Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health
Abstract
1. Introduction
Period | Key Development | Representative Example |
---|---|---|
Antiquity (~2000 BC–15th century) | First observations of nature are applied to engineering and architecture. | Egyptians imitate the lotus structure in their columns. |
Renaissance (15th–17th century) | Leonardo da Vinci studies the flight of birds to design flying machines. | Codex on the Flight of Birds, 1505. |
19th–early 20th century | Development of structures inspired by living organisms to improve engineering. | Eiffel Tower, based on the human femur to optimise strength. |
Mid-20th century (1950–1980) | Formalisation of biologically inspired structural and mechanical studies and coining of the term biomimetics. | Otto H. Schmitt develops the formal concept of biomimicry and coins biomimetics in 1969. |
1990s | Janine Benyus popularises the term ‘biomimicry’, extending its application to sustainability. | Publication of the book Biomimicry: Innovation Inspired by Nature. |
21st Century (2000–Present) | Expansion into nanotechnology, artificial intelligence, nanotech and surface engineering, and smart cities inspired by nature. | Self-repairing materials and sensors based on biological systems. Bar-Cohen on Biomimetics: Nature-Based Innovation [10]; Barthlott & Neinhuis; Ge-Zhang et al. on bionic superhydrophobic surfaces [11,12]. |
2. Biomimetics in Smart Cities
3. Biomimetics and Artificial Intelligence
3.1. Nature-Inspired Algorithms
3.2. Combined Applications of Biomimetics and AI
3.2.1. Autonomous Robotics
3.2.2. Computer Vision Systems in Smart Cities
3.3. Perspectives on the Fusion of AI and Biomimetics
4. Innovations in Biomedicine
4.1. Biomaterials Inspired by Natural Tissues
4.2. Biomimetic Medical Devices
4.3. Advanced Prosthetics and Tissue Regeneration
4.4. Connection Between Biomedicine and Smart Cities
5. Biomimetic Robotics
5.1. Robots Inspired by Natural Organisms
5.2. Industrial and Urban Applications
5.3. Additional Biomimetics Applications: Architecture, Energy, and Electronic Skin
5.4. Technological and Ethical Barriers
6. The Evolution and Future of Biomimetics
7. Challenges and Obstacles in the Incorporation of Biomimetics
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alali, M.; Mattar, Y.; Alzaim, M.; Beheiry, S. Applications of biomimicry in architecture, construction and civil engineering. Biomimetics 2023, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Jamei, E.; Vrcelj, Z. Biomimicry and the built environment, learning from nature’s solutions. Appl. Sci. 2021, 11, 7514. [Google Scholar] [CrossRef]
- Verbrugghe, N.; Rubinacci, E.; Khan, A. Biomimicry in architecture: A review of definitions, case studies, and design methods. Biomimetics 2023, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Gencer, A.; Doğan, H.; Bilen, K. Developing biomimicry STEM activity by querying the relationship between structure and function in organisms. Turk. J. Educ. 2020, 9, 64–105. [Google Scholar] [CrossRef]
- Stevens, L.; Fehler, M.; Bidwell, D.; Singhal, A.; Baumeister, D. Building from the bottom up: A closer look into the teaching and learning of life’s principles in biomimicry design thinking courses. Biomimetics 2022, 7, 25. [Google Scholar] [CrossRef]
- Yeter, I.; Tan, V.; Ferrand, H. Conceptualization of biomimicry in engineering context among undergraduate and high school students: An international interdisciplinary exploration. Biomimetics 2023, 8, 125. [Google Scholar] [CrossRef]
- Ebbinghaus, T.; Lang, G.; Scheibel, T. Biomimetic polymer fibers—Function by design. Bioinspir. Biomim. 2023, 18, 041003. [Google Scholar] [CrossRef]
- Lim, C.E.; Chong, K.H.; Sia, C.C.V.; Lee, Y.Y.; Lee, M.D. Numerical study for crash-worthiness of FSAE vehicle chassis via biomimetic approach. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 33, 328–339. [Google Scholar] [CrossRef]
- Lim, C.; Yun, D.; Park, I.; Yoon, B. A systematic approach for new technology development by using a biomimicry-based TRIZ contradiction matrix. Creat. Innov. Manag. 2018, 27, 414–430. [Google Scholar] [CrossRef]
