Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = biomimetic innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2471 KiB  
Systematic Review
Technical Functions of Digital Wearable Products (DWPs) in the Consumer Acceptance Model: A Systematic Review and Bibliometric Analysis with a Biomimetic Perspective
by Liu Yuxin, Sarah Abdulkareem Salih and Nazlina Shaari
Biomimetics 2025, 10(8), 483; https://doi.org/10.3390/biomimetics10080483 - 22 Jul 2025
Viewed by 681
Abstract
Design and use of wearable technology have grown exponentially, particularly in consumer products and service sectors, e.g., healthcare. However, there is a lack of a comprehensive understanding of wearable technology in consumer acceptance. This systematic review utilized a PRISMA on peer-reviewed articles published [...] Read more.
Design and use of wearable technology have grown exponentially, particularly in consumer products and service sectors, e.g., healthcare. However, there is a lack of a comprehensive understanding of wearable technology in consumer acceptance. This systematic review utilized a PRISMA on peer-reviewed articles published between 2014 and 2024 and collected on WoS, Scopus, and ScienceDirect. A total of 38 full-text articles were systematically reviewed and analyzed using bibliometric, thematic, and descriptive analysis to understand the technical functions of digital wearable products (DWPs) in consumer acceptance. The findings revealed four key functions: (i) wearable technology, (ii) appearance and design, (iii) biomimetic innovation, and (iv) security and privacy, found in eight types of DWPs, among them smartwatches, medical robotics, fitness devices, and wearable fashions, significantly predicted the customers’ acceptance moderated by the behavioral factors. The review also identified five key outcomes: health and fitness, enjoyment, social value, biomimicry, and market growth. The review proposed a comprehensive acceptance model that combines biomimetic principles and AI-driven features into the technical functions of the technical function model (TAM) while addressing security and privacy concerns. This approach contributes to the extended definition of TAM in wearable technology, offering new pathways for biomimetic research in smart devices and robotics. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Figure 1

27 pages, 4077 KiB  
Review
Biomimetic Robotics and Sensing for Healthcare Applications and Rehabilitation: A Systematic Review
by H. M. K. K. M. B. Herath, Nuwan Madusanka, S. L. P. Yasakethu, Chaminda Hewage and Byeong-Il Lee
Biomimetics 2025, 10(7), 466; https://doi.org/10.3390/biomimetics10070466 - 16 Jul 2025
Viewed by 672
Abstract
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge [...] Read more.
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge gaps, and establish clear frameworks to guide future developments. This systematic review addresses these needs by analyzing 89 peer-reviewed sources retrieved from the Scopus database, focusing on the application of biomimetic robotics and sensing technologies in healthcare and rehabilitation contexts. The findings indicate a predominant focus on enhancing human mobility and support, with rehabilitative and assistive technologies comprising 61.8% of the reviewed literature. Additionally, 12.36% of the studies incorporate intelligent control systems and Artificial Intelligence (AI), reflecting a growing trend toward adaptive and autonomous solutions. Further technological advancements are demonstrated by research in bioengineering applications (13.48%) and innovations in soft robotics with smart actuation mechanisms (11.24%). The development of medical robots (7.87%) and wearable robotics, including exosuits (10.11%), underscores specific progress in clinical and patient-centered care. Moreover, the emergence of transdisciplinary approaches, present in 6.74% of the studies, highlights the increasing convergence of diverse fields in tackling complex healthcare challenges. By consolidating current research efforts, this review aims to provide a comprehensive overview of the state of the art, serving as a foundation for future investigations aimed at improving healthcare outcomes and enhancing quality of life. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Viewed by 428
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

