towards Ultrasensitive Recognition of Cancer Biomarker in Adenocarcinoma Cell Lysates Using Layer-by-Layer Assembled Silver Nano-Cubics with Porous Structure on Cysteamine-Capped GQDs. Microchem. J. 2018, 143, 379–392. [Google Scholar] [CrossRef]
- Liu, S.; Cao, H.; Wang, Z.; Tu, W.; Dai, Z. Label-Free Photoelectrochemical Cytosensing Via Resonance Energy Transfer Using Gold Nanoparticle-Enhanced Carbon Dots. Chem. Commun. 2015, 51, 14259–14262. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Burgos-Flórez, F.; Posada, J.D.; Cervera, E.; Zucolotto, V.; Sanjuán, H.; Sanjuán, M.; Villalba, P.J. Electrochemical Immunosensor for the Quantification of S100B at Clinically Relevant Levels Using a Cysteamine Modified Surface. Sensors 2021, 21, 1929. [Google Scholar] [CrossRef]
- Asadzadeh-Firouzabadi, A.; Zare, H.R. Application of Cysteamine-Capped Gold Nanoparticles for Early Detection of Lung Cancer-Specific miRNA (miR-25) in Human Blood Plasma. Anal. Methods 2017, 9, 3852–3861. [Google Scholar] [CrossRef]
- Aamri, M.E.; Mohammadi, H.; Amine, A. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles. Biosensors 2023, 13, 74. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Ma, H. Electrochemical DNA Biosensors Based on Gold Nanoparticles/Cysteamine/Poly(glutamic acid) Modified Electrode. Am. J. Biomed. Sci. 2009, 1, 115–125. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, S.; Nerthigan, Y.; Swaminathan, N.; Wu, H.-F. Aggregation of Cysteamine-Capped Gold Nanoparticles in Presence of ATP as an Analytical Tool for Rapid Detection of Creatine Kinase (CK-MM). Anal. Chim. Acta 2018, 1024, 161–168. [Google Scholar] [CrossRef]
- Jia, H.; Yu, S.; Yang, L.; Wei, Q.; Ju, H. Near-Infrared Electrochemiluminescence of Dual-Stabilizer-Capped Au Nanoclusters for Immunoassays. ACS Appl. Nano Mater. 2021, 4, 2657–2663. [Google Scholar] [CrossRef]
- Shaban, M.; Hasanzadeh, M.; Solhi, E. An Fe3O4/PEDOT:PSS Nanocomposite as an Advanced Electroconductive Material for the Biosensing of the Prostate-Specific Antigen in Unprocessed Human Plasma Samples. Anal. Methods 2019, 11, 5661–5672. [Google Scholar] [CrossRef]
- Wai, J.L.; New, S.Y. Cysteamine-Coated Gold Nanoparticles for Bimodal Colorimetric Detection with Inverse Sensitivity: A Proof-of-Concept with Lysozyme. RSC Adv. 2020, 10, 1088–1094. [Google Scholar] [CrossRef]
- Li, S.; Gao, Z.; Shao, N. Non-Covalent Conjugation of CdTe QDs with Lysozyme Binding DNA for Fluorescent Sensing of Lysozyme in Complex Biological Sample. Talanta 2014, 129, 86–92. [Google Scholar] [CrossRef]
- Ren, S.; Zhou, F.; Xu, C.; Li, B. Simple Method for Visual Detection of Glutathione S-Transferase Activity and Inhibition Using Cysteamine-Capped Gold Nanoparticles as Colorimetric Probes. Gold Bull. 2015, 48, 147–152. [Google Scholar] [CrossRef]
- Mradula; Raj, R.; Devi, S.; Mishra, S. Antibody-Labeled Gold Nanoparticles Based Immunosensor for the Detection of Thyroxine Hormone. Anal. Sci. 2020, 36, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Srinivasan, P.; Rayappan, J.B.B.; Solomon, A.P. A Photoluminescence Biosensor for the Detection of N-Acyl Homoserine Lactone Using Cysteamine Functionalized ZnO Nanoparticles for the Early Diagnosis of Urinary Tract Infections. J. Mater. Chem. B 2020, 8, 4228–4236. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Srinivasan, P.; Neelakantan, P.; Rayappan, J.B.B.; Solomon, A.P. Photoluminescence-Based Bioassay with Cysteamine-Capped TiO2 Nanoparticles for the Selective Recognition of N-Acyl Homoserine Lactones. Front. Bioeng. Biotechnol. 