- Heidebrecht, A.; Scheibel, T. Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 2013, 82, 115–153. [Google Scholar] [CrossRef]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Ge-Zhang, S.; Cai, T.; Yang, H.; Ding, Y.; Song, M.-M. Biology and nature: Bionic superhydrophobic surface and principle. Front. Bioeng. Biotechnol. 2022, 10, 1033514. [Google Scholar] [CrossRef] [PubMed]
- Narain, S. Integrating Smart City Technologies for Enhanced Urban Sustainability. J. Sustain. Sol. 2024, 1, 13–17. [Google Scholar] [CrossRef]
- De la Hoz, R.; Villar, S.; Castillo, K.; Castellón, J.; Coronado, K. Factores clave para el éxito de ciudades inteligentes y sostenibles: Una revisión sistemática de la literatura. Inventum 2022, 17, 44–54. [Google Scholar] [CrossRef]
- Franco, I. Las smart cities en la agenda del planeamiento y la gobernanza urbana en América Latina. Cuad. Geogr. Rev. Colomb. Geogr. 2021, 30, 280–296. [Google Scholar] [CrossRef]
- Vélez, E.; Lucas, H.; Cruzatty, J.; Reyes, F. Modelo de innovación tecnológica para el desarrollo de ciudades inteligentes en el cantón Portoviejo. Rev. Cient. Arbitr. Multidiscip. Pentaciencias 2023, 5, 106–120. [Google Scholar] [CrossRef]
- Fernández, J. La gobernanza inteligente de las metrópolis y la participación ciudadana. ICE Rev. Econ. 2021, 920, 1–24. [Google Scholar] [CrossRef]
- Vincent, J.F.V.; Bogatyreva, O.A.; Bogatyrev, N.R.; Bowyer, A.; Pahl, A.K. Biomimetics: Its practice and theory. J. R. Soc. Interface 2006, 3, 471–482. [Google Scholar] [CrossRef]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Harper Perennial: New York, NY, USA, 2002. [Google Scholar]
- López Fernández, M.; Rubio García, R.; Bueno Sánchez, M.Á.; Martín González, S. Biomimética aplicada a la arquitectura y construcción. In Nuevos Modelos de Investigación y Colaboración en Ingeniería Gráfica; Congreso INGEGRAF: Seville, Spain, 2017; pp. 23–26. ISBN 978-84-16664-62-7. [Google Scholar]
- Sandoval-Ruiz, C. Formulación matemática del análisis de tejidos estructurales y su aplicación en arquitectura biomimética. Rev. REC Perspect. 2024, 1, 26. [Google Scholar]
- Arias Domínguez, A. La colonización espacial como síntoma. Arbor 2024, 200, 2701. [Google Scholar] [CrossRef]
- Palma Mejía, M. Optimización de la Envolvente Para Mayor Protección Frente a la Incidencia Solar en la Torre Sevilla. Master’s Thesis, Universidad de Sevilla, Seville, Spain, 2023. [Google Scholar]
- Estévez, A.T. La naturaleza es la solución. Cuadernos del Centro de Estudios en Diseño y Comunicación. Ensayos, nro. Cuad. Del Cent. Estud. Diseño Y Comunicación. Ens. 2022, 105, 183–216. [Google Scholar]
- González, F.; Martín, A. Superficies rectificantes. Concepto, realidad geométrica y distorsión constructiva. EGA Expresión Gráfica Arquit. 2023, 28, 228–239. [Google Scholar] [CrossRef]
- Arup. 30 St Mary Axe (The Gherkin)—Natural Ventilation. Arup.com. 2018. Available online: https://www.arup.com/projects/30-st-mary-axe (accessed on 15 May 2025).
- MIT News. Flocking-Based Algorithms Smooth Autonomous Vehicle Traffic. Massachusetts Institute of Technology. 2023. Available online: https://news.mit.edu/2023/flocking-autonomous-traffic (accessed on 15 May 2025).
- Public Utilities Board Singapore. Four National Taps. PUB.gov.sg. 2024. Available online: https://www.pub.gov.sg/fournationaltaps (accessed on 15 May 2025).
- EMBARQ. Curitiba’s Bus Rapid Transit—A Model for Sustainable Cities. WRI Ross Center. 2015. Available online: https://www.wri.org/publication/curitiba-brt (accessed on 15 May 2025).
- Li, H.; Liao, B.; Li, J.; Li, S. A Survey on Biomimetic and Intelligent Algorithms with Applications. Biomimetics 2024, 9, 453. [Google Scholar] [CrossRef] [PubMed]
- Alabdulatif, A.; Thilakarathne, N.N. Bio-Inspired Internet of Things: Current Status, Benefits, Challenges, and Future Directions. Biomimetics 2023, 8, 373. [Google Scholar] [CrossRef]
- Financial Times. Artificial intelligence breakthroughs create new ‘brain’ for advanced robots. Financial Times, 2025. Available online: https://www.ft.com/content/bea9df71-371c-4045-9cb4-64c22789bf7b (accessed on 13 May 2025).