23 pages, 1713 KiB  
Review
Targeted and Biomimetic Nanoparticles for Atherosclerosis Therapy: A Review of Emerging Strategies
by Dorota Bartusik-Aebisher, Rafał Podgórski, Iga Serafin and David Aebisher
Biomedicines 2025, 13(7), 1720; https://doi.org/10.3390/biomedicines13071720 - 14 Jul 2025
Viewed by 628
Abstract
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies [...] Read more.
Atherosclerosis, a chronic inflammatory disease, remains a leading cause of cardiovascular mortality worldwide. Despite standard treatments like statins and percutaneous coronary intervention (PCI), significant residual risk and therapeutic limitations underscore the need for innovative strategies. This review summarizes recent advances in nanoparticle-based therapies for atherosclerosis, focusing on key developments from the last five years. We discuss various nanoplatforms designed to selectively target key cellular players in plaque pathogenesis, including macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs), to inhibit inflammation, modulate cellular phenotypes, and stabilize plaques. A significant focus is placed on the emerging field of biomimetic nanoparticles, where therapeutic cores are camouflaged with cell membranes derived from macrophages, platelets, neutrophils, or erythrocytes. This approach leverages the natural biological functions of the source cells to achieve enhanced immune evasion, prolonged circulation, and precise targeting of atherosclerotic lesions. Furthermore, the review covers nanoparticles engineered for specific functional interventions, such as lowering LDL levels and exerting direct anti-inflammatory and anti-oxidative effects. Finally, we address the critical challenges hindering clinical translation, including nanotoxicity, biodistribution, and manufacturing scalability. In conclusion, nanotechnology offers a versatile and powerful platform for atherosclerosis therapy, with targeted and biomimetic strategies holding immense promise to revolutionize future cardiovascular medicine. Full article
Show Figures

Figure 1

17 pages, 1714 KiB  
Review
Tissue-Engineered Tracheal Reconstruction
by Se Hyun Yeou and Yoo Seob Shin
Biomimetics 2025, 10(7), 457; https://doi.org/10.3390/biomimetics10070457 - 11 Jul 2025
Viewed by 551
Abstract
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem [...] Read more.
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem cells, and bioactive molecules. This review provides a comprehensive overview of recent advances in tissue-engineered tracheal grafts, particularly in scaffold design, cellular sources, fabrication technologies, and early clinical experience. Innovations in biomaterial science, three-dimensional printing, and scaffold-free fabrication approaches have broadened the prospects for patient-specific airway reconstruction. However, persistent challenges, including incomplete epithelial regeneration and mechanical instability, have hindered its clinical translation. Future efforts should focus on the design of modular biomimetic scaffolds, the enhancement of immunomodulatory strategies, and preclinical validation using robust large animal models. Sustained interdisciplinary collaboration among surgical, engineering, and biological fields is crucial for advancing tissue-engineered tracheal grafts for routine clinical applications. Within this context, biomimetic approaches, including three-dimensional bioprinting, hybrid materials, and scaffold-free constructs, are gaining prominence as strategies to replicate the trachea’s native architecture and improve graft integration. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

29 pages, 4867 KiB  
Review
Targeting Resistance Pathways in Breast Cancer Through Precision Oncology: Nanotechnology and Immune Modulation Approaches
by Hussein Sabit, Sanaa Rashwan, Yasser Albrahim, Al-Hassan Soliman Wadan, Faisal Radwan, Amany I. Alqosaibi, Shaimaa Abdel-Ghany and Borros Arneth
Biomedicines 2025, 13(7), 1691; https://doi.org/10.3390/biomedicines13071691 - 10 Jul 2025
Viewed by 587
Abstract
According to the WHO, in 2022, there were 2.3 million women diagnosed with breast cancer (BC) and 670,000 deaths globally. BC remains the leading cause of cancer-related mortality, with therapeutic resistance representing a significant barrier to effective treatment, particularly in aggressive subtypes like [...] Read more.
According to the WHO, in 2022, there were 2.3 million women diagnosed with breast cancer (BC) and 670,000 deaths globally. BC remains the leading cause of cancer-related mortality, with therapeutic resistance representing a significant barrier to effective treatment, particularly in aggressive subtypes like triple-negative breast cancer (TNBC). This review article discusses emerging strategies to overcome resistance by integrating precision oncology, nanotechnology-based drug delivery, and immune modulation. Resistance mechanisms—such as metabolic reprogramming, tumor heterogeneity, immune evasion, autophagy, and the role of cancer stem cells—are critically examined. We highlight cutting-edge nanoplatforms that co-deliver chemotherapeutics and immune stimulants with spatiotemporal precision, including sonodynamic and photothermal systems, ADCs, and targeted nanoparticles. Moreover, advances in tumor microenvironment (TME) modulation, photoimmunotherapy, and exosomal miRNA targeting offer promising avenues to enhance immunogenicity and therapeutic durability. The integration of molecular profiling with advanced computational approaches, including artificial intelligence and biomimetic models, holds significant promise for the future development of personalized resistance-mitigating interventions, though a detailed exploration is beyond the current scope. Collectively, these strategies reflect a paradigm shift from conventional monotherapies toward multifaceted, precision-guided treatment approaches. This review aims to provide a comprehensive overview of current innovations and propose future directions for overcoming drug resistance in BC. Full article
(This article belongs to the Special Issue Drug Resistance and Novel Targets for Cancer Therapy—Second Edition)
Show Figures