2021, 9, 750933. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Su, R.; Xu, J.; Bie, J.; Sun, R.; Wang, L.; Liu, X.; Sun, C. Aptamers-Based Sensing Strategy for 17β-Estradiol Through Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles. J. Nanosci. Nanotechnol. 2018, 18, 1517–1527. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Cui, C.; Zhang, X.; Yang, W.; Zuo, Y. Highly Sensitive Detection of Brucella in Milk by Cysteamine Functionalized Nanogold/4-Mercaptobenzoic Acid Electrochemical Biosensor. J. Food Meas. Character. 2022, 16, 3501–3511. [Google Scholar] [CrossRef]
- Toomjeen, P.; Phanchai, W.; Choodet, C.; Chompoosor, A.; Thanan, R.; Sakonsinsiri, C.; Puangmali, T. Designing an Aptasensor Based on Cysteamine-Capped AuNPs for 8-Oxo-dG Detection: A Molecular Dynamics Approach and Experimental Validation. J. Phys. Chem. B 2019, 123, 1129–1138. [Google Scholar] [CrossRef]
- Han, S.; Shih, W.Y.; Shih, W.-H. Charge-Neutral, Stable, Non-Cytotoxic, Near-Infrared SnS Aqueous Quantum Dots for High Signal-to-Noise-Ratio Biomedical Imaging. ChemistrySelect 2017, 2, 7332–7339. [Google Scholar] [CrossRef]
- Basiruddin, S.K.; Chakraborty, A. One Step Synthesis of Maltose Functionalized Red Fluorescent Ag Cluster for Specific Glycoprotein Detection and Cellular Imaging Probe. RSC Adv. 2014, 4, 43098–43104. [Google Scholar] [CrossRef]
- Roushani, M.; Valipour, A.; Valipour, M. Layer-by-Layer Assembly of Gold Nanoparticles and Cysteamine on Gold Electrode for Immunosensing of Human Chorionic Gonadotropin at Picogram Levels. Mater. Sci. Eng. C 2016, 61, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.S.M.; Freitas, D.V.; de Souza, G.C.S.; Belmiro, T.M.C.; Lavorante, A.F.; Teixeira-Neto, E.; Navarro, M.; Montenegro, M.C.B.S.M.; Paim, A.P.S. Cysteamine-CdTe Quantum Dots Electrochemically Synthesized as Fluorescence Probe for Resveratrol. Food Anal. Methods 2018, 11, 3371–3379. [Google Scholar] [CrossRef]
- Ramírez-Segovia, A.S.; Banda-Alemán, J.A.; Gutiérrez-Granados, S.; Rodríguez, A.; Rodríguez, F.J.; Godínez, L.A.; Bustos, E.; Manríquez, J. Glassy Carbon Electrodes Sequentially Modified by Cysteamine-Capped Gold Nanoparticles and Poly(amidoamine) Dendrimers Generation 4.5 for Detecting Uric Acid in Human Serum Without Ascorbic Acid Interference. Anal. Chim. Acta 2014, 812, 18–25. [Google Scholar] [CrossRef]
- Hernández, H.D.; Dominguez, R.B.; Gutiérrez, J.M. Screen-Printed Carbon Electrode Functionalized with AuNPs-Cysteamine Self-Assembled Monolayers for Enzymatic Uric Acid Detection in Non-Invasive Samples. Sens. Bio-Sens. Res. 2024, 45, 100677. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. The Latest Strategies in the Fight Against the COVID-19 Pandemic: The Role of Metal and Metal Oxide Nanoparticles. New J. Chem. 2021, 45, 6167–6179. [Google Scholar] [CrossRef]
- Ngamdee, K.; Ngeontae, W. Circular Dichroism Glucose Biosensor Based on Chiral Cadmium Sulfide Quantum Dots. Sens. Actuators B 2018, 274, 402–411. [Google Scholar] [CrossRef]
- Li, S.; Liao, L.; Wu, R.; Yang, Y.; Xu, L.; Xiao, X.; Nie, C. Resonance Light Scattering Detection of Fructose Bisphosphates using Uranyl-Salophen Complex-Modified Gold Nanoparticles as Optical Probe. Anal. Bioanal. Chem. 2015, 407, 8911–8918. [Google Scholar] [CrossRef]