- Jakšić, Z.; Devi, S.; Jakšić, O.; Guha, K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics 2023, 8, 278. [Google Scholar] [CrossRef]
- Asaeyl, M. AI Driven Approaches in Swarm Robotics—A review. Int. J. Comput. Intell. 2024, 3, 45–60. [Google Scholar]
- Katyal, K.; Parent, J.; Alicea, B. Connectionism, Complexity, and Living Systems: A Comparison of Artificial and Biological Neural Networks. arXiv 2021, arXiv:2103.15553. [Google Scholar]
- Zhang, T.; Guo, X.; Wang, P.; Li, L.; Tong, L. High Performance Artificial Visual System with Plasmon-Enhanced 2D Material Neural Network. arXiv 2023, arXiv:2307.13432. [Google Scholar]
- Rubio, E.; Giri, L.; Ilcic, A. Desafíos epistemológicos en la era de las redes neuronales artificiales: Abordando sistemas complejos desde una perspectiva computacional. Argum. Razón Técnica 2023, 26, 145–178. [Google Scholar]
- Yang, X. Algoritmos de optimización inspirados en la naturaleza: Desafíos y problemas abiertos. Comput. Sci. 2020, 46, 101–104. [Google Scholar] [CrossRef]
- Shao, F.; Shen, Z. How can artificial neural networks approximate the brain? Front. Psychol. 2023, 13, 970214. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.R.; Wang, X.-J. Artificial Neural Networks for Neuroscientists: A Primer. Neuron 2020, 107, 1048–1070. [Google Scholar] [CrossRef] [PubMed]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar] [CrossRef]
- Rossides, G.; Metcalfe, B.; Hunter, A. Particle Swarm Optimization—An Adaptation for the Control of Robotic Swarms. Robotics 2021, 10, 58. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2007, 1, 28–39. [Google Scholar] [CrossRef]
- Baltieri, M.; Iizuka, H.; Witkowski, O.; Sinapayen, L.; Suzuki, K. Hybrid Life: Integrating Biological, Artificial, and Cognitive Systems. arXiv 2006, arXiv:2212.00285. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Cao, G.; Yuan, Y.; Yao, X.; Qi, L. Intelligent control of multilegged robot smooth motion: A review. IEEE Access 2022, 10, 77912–77931. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Dung, V.T.; Sato, H.; Vo-Doan, T.T. Efficient Autonomous Navigation for Terrestrial Insect-Machine Hybrid Systems. arXiv 2022, arXiv:2204.13281. Available online: https://arxiv.org/abs/2204.13281 (accessed on 16 May 2025). [CrossRef]
- McGuire, K.; de Croon, G.; Tuyls, K. A Comparative Study of Bug Algorithms for Robot Navigation. arXiv 2018, arXiv:1808.05050. Available online: https://arxiv.org/abs/1808.05050 (accessed on 16 May 2025). [CrossRef]
- Bai, Y.; Tran Ngoc, P.T.; Nguyen, H.D.; Le, D.L.; Ha, Q.H.; Kai, K.; See To, Y.X.; Deng, Y.; Song, J.; Wakamiya, N.; et al. Natural-Artificial Hybrid Swarm: Cyborg-Insect Group Navigation in Unknown Obstructed Soft Terrain. arXiv 2024, arXiv:2403.17392. Available online: https://arxiv.org/abs/2403.17392 (accessed on 17 May 2025).