Figure 1

24 pages, 1908 KiB  
Perspective
Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity
by Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis and Michail Papoutsidakis
Biomimetics 2025, 10(7), 453; https://doi.org/10.3390/biomimetics10070453 - 10 Jul 2025
Viewed by 673
Abstract
Nature’s principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. [...] Read more.
Nature’s principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. By emulating biological systems like nacre, spider silk, and bone, AM utilizes traditional geometric replication to embed multifunctionality, responsiveness, and resource efficiency. Recent advances in the fields of 4D printing, soft robotics, and self-morphing systems demonstrate how time-dependent behaviors and environmental adaptability can be engineered through bioinspired material architectures. However, challenges in scalable fabrication, dynamic material programming, and true functional emulation (beyond morphological mimicry) necessitate interdisciplinary collaboration. In this context, the synthesis of biological intelligence with AM technologies offers sustainable, high-performance solutions for aerospace, biomedical, and smart infrastructure applications, once challenges related to material innovation and standardization are overcome. Full article
Show Figures

Figure 1

21 pages, 1170 KiB  
Review
Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications
by Shiyan Wang, Mengran Guo and Zhaohui Jin
Pharmaceutics 2025, 17(7), 889; https://doi.org/10.3390/pharmaceutics17070889 - 8 Jul 2025
Viewed by 412
Abstract
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural [...] Read more.
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural availability. Recently, various controlled-release nanotechnologies have been applied to improve the properties of fucoxanthin formulations. In this review, we systematically summarized the bioactivities of fucoxanthin and highlighted recent advancements in controlled-release systems designed to address the limitations. These controlled-release systems mainly use natural or synthetic organic materials and are employed to develop various formulations, including emulsions, nanoparticles, nanofibers, and nanostructured lipid carriers. In addition, the emerging bioinspired drug delivery systems, particularly extracellular vesicles and cell-membrane-derived biomimetic systems, have gained prominence for their immunocompatibility and ability to penetrate physiological barriers, which is regarded as superior encapsulation vesicles for fucoxanthin. Focusing on innovations, we discussed the state-of-the-art delivery systems for fucoxanthin encapsulation and emphasized their roles in improving biosafety, enhancing bioavailability, preserving bioactivity, and optimizing therapeutic performance across various disease models. These insights will provide promising guidance for engineering controlled-release platforms and will aim to unlock fucoxanthin’s full potential in drug development and dietary supplement formulations. Full article
Show Figures

Figure 1

44 pages, 11501 KiB  
Review
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review
by Stefana Avadanei-Luca, Isabella Nacu, Andrei Nicolae Avadanei, Mihaela Pertea, Bogdan Tamba, Liliana Verestiuc and Viorel Scripcariu
Int. J. Mol. Sci. 2025, 26(13), 6469; https://doi.org/10.3390/ijms26136469 - 4 Jul 2025
Viewed by 516
Abstract
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this [...] Read more.
Radiation therapy, a highly effective cancer treatment that targets cancer cells, may produce challenging side effects, including radiation-induced skin tissue injuries. The wound healing process involves complex cellular responses, with key phases including hemostasis, inflammation, proliferation, and remodeling. However, radiation-induced injuries disrupt this process, resulting in delayed healing, excessive scarring, and compromised tissue integrity. This review explores innovative approaches related to wound healing in post-radiotherapy defects, focusing on the integration of adipose-derived stem cells (ADSCs) in protein/polysaccharide bioengineered scaffolds. Such scaffolds, like hydrogels, sponges, or 3D-printed/bioprinted materials, provide a biocompatible and biomimetic environment that supports cell-to-cell and cell-to-matrix interactions. Various proteins and polysaccharides are discussed for beneficial properties and limitations, and their compatibility with ADSCs in wound healing applications. The potential of ADSCs-polymeric scaffold combinations in radiation-induced wound healing is investigated, alongside the mechanisms of cell proliferation, inflammation reduction, angiogenesis promotion, collagen formation, integrin binding, growth factor signaling, and activation of signaling pathways. New strategies to improve the therapeutic efficacy of ADSCs by integration in adaptive polymeric materials and designed scaffolds are highlighted, providing solutions for radiation-induced wounded skin, personalized care, faster tissue regeneration, and, ultimately, enhanced quality of the patients’ lives. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Materials)
Show Figures