- Selvi, S.V.; Prasannan, A.; Chen, S.-M.; Vadivelmurugan, A.; Tsai, H.-C.; Lai, J.-Y. Glutathione and Cystamine Functionalized MoS2 Core-Sshell Nanoparticles for Enhanced Electrochemical Detection of Doxorubicin. Microchim. Acta 2021, 188, 35. [Google Scholar] [CrossRef] [PubMed]
- Ngamdee, K.; Puangmali, T.; Tuntulani, T.; Ngeontae, W. Circular Dichroism Sensor Based on Cadmium Sulfide Quantum Dots for Chiral Identification and Detection of Penicillamine. Anal. Chim. Acta 2015, 898, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Feleni, U.; Sidwaba, U.; Makelane, H.; Iwuoha, E. Core Shell Palladium Telluride Quantum Dot-Hemethiolate Cytochrome Based Biosensor for Detecting Indinavir Drug. J. Nanosci. Nanotechnol. 2019, 19, 7974–7981. [Google Scholar] [CrossRef] [PubMed]
- Gukowsky, J.C.; Tan, C.; Han, Z.; He, L. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. J. Food Sci. 2018, 83, 1631–1638. [Google Scholar] [CrossRef]
- Liang, X.; Fang, X.; Yao, M.; Yang, Y.; Li, J.; Liu, H.; Wang, L. Direct Competitive Chemiluminescence Immunoassays Based on Gold-Coated Magnetic Particles for Detection of Chloramphenicol. Luminescence 2016, 31, 168–172. [Google Scholar] [CrossRef]
- Castro, R.C.; Lopes, A.F.R.; Soares, J.X.; Ribeiro, D.S.M.; Santos, J.L.M. Determination of Atenolol Based on the Reversion of the Fluorescence Resonance Energy Transfer Between AgInS2 Quantum Dots and Au Nanoparticles. Analyst 2021, 146, 1004–1015. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, Y.; Li, X.; Miao, L.; Wu, A. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, S.; Song, H.; Luo, X.; Wu, D.; Zheng, F.; Liu, W.; Ji, S. The Dual-Mode Platform Based on Cysteamine-Stabilized Gold Nanoparticles for the High Throughput and On-Site Detection of Bongkrekic Acid. Food Control 2022, 136, 108887. [Google Scholar] [CrossRef]
- Rastogi, S.; Kumari, V.; Sharma, V.; Ahmad, F.J. Colorimetric Detection of Oxytocin in Bottle Gourd Using Cysteamine Functionalized Gold Nanoparticle (Cys-AuNPs). Food Anal. Methods 2022, 15, 2972–2983. [Google Scholar] [CrossRef]
- Rastogi, S.; Kumari, V.; Sharma, V.; Ahmad, F.J. RGB Colorimetric Method-Based Detection of Oxytocin in Food Samples Using Cysteamine Functionalized Gold Nanoparticles. Anal. Biochem. 2022, 656, 114886. [Google Scholar] [CrossRef]
- Tavakkoli Yaraki, M.; Tayebi, M.; Ahmadieh, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. Synthesis and Optical Properties of Cysteamine-Capped ZnS Quantum Dots for Aflatoxin Quantification. J. Alloys Comp. 2017, 690, 749–758. [Google Scholar] [CrossRef]
- Tayebi, M.; Tavakkoli Yaraki, M.; Ahmadieh, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. Determination of Total Aflatoxin Using Cysteamine-Capped CdS Quantum Dots as A Fluorescence Probe. Colloid Polymer Sci. 2016, 294, 1453–1462. [Google Scholar] [CrossRef]
- Chotchuang, T.; Cheewasedtham, W.; Jayeoye, T.J.; Rujiralai, T. Colorimetric Determination of Fumonisin B1 Based on the Aggregation of Cysteamine-Functionalized Gold Nanoparticles Induced by A Product of Its Hydrolysis. Microchim. Acta 2019, 186, 655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, X. Ultrasensitive Electrochemiluminescence Detection of Mercury Ions Based on DNA Oligonucleotides and Cysteamine Modified Gold Nanoparticles Probes. Sens. Actuators B 2012, 171–172, 860–865. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, L.; Mei, Y.; Song, R.; Tian, D.; Huang, H. Colorimetric Sensing Strategy for Mercury(ii) and Melamine Utilizing Cysteamine-Modified Gold Nanoparticles. Analyst 2013, 138, 5338–5343. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, Y.; Chakraborty, A. Label-Free Cysteamine-Capped Silver Nanoparticle-Based Colorimetric Assay for Hg(II) Detection in Water with Subnanomolar Exactitude. ACS Sustain. Chem. Eng. 2014, 2, 2149–2154. [Google Scholar] [CrossRef]