- Picardi, G.; Chellapurath, M.; Iacoponi, S.; Stefanni, S.; Laschi, C.; Calisti, M. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci. Robot. 2020, 5, eaaz1012. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wong, T.W.; Shih, B.; Guo, C.; Wang, L.; Liu, J.; Wang, T.; Liu, X.; Yan, J.; Wu, B.; et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Jeger, S.L.; Wüest, V.; Toumieh, C.; Floreano, D. Adaptive Morphing of Wing and Tail for Stable, Resilient, and Energy-Efficient Flight of Avian-Informed Drones. arXiv 2024, arXiv:2403.08598. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, S.; Chowdhury, S.; Zeba, S.J.; Karmaker, D. UAVs and Birds: Enhancing Short-Range Navigation through Budgerigar Flight Studies. arXiv 2023, arXiv:2312.00597. [Google Scholar] [CrossRef]
- Athanasoulias, S.; Philippides, A. Autonomous Visual Navigation: A Biologically Inspired Approach. arXiv 2022, arXiv:2209.09663. [Google Scholar] [CrossRef]
- Zhuang, G.; Cagnetta, C.; Bing, Z.; Huang, K.; Knoll, A. A Biologically Inspired Global Localization System for Mobile Robots Using LiDAR Sensor. arXiv 2021, arXiv:2109.12928. [Google Scholar] [CrossRef]
- Baena-Salazar, D.; Jiménez, J.F.; Zapata, C.E.; Ramírez-Cardona, A. Red Neuronal Artificial aplicado para el pronóstico de eventos críticos de PM2.5 en el Valle de Aburrá. DYNA 2019, 86, 347–356. [Google Scholar] [CrossRef]
- Majid, Q.A.; Fricker, A.T.R.; Gregory, D.; Davidenko, N.; Cruz, O.H.; Jabbour, R.; Owen, T.J.; Basnett, P.; Lukasiewicz, B.; Stevens, M.; et al. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front. Cardiovasc. Med. 2020, 7, 554597. [Google Scholar] [CrossRef]
- Tokareva, O.; Jacobsen, M.; Buehler, M.; Kaplan, D.L. Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater. 2014, 10, 1612–1626. [Google Scholar] [CrossRef]
- Andersson, M.; Jia, Q.; Abella, A.; Lee, X.-Y.; Landreh, M.; Purhonen, P.; Hebert, H.; Tenje, M.; Robinson, C.V.; Meng, Q.; et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 2017, 13, 262–264. [Google Scholar] [CrossRef]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone Tissue Engineering Using 3D Printing. Mater. Today 2021, 16, 496–504. [Google Scholar] [CrossRef]
- Barba, D.; Alabort, E.; Reed, R.C. Synthetic Bone: Design by Additive Manufacturing. Acta Biomater. 2019, 97, 637–656. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Adv. Funct. Mater. 2019, 30, 1904523. [Google Scholar] [CrossRef]
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef]
- Monreal, G.; Koenig, S.C.; Huang, J.; Slaughter, M.S. Anatomical and hemodynamic characterization of totally artificial hearts. ASAIO J. 2024, 70, 338. [Google Scholar] [CrossRef]
- Orive, G.; Hernández, R.M.; Gascón, A.R.; Calafiore, R.; Chang, T.M.; De Vos, P.; Pedraz, J.L. Cell encapsulation: Promise and progress. Nat. Med. 2003, 9, 104–107. [Google Scholar] [CrossRef]
- Langer, R.; Peppas, N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006. [Google Scholar] [CrossRef]
- Datz, S.; Argyo, C.; Gattner, M.; Weiss, V.; Brunner, K.; Bretzler, J.; von Schirnding, C.; Torrano, A.A.; Spada, F.; Vrabel, M.; et al. Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. Nanoscale 2016, 8, 8101–8110. [Google Scholar] [CrossRef]
- Sprio, S.; Panseri, S.; Montesi, M.; Dapporto, M.; Ruffini, A.; Dozio, S.M.; Cavuoto, R.; Misseroni, D.; Paggi, M.; Bigoni, D.; et al. Hierarchical porosity inherited by natural sources affects the mechanical and biological behaviour of bone scaffolds. J. Eur. Ceram. Soc. 2020, 40, 1717–1727. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Roseti, L.; Cavallo, C.; Desando, G.; Parisi, V.; Petretta, M.; Grigolo, B. Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration. Materials 2018, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 5G. Telecommun. Policy 2020, 44, 102064. [Google Scholar] [CrossRef]
- Sachetti, L.L.S.; Cussuol, E.B.; Nogueira, J.M.S.; Mota, V.F.S. pmSensing: A participatory sensing network for predictive monitoring of particulate matter. arXiv 2021, arXiv:2111.11441. [Google Scholar] [CrossRef]