Graphical abstract

16 pages, 729 KiB  
Article
Biomim’Index—A New Method Supporting Eco-Design of Cosmetic Products Through Biomimicry
by Anneline Letard, Mylène Potrel, Eliot Graeff, Luce-Marie Petit, Adrien Saint-Sardos, Marie-Jocelyne Pygmalion, Jacques L’Haridon, Geoffroy Remaut and Delphine Bouvier
Sustainability 2025, 17(13), 6124; https://doi.org/10.3390/su17136124 - 3 Jul 2025
Viewed by 518
Abstract
In the context of climate change, it becomes of utmost importance to limit the negative impact of industrial activities on carbon emissions, water stress, biodiversity loss, and natural resources depletion. Whether we consider the situation from a product-centered perspective (life cycle, R&D&I process, [...] Read more.
In the context of climate change, it becomes of utmost importance to limit the negative impact of industrial activities on carbon emissions, water stress, biodiversity loss, and natural resources depletion. Whether we consider the situation from a product-centered perspective (life cycle, R&D&I process, tools, methods, design, production, etc.) or from a human-centered perspective (habits, practices, fixation, strategic orientations, emotional sensitivity, etc.), coming years will represent a formidable upheaval for companies. To support this transition, various tools assessing products’ impact have been developed over the past decade. They aim at guiding decision makers, integrating new criteria to assess project success, and promoting the development and industrialization of solutions answering pressing environmental issues. If assessment is a key factor of success, it has become clear that processes and practices also need to evolve for practitioners to properly integrate sustainable requirements from the initial stages of their project. In that context, biomimicry, the approach aimed at taking nature as a model to support the design of more sustainable solutions, has been the center of growing interest. However, no integrated methods exist in the cosmetics sector to assess if a product is properly developed through biomimicry. This missing framework led to difficulties for cosmetic companies to support eco-design through biomimicry. In this article, we present a method called Biomim’Index developed by L’Oréal research and innovation sustainable development team to address three objectives: (i) to characterize cosmetic technologies according to whether they are based on bioinspiration, biomimetics or biomimicry; (ii) to guide the project’s leaders to identify key steps to improve existing cosmetic technologies through biomimicry; and (iii) to support the integration of biomimicry as an operational approach towards the development of new sustainable cosmetic technologies. This method, focusing on the problem-driven biomimetic approach is based on a combination of procedural requirements from the biomimetics TC288 18458:2015 ISO norm and environmental design requirements from L’Oréal for the Future (L4TF) commitments. Results present a proof of concept to outline the method’s efficiency and limits to support innovative eco-designed projects and value cosmetic technologies designed through biomimicry. Full article
Show Figures