- Tianyu, H.; Xu, Y.; Weidan, N.; Xingguang, S. Aptamer-Based Aggregation Assay for Mercury(II) Using Gold Nanoparticles and Fluorescent CdTe Quantum Dots. Microchim. Acta 2016, 183, 2131–2137. [Google Scholar] [CrossRef]
- Uppa, Y.; Kulchat, S.; Ngamdee, K.; Pradublai, K.; Tuntulani, T.; Ngeontae, W. Silver Ion Modulated CdS Quantum Dots for Highly Selective Detection of Trace Hg2+. J. Lumin. 2016, 178, 437–445. [Google Scholar] [CrossRef]
- Chen, B.; Ma, J.; Yang, T.; Chen, L.; Gao, P.F.; Huang, C.Z. A Portable RGB Sensing Gadget for Sensitive Detection of Hg2+ Using Cysteamine-Capped QDs as Fluorescence Probe. Biosens. Bioelectron. 2017, 98, 36–40. [Google Scholar] [CrossRef]
- Rezaei, B.; Shahshahanipour, M.; Ensafi, A.A.; Farrokhpour, H. Development of Highly Selective and Sensitive Fluorimetric Label-Free Mercury Aptasensor Based on Cysteamine@CdTe/ZnS Quantum Dots, Experimental and Theoretical Investigation. Sens. Actuators B 2017, 247, 400–407. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Wang, S.; Guo, Z.; Hu, Y.; Xie, H. A Novel Surface-Tethered Double-Signal Electrochemiluminescence Sensor Based on Luminol@Au and CdS Quantum Dots for Mercury Ion Detection. ChemistrySelect 2019, 4, 2926–2932. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Venkatesan, P.; Sun, K.W.; Ko, F.-H.; Wu, S.-P. Cysteamine-Modified Diamond Nanoparticles Applied in Cellular Imaging and Hg2+ ions Detection. Appl. Surf. Sci. 2019, 465, 340–350. [Google Scholar] [CrossRef]
- Shellaiah, M.; Chen, T.H.; Simon, T.; Li, L.-C.; Sun, K.W.; Ko, F.-H. An Affordable Wet Chemical Route to Grow Conducting Hybrid Graphite-Diamond Nanowires: Demonstration by A Single Nanowire Device. Sci. Rep. 2017, 7, 11243. [Google Scholar] [CrossRef] [PubMed]
- Olenin, A.Y.; Korotkov, A.S. Spectrophotometric Determination of Hg2+ Ions Using Sols of Silver Nanoparticles Modified with Cysteamine. J. Anal. Chem. 2021, 76, 721–727. [Google Scholar] [CrossRef]
- Khantaw, T.; Boonmee, C.; Tuntulani, T.; Ngeontae, W. Selective Turn-On Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticle Solution. Talanta 2013, 115, 849–856. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Kazemifard, N.; Rezaei, B. A Simple and Sensitive Fluorimetric Aptasensor for the Ultrasensitive Detection of Arsenic(III) Based on Cysteamine Stabilized CdTe/ZnS Quantum Dots Aggregation. Biosens. Bioelectron. 2016, 77, 499–504. [Google Scholar] [CrossRef]
- Wang, M.; He, M.; Chen, B.; Hu, B. Preparation of Stable Thiol-Functionalized Magnetic Nanoparticles for Magnetic Solid Phase Extraction of As(III) in Environmental Waters. Microchem. J. 2025, 212, 113268. [Google Scholar] [CrossRef]
- Yadav, R.; Patel, P.N.; Lad, V.N. High Selective Colorimetric Detection of Cd2+ Ions using Cysteamine Functionalized Gold Nanoparticles with Cross-Linked DL-Glyceraldehyde. Res. Chem. Intermed. 2018, 44, 2305–2317. [Google Scholar] [CrossRef]