- Sethuraman, S.C.; Kompally, P.; Mohanty, S.P.; Choppali, U. MyWear: A smart wear for continuous body vital monitoring and emergency alert. arXiv 2020, arXiv:2010.08866. [Google Scholar] [CrossRef]
- Choi, E.; Bahadori, M.T.; Schuetz, A.; Stewart, W.F.; Sun, J. Doctor AI: Predicting clinical events via recurrent neural networks. J. Mach. Learn. Res. 2016, 17, 3064–3071. [Google Scholar] [CrossRef]
- Mišeikis, J.; Caroni, P.; Duchamp, P.; Gasser, A.; Marko, R.; Mišeikienė, N.; Zwilling, F.; de Castelbajac, C.; Eicher, L.; Fruh, M.; et al. Lio—A personal robot assistant for human-robot interaction and care applications. IEEE Robot. Autom. Lett. 2020, 5, 5339–5346. [Google Scholar] [CrossRef]
- Dhatterwal, J.S.; Kaswan, K.S.; Batra, R. Nature Inspired Robotics, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Dhote, G.M.; Selvaraj, K.; Jain, A.; Rajendran, S. Nature Inspires Biomimetic Robots to Build Lattice Structures of Unprecedented Strength. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Mitin, I.V.; Korotaev, R.A.; Mironov, V.I.; Lobov, S.A.; Kazantsev, V.B. Development of the Bioinspired Propulsion System for a Robotic Fish. Genes Cells 2023, 18, 866–869. [Google Scholar] [CrossRef]
- Kim, D.; Park, C.J.; Koh, J.S.; Ha, J. Small-Scale Robots Inspired by Aquatic Interfacial Biolocomotion. MRS Bull. 2024, 49, 148–158. [Google Scholar] [CrossRef]
- Xu, K.; Yuan, G.; Zheng, J.; Zhang, Y.; Wang, J.; Guo, H. Bioinspired Microrobots and Their Biomedical Applications. Nanoscale 2024, 16, 20434–20450. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, U.; Parihar, A.S. Advancements and Applications of Insect-Inspired Robots. In Exploring the Micro World of Robotics Through Insect Robots; Vignesh, U., Rao, A., Raja, S., Chitra, P., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 85–118. [Google Scholar] [CrossRef]
- Marques, M.J.M.; Yuxuan, Q.; Sato, H.; Umezu, S. Cyborg Insect Repeatable Self-Righting Locomotion Assistance Using Bio-Inspired 3D Printed Artificial Limb. npj Robot. 2024, 2, 3. [Google Scholar] [CrossRef]
- Zou, W.; Ma, E.; Chen, H.; Lin, F.; Xiao, Z.; Zhang, Z.; Jiang, J.; Niu, Y.; Yu, P.; Wang, C. Locomotion for Insect-Scale Robots With Bionic Strategies: A Review. J. Field Robot. 2024, 41, 257–279. [Google Scholar] [CrossRef]
- Chen, T.; Sun, X.; Fu, Q.; Qin, Z.; Peng, J. A Bio-Inspired and Solely Vision-Based Model for Autonomous Navigation. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Jiang, C.; Dai, Y.; Le, J.; Chen, X.; Xie, Y.; Zhou, W.; Niu, F.; Li, Y.; Luo, T. Harnessing the Power of Vibration Motors to Develop Miniature Untethered Robotic Fishes. arXiv 2025, arXiv:2501.05107. [Google Scholar] [CrossRef]
- Bamdad, M.; Karimi, A.; Sina, S.; Cruz, F. Modeling and Dynamic Analysis of Fish Robot with Soft Fluidic Actuation. J. Intell. Robot. Syst. 2025, 111, 2. [Google Scholar] [CrossRef]
- Padovani, L.; Manduca, G.; Paniccia, D.; Graziani, G.; Piva, R.; Lugni, C. Experimental Study of Fish-Like Bodies with Passive Tail and Tunable Stiffness. arXiv 2024, arXiv:2411.10760. [Google Scholar] [CrossRef]
- Zhang, M. Advances in Bio-Inspired Swimming Robots for Underwater Exploration: A Review. Appl. Comput. Eng. 2024, 109, 169–172. [Google Scholar] [CrossRef]
- Ravi, R.; Tino Merlin, R.; Harini Priya, V.; Jerlin, T.; Maheshwari, U.; Indhu Rani, R.; Brindha, V.; Celciya Effrin, A. Underwater bio-mimic robotic fish. Intell. Technol. Res. Eng. 2024, 3, 185. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Gu, S. Electroactive Polymers and Soft Robotic Fish: A New Frontier in Underwater Robotics. IEEE Trans. Robot. 2022, 38, 234–248. [Google Scholar] [CrossRef]
- Lu, C.; Cai, B.; Hu, Z.; Du, H.; Shen, Z. Research on dynamic management and control system of bionic climbing robot of transmission tower based on digital twin. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 9189–9194. [Google Scholar] [CrossRef]
- Hu, G.; Ang, K.; Le, D.D.K.; Liu, D. Enhancing sustainable maintenance operations through