Figure 1

43 pages, 1191 KiB  
Review
Biomimetic Strategies for Nutraceutical Delivery: Advances in Bionanomedicine for Enhanced Nutritional Health
by Vicente Javier Clemente-Suárez, Alvaro Bustamante-Sanchez, Alejandro Rubio-Zarapuz, Alexandra Martín-Rodríguez, José Francisco Tornero-Aguilera and Ana Isabel Beltrán-Velasco
Biomimetics 2025, 10(7), 426; https://doi.org/10.3390/biomimetics10070426 - 1 Jul 2025
Viewed by 834
Abstract
Background: Biomimetic strategies have gained increasing attention for their ability to enhance the delivery, stability, and functionality of nutraceuticals by emulating natural biological systems. However, the literature remains fragmented, often focusing on isolated technologies without integrating regulatory, predictive, or translational perspectives. Objective: This [...] Read more.
Background: Biomimetic strategies have gained increasing attention for their ability to enhance the delivery, stability, and functionality of nutraceuticals by emulating natural biological systems. However, the literature remains fragmented, often focusing on isolated technologies without integrating regulatory, predictive, or translational perspectives. Objective: This review aims to provide a comprehensive and multidisciplinary synthesis of biomimetic and bio-inspired nanocarrier strategies for nutraceutical delivery, while identifying critical gaps in standardization, scalability, and clinical translation. Results: We present a structured classification matrix that maps biomimetic delivery systems by material type, target site, and bioactive compound class. In addition, we analyze predictive design tools (e.g., PBPK modeling and AI-based formulation), regulatory frameworks (e.g., EFSA, FDA, and GSRS), and risk-driven strategies as underexplored levers to accelerate innovation. The review also integrates ethical and environmental considerations, and highlights emerging trends such as multifunctional hybrid systems and green synthesis routes. Conclusions: By bridging scientific, technological, and regulatory domains, this review offers a novel conceptual and translational roadmap to guide the next generation of biomimetic nutraceutical delivery systems. It addresses key bottlenecks and proposes integrative strategies to enhance design precision, safety, and scalability. Full article
Show Figures

Figure 1

30 pages, 742 KiB  
Review
Biomimetic Three-Dimensional (3D) Scaffolds from Sustainable Biomaterials: Innovative Green Medicine Approach to Bone Regeneration
by Yashaswini Premjit, Merin Lawrence, Abhishek Goyal, Célia Ferreira, Elena A. Jones and Payal Ganguly
J. Funct. Biomater. 2025, 16(7), 238; https://doi.org/10.3390/jfb16070238 - 29 Jun 2025
Cited by 1 | Viewed by 1010
Abstract
Bone repair and regeneration following an injury still present challenges worldwide. Three-dimensional (3D) scaffolds made from various materials are used for bone tissue engineering (BTE) applications. Polymers, minerals and nanotechnology are now being used in combination to achieve specific goals for BTE, including [...] Read more.
Bone repair and regeneration following an injury still present challenges worldwide. Three-dimensional (3D) scaffolds made from various materials are used for bone tissue engineering (BTE) applications. Polymers, minerals and nanotechnology are now being used in combination to achieve specific goals for BTE, including the delivery of antimicrobials through the scaffolds to prevent post-surgical infection. While several materials are utilised for BTE, natural polymers present a unique set of materials that can be manipulated to formulate scaffolds for BTE applications. They have been found to demonstrate higher biocompatibility, biodegradability and lower toxicity. Some even naturally mimic the bone microarchitecture, providing inherent structural support for BTE. Natural polymers may be simply classified as those from plant and animal sources. From both sources, there are different types of proteins, polysaccharides and other specialised materials that are already in use for research in BTE. Interestingly, these have the potential to revolutionise the field of BTE with a sustainable approach. In this review, we first discuss the different natural polymers used in BTE from plant sources, followed by animal sources. We then explore novel materials that are aimed at sustainable approaches, focusing on innovation from the last decade. In these sections, we outline studies of these materials with different types of bone cells, including bone marrow mesenchymal stromal cells (MSCs), which are the progenitors of bone. We finally outline the limitations, conclusions and future directions from our perspective in this dynamic field of polymers in BTE. With this review, we hope to bring together the updated existing knowledge and the potential future of innovation and sustainability in natural polymers for biomimetic BTE applications for fellow scientists, researchers and surgeons in the field. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

27 pages, 1153 KiB  
Review
Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health
by Ocotlán Diaz-Parra, Francisco R. Trejo-Macotela, Jorge A. Ruiz-Vanoye, Jaime Aguilar-Ortiz, Miguel A. Ruiz-Jaimes, Yadira Toledo-Navarro, Alejandro Fuentes Penna, Ricardo A. Barrera-Cámara and Julio C. Salgado-Ramirez
Appl. Sci. 2025, 15(13), 7323; https://doi.org/10.3390/app15137323 - 29 Jun 2025
Viewed by 699
Abstract
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. [...] Read more.
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. By analysing the evolution of biomimetic principles and their technological impact, this work highlights how nature-inspired solutions contribute to energy efficiency, adaptive urban planning, bioengineered materials, and intelligent systems. Furthermore, this paper discusses future perspectives on biomimetics-driven innovations, emphasising their potential to foster resilience, efficiency, and sustainability in rapidly evolving technological landscapes. Particular attention is given to neuromorphic hardware, a biologically inspired computing paradigm that mimics neural processing through spike-based communication and analogue architectures. Key components such as memristors and neuromorphic processors enable adaptive, low-power, task-specific computation, with wide-ranging applications in robotics, AI, healthcare, and renewable energy systems. Furthermore, this paper analyses how self-organising cities, conceptualised as complex adaptive systems, embody biomimetic traits such as resilience, decentralised optimisation, and autonomous resource management. Full article
Show Figures