- Boonmee, C.; Promarak, V.; Tuntulani, T.; Ngeontae, W. Cysteamine-Capped Copper Nanoclusters as A Highly Selective Turn-On Fluorescent Assay for the Detection of Aluminum Ions. Talanta 2018, 178, 796–804. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Farahbakhsh, A.; Bagherzadeh, M. Functionalization of Gold Cysteamine Self-Assembled Monolayer with Ethylenediaminetetraacetic Acid as A Novel Nanosensor. Anal. Chim. Acta 2007, 587, 254–262. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X. Ultrasensitive Pb2+ Detection Based on Fluorescence Resonance Energy Transfer (FRET) Between Quantum Dots and Gold Nanoparticles. Analyst 2009, 134, 1348–1354. [Google Scholar] [CrossRef]
- Madrakian, T.; Ahmadi, M.; Ghadiri, M.; Afkhami, A. Application of Cysteamine Functionalized CdS Hollow Nanospheres in Determination of Cd(II) and Pb(II) in the Presence of Each Other by Resonance Light Scattering Technique. J. Environ. Chem. Eng. 2016, 4, 3484–3491. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Ali, S.; Wang, P.; Li, C.; Ouyang, Q.; Li, H.; Chen, Q. Cysteamine-Mediated Upconversion Sensor for Lead Ion Detection in Food. J. Food Measure. Charact. 2021, 15, 4849–4857. [Google Scholar] [CrossRef]
- Roshni, V.; Gujar, V.; Pathan, H.; Islam, S.; Tawre, M.; Pardesi, K.; Santra, M.K.; Ottoor, D. Bioimaging Applications of Carbon dots (C. dots) and Its Cystamine Functionalization for the Sensitive Detection of Cr(VI) in Aqueous Samples. J. Fluoresc. 2019, 29, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Simon, T.; Thirumalaivasan, N.; Sun, K.W.; Ko, F.-H.; Wu, S.-P. Cysteamine-Capped Gold-Copper Nanoclusters for Fluorometric Determination and Imaging of Chromium(VI) and Dopamine. Microchim. Acta 2019, 186, 788. [Google Scholar] [CrossRef] [PubMed]
- Pansari, P.; Durga, G.; Javed, R. Cysteamine Modified Ruellia Simplex Carbon Dots: Tuning Photoluminescence and Unraveling the Metal Sensing Mechanism. Chem. Pap. 2024, 78, 5993–6010. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Z.; Peng, X.; Li, L.; He, J.; Zhang, Y. Highly Selective Colorimetric Detection of Copper Ions Using Cysteamine Functionalized Gold Nanoparticles. J. Chin. Chem. Soc. 2014, 61, 1371–1376. [Google Scholar] [CrossRef]
- Ngamdee, K.; Chaiendoo, K.; Saiyasombat, C.; Busayaporn, W.; Ittisanronnachai, S.; Promarak, V.; Ngeontae, W. Highly Selective Circular Dichroism Sensor Based on D-Penicillamine/Cysteamine-Cadmium Sulfide Quantum Dots for Copper (II) Ion Detection. Spectrochim. Acta A 2019, 211, 313–321. [Google Scholar] [CrossRef]
- Pal, A.; Arora, B.; Rani, D.; Srivastava, S.; Gupta, R.; Sapra, S. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation. Z. Phys. Chem. 2018, 232, 1413–1430. [Google Scholar] [CrossRef]
- Tai, Y.-T.; Simon, T.; Chu, Y.-Y.; Ko, F.-H. One-Pot Synthesis of Copper Nanoconjugate Materials as Luminescent Sensors for Fe3+ and I− Detection in Human Urine Sample. Sens. Bio-Sens. Res. 2020, 27, 100319. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Conjugation of Cysteamine Functionalized Nanodiamond to Gold Nanoparticles for pH Enhanced Colorimetric Detection of Cr3+ Ions Demonstrated by Real Water Sample Analysis. Spectrochim. Acta A 2023, 286, 121962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, C.; Wang, X.; Yang, X. Colorimetric Recognition and Sensing of Thiocyanate with A Gold Nanoparticle Probe and Its Application to the Determination of Thiocyanate in Human Urine Samples. Anal. Bioanal. Chem. 2012, 403, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Noipa, T.; Tuntulani, T.; Ngeontae, W. Cu2+-Modulated Cysteamine-Capped CdS Quantum Dots as A Turn-On Fluorescence Sensor for Cyanide Recognition. Talanta 2013, 105, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Shanmugaraj, K.; Ilanchelian, M.; Ju, H. Cysteamine-Decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide Ions using the smartphone Color Ratio and for Catalytic Reduction of 4-Nitrophenol. Chemosphere 2023, 316, 137836. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, C.; Lu, L.; Yang, F.; Yang, X. A Label-Free Colorimetric Sensor for Sulfate Based on the Inhibition of Peroxidase-Like Activity of Cysteamine-Modified Gold Nanoparticles. Sens. Actuators B 2015, 215, 437–444. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Surface-Enhanced Raman Scattering for Perchlorate Detection Using Cystamine-Modified Gold Nanoparticles. Anal. Chim. Acta 2006, 567, 114–120. [Google Scholar] [CrossRef]
- Mura, S.; Greppi, G.; Roggero, P.P.; Musu, E.; Pittalis, D.; Carletti, A.; Ghiglieri, G.; Irudayaraj, J. Functionalized Gold Nanoparticles for the Detection of Nitrates in Water. Int. J. Environ. Sci. Technol. 2015, 12, 1021–1028. [Google Scholar] [CrossRef]
- Sim, Y.; Hwang, C.-S. Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions. J. Kor. Phys. Soc. 2018, 72, 424–430. [Google Scholar] [CrossRef]
- Tian, X.; Chen, L.; Qing, X.; Yu, K.; Wang, X.; Wang, X. Hybrid Cadmium Tellurium Quantum Dots for Rapid Visualization of Trace-Level Nitroaromatic Explosives. Anal. Lett. 2014, 47, 2035–2047. [Google Scholar] [CrossRef]
- Gao, R.; Li, D.; Zhang, Q.; Zheng, S.; Ren, X.; Deng, W. GNPs-QDs Core–Satellites Assembly: Trimodal Platform for On-Site Identification and Detection of TNT in Complex Media. Sens. Actuators B 2021, 328, 128960. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Nath, P.; Satapathi, S. Fabrication of Cysteamine-Capped-CdSe QDs Anchored Graphene Xerogel Nanosensor for Facile Onsite Visual Detection of TNT. Nano-Struct. Nano-Objects 2021, 25, 100643. [Google Scholar] [CrossRef]
- Soltani-Shahrivar, M.; Afkhami, A.; Madrakian, T. Design and Optimization of A Cost-Effective Paper-Based Voltammetric Sensor for the Determination of Trinitrotoluene (TNT) Utilizing Cysteamine-Linked Fe3O4@Au Nanocomposite. Talanta 2024, 274, 126041. [Google Scholar] [CrossRef] [PubMed]
- Butwong, N.; Srijaranai, S.; Glennon, J.D.; Luong, J.H.T. Cysteamine Capped Silver Nanoparticles and Single-walled Carbon Nanotubes Composite Coated on Glassy Carbon Electrode for Simultaneous Analysis of Hydroquinone and Catechol. Electroanalysis 2018, 30, 962–968. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Sun, D.-W. Cysteamine Modified Core-Shell Nanoparticles for Rapid Assessment of Oxamyl and Thiacloprid Pesticides in Milk Using SERS. J. Food Meas. Charact. 2020, 14, 2021–2029. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Yang, X.; Li, T.; She, Y.; Wang, J.; Zou, P.; Jin, F.; Jin, M.; Shao, H. Colorimetric Sensing of Atrazine in Rice Samples Using Cysteamine Functionalized Gold Nanoparticles After Solid Phase Extraction. Anal. Methods 2016, 8, 52–56. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Luo, Y.; Shen, F.; Sun, C. Efficient Fluorescence Resonance Energy Transfer Between Oppositely Charged CdTe Quantum Dots and Gold Nanoparticles for Turn-On Fluorescence Detection of Glyphosate. Talanta 2014, 125, 385–392. [Google Scholar] [CrossRef]
- Heidemann, B.R.; Pereira, J.C.; Chiamenti, I.; Oliveira, M.M.; Muller, M.; Fabris, J.L. Functionalization of A Long Period Grating Coated with Gold Nanoparticles for Glyphosate Detection. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Zheng, J.; Zhang, H.; Qu, J.; Zhu, Q.; Chen, X. Visual Detection of Glyphosate in Environmental Water Samples Using Cysteamine-Stabilized Gold Nanoparticles as Colorimetric Probe. Anal. Methods 2013, 5, 917–924. [Google Scholar] [CrossRef]
- Tu, Q.; Yang, T.; Qu, Y.; Gao, S.; Zhang, Z.; Zhang, Q.; Wang, Y.; Wang, J.; He, L. In Situ Colorimetric Detection of Glyphosate on Plant Tissues Using Cysteamine-Modified Gold Nanoparticles. Analyst 2019, 144, 2017–2025. [Google Scholar] [CrossRef]
- Côco, A.S.; Campos, F.V.; Díaz, C.A.R.; Guimarães, M.C.C.; Prado, A.R.; de Oliveira, J.P. Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples. Biosensors 2023, 13, 512. [Google Scholar] [CrossRef]
- Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.; Ahmad, B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors 2021, 21, 8050. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Liu, W.; Ge, J.; Wu, J.; Wang, S.; Wang, P. Surface-Enhanced Raman Scattering Substrate Based on Cysteamine-Modified Gold Nanoparticle Aggregation for Highly Sensitive Pentachlorophenol Detection. RSC Adv. 2016, 6, 85285–85292. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, M.; Meng, Y.; Jiang, W.; Zhan, J. Cysteamine-Modified Silver Nanoparticle Aggregates for Quantitative SERS Sensing of Pentachlorophenol with a Portable Raman Spectrometer. ACS Appl. Mater. Interfaces 2013, 5, 6902–6908. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Li, P.; Liao, H.; Wang, J.; Tang, X.; Yang, L. Cys-Functionalized AuNP Substrates for Improved Sensing of the Marine Toxin STX by Dynamic Surface-Enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2020, 412, 4609–4617. [Google Scholar] [CrossRef] [PubMed]
- Farmani, M.R.; Peyman, H.; Roshanfekr, H. Blue Luminescent Graphene Quantum Dot Conjugated Cysteamine Functionalized-Gold Nanoparticles (GQD-AuNPs) for Sensing Hazardous Dye Erythrosine B. Spectrochim. Acta A 2020, 229, 117960. [Google Scholar] [CrossRef]
- He, H.; Li, P.; Tang, X.; Lin, D.; Xie, A.; Shen, Y.; Yang, L. Developing Cysteamine-Modified SERS Substrate for Detection of Acidic Pigment with Weak Surface Affinity. Spectrochim. Acta A 2019, 212, 293–299. [Google Scholar] [CrossRef]
- Amin, M.U.; Zhang, R.; Li, L.; You, H.; Fang, J. Solution-Based SERS Detection of Weak Surficial Affinity Molecules Using Cysteamine-Modified Au Bipyramids. Anal. Chem. 2021, 93, 7657–7664. [Google Scholar] [CrossRef]
- Zhu, D.; Zhu, W.; Wang, W.; Liu, X. Gold Functionalised Attapulgite for Discrimination of Hydrogen Peroxide and Oxidising Ions. IET Nanobiotechnology 2017, 11, 200–204. [Google Scholar] [CrossRef]
- Tiwari, I.; Singh, M.; Gupta, M.; Metters, J.P.; Banks, C.E. Design of Screen-Printed Bulk Modified Electrodes Using Anthraquinone–Cysteamine Functionalized Gold Nanoparticles and Their Application to the Detection of Dissolved Oxygen. Anal. Methods 2015, 7, 2020–2027. [Google Scholar] [CrossRef]
- Liustrovaite, V.; Drobysh, M.; Ratautaite, V.; Ramanaviciene, A.; Rimkute, A.; Simanavicius, M.; Dalgediene, I.; Kucinskaite-Kodze, I.; Plikusiene, I.; Chen, C.-F.; et al. Electrochemical Biosensor for the Evaluation of Monoclonal Antibodies Targeting the N Protein of SARS-CoV-2 Virus. Sci. Total Environ. 2024, 924, 171042. [Google Scholar] [CrossRef]