Figure 1

22 pages, 12123 KiB  
Review
Advancements in Laser-Processed Functional Surfaces for Medical Devices: A Current Review
by Ziyi Xu, Yanxiao Austin Wang, Vivian Ng, Hongyan Yin and Shuai Xu
Nanomaterials 2025, 15(13), 999; https://doi.org/10.3390/nano15130999 - 27 Jun 2025
Viewed by 471
Abstract
Functional and safety requirements for medical devices are increasing with the continuous advancement of medical technology. To improve the therapeutic effect and safety of medical devices and patients, researchers are constantly exploring new materials and processes. Among them, the preparation of functional surfaces [...] Read more.
Functional and safety requirements for medical devices are increasing with the continuous advancement of medical technology. To improve the therapeutic effect and safety of medical devices and patients, researchers are constantly exploring new materials and processes. Among them, the preparation of functional surfaces has become an important means to improve the performance of medical devices. This paper provides a comprehensive and critical review of recent advancements in laser processing technologies for the fabrication of functional surfaces in medical devices. Leveraging the unique capabilities of laser-based techniques to precisely tailor micro- and nanoscale surface structures, these methods have demonstrated remarkable potential in enhancing the therapeutic efficacy, biocompatibility, and overall safety of medical implants and surgical instruments. Such innovations are paving the way for the development of next-generation medical devices with multifunctional surface properties, meeting the increasing demands of modern clinical applications. The review focuses on the key applications, including cell function regulation, antibacterial properties, corrosion resistance, friction characteristics, and anti-adhesion properties. It also explores the considerable potential of laser processing technology, while addressing the challenges associated with multifunctional surface design and material selection. Looking ahead, the paper discusses future directions for the application of laser processing in novel materials and complex biomimetic structures. Full article
Show Figures

Figure 1

27 pages, 6579 KiB  
Review
Bionic Sensors for Biometric Acquisition and Monitoring: Challenges and Opportunities
by Haoran Yu, Mingqi Ma, Baishun Zhang, Anxin Wang, Gaowei Zhong, Ziyuan Zhou, Chengxin Liu, Chunqing Li, Jingjing Fang, Yanbo He, Donghai Ren, Feifei Deng, Qi Hong, Yunong Zhao and Xiaohui Guo
Sensors 2025, 25(13), 3981; https://doi.org/10.3390/s25133981 - 26 Jun 2025
Viewed by 734
Abstract
The development of materials science, artificial intelligence and wearable technology has created both opportunities and challenges for the next generation of bionic sensor technology. Bionic sensors are extensively utilized in the collection and monitoring of human biological signals. Human biological signals refer to [...] Read more.
The development of materials science, artificial intelligence and wearable technology has created both opportunities and challenges for the next generation of bionic sensor technology. Bionic sensors are extensively utilized in the collection and monitoring of human biological signals. Human biological signals refer to the parameters generated inside or outside the human body to transmit information. In a broad sense, they include bioelectrical signals, biomechanical information, biomolecules, and chemical molecules. This paper systematically reviews recent advances in bionic sensors in the field of biometric acquisition and monitoring, focusing on four major technical directions: bioelectric signal sensors (electrocardiograph (ECG), electroencephalograph (EEG), electromyography (EMG)), biomarker sensors (small molecules, large molecules, and complex-state biomarkers), biomechanical sensors, and multimodal integrated sensors. These breakthroughs have driven innovations in medical diagnosis, human–computer interaction, wearable devices, and other fields. This article provides an overview of the above biomimetic sensors and outlines the future development trends in this field. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

Back to TopTop