- Park, W.; Shin, H.; Choi, B.; Rhim, W.-K.; Na, K.; Keun Han, D. Advanced Hybrid Nanomaterials for Biomedical Applications. Prog. Mater. Sci. 2020, 114, 100686. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Diamond-Based Electrodes for Detection of Metal Ions and Anions. Nanomaterials 2022, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Shellaiah, M.; Sun, K.W.; Anandan, K.; Bhushan, M.; Murugan, A.; Li, W.-T. Biocompatible Rhodamine Functionalized Nanodiamond for Heavy Metal Ions Detection: Demonstration by Paper Strips, Cellular Imaging, and Real Water Investigations. Diamond Rel. Mater. 2025, 158, 112698. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W.; Anandan, K.; Murugan, A.; Venkatachalam, V.; Bhushan, M.; Sivakumar, M.; Manikandan, E.; Kaliaperumal, K.; Li, W.-T. Luminescent Pyrene-Derivatives for Hg2+ and Explosive Detection. Chemosensors 2025, 13, 145. [Google Scholar] [CrossRef]
- Shellaiah, M.; Simon, T.; Srinivasadesikan, V.; Lin, C.-M.; Sun, K.W.; Ko, F.-H.; Lin, M.-C.; Lin, H.-C. Novel Pyrene Containing Monomeric and Dimeric Supramolecular AIEE Active Nano-Probes Utilized in Selective “Off–On” Trivalent Metal and Highly Acidic pH Sensing with Live Cell Applications. J. Mater. Chem. C 2016, 4, 2056–2071. [Google Scholar] [CrossRef]
- Sinha, S.; Dey, G.; Kumar, S.; Mathew, J.; Mukherjee, T.; Mukherjee, S.; Ghosh, S. Cysteamine-Based Cell-Permeable Zn2+-Specific Molecular Bioimaging Materials: From Animal to Plant Cells. ACS Appl. Mater. Interfaces 2013, 5, 11730–11740. [Google Scholar] [CrossRef]
- Krämer, J.; Kang, R.; Grimm, L.M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W.; Aazaad, B.; Awasthi, K.; Lin, M.-C.; Ohta, N.; Li, W.-T. A Perylene Derivative for Multi-Hazard Detection in Environmental Monitoring: Demonstration Via DFT, Cellular Imaging, and Real-Time Applications. J. Hazard. Mater. Adv. 2025, 19, 100863. [Google Scholar] [CrossRef]
- Li, L.I.; Yun, S.; Yuan-Hui, Z.; Lan, M.U.; Xi, Z.; Redshaw, C.; Gang, W.E.I. A Single Chemosensor for Multiple Analytes: Fluorogenic and Ratiometric Absorbance Detection of Zn2+, Mg2+ and F−, and Its Cell Imaging. Sens. Actuators B 2016, 226, 279–288. [Google Scholar] [CrossRef]
- Tewari, A.; Björkström, K.; Ghafari, A.M.; Macchia, E.; Torsi, L.; Österbacka, R. Stability of Thiol-Based Self-Assembled Monolayer Functionalized Electrodes in EG-OFET-Based Applications. FlatChem 2023, 42, 100553. [Google Scholar] [CrossRef]
- Friend, J.; Yeo, L. Fabrication of Microfluidic Devices Using Polydimethylsiloxane. Biomicrofluidics 2010, 4, 026502. [Google Scholar] [CrossRef]
- Akkaş, T.; Reshadsedghi, M.; Şen, M.; Kılıç, V.; Horzum, N. The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mater. 2025, 37, 2504796. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K.; Mondal, A.; Hazra, A.; Tarai, S.K.; Kapoor, B.S.; Mukhopadhyay, S.S.; Sarkar, S.; Banerjee, P. Smartphone Enabled Machine Learning Approach Assisted Copper (II) Quantification and Opto-Electrochemical Explosive Recognition by Aldazine-Functionalized Chemobiosensor. Sens. Actuators Rep. 2024, 8, 100215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shellaiah, M. A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials. Micromachines 2025, 16, 1144. https://doi.org/10.3390/mi16101144
Shellaiah M. A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials. Micromachines. 2025; 16(10):1144. https://doi.org/10.3390/mi16101144
Chicago/Turabian StyleShellaiah, Muthaiah. 2025. "A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials" Micromachines 16, no. 10: 1144. https://doi.org/10.3390/mi16101144
APA StyleShellaiah, M. (2025). A Review on Biomedical, Biomolecular, and Environmental Monitoring Applications of Cysteamine Functionalized Nanomaterials. Micromachines, 16(10), 1144. https://doi.org/10.3390/mi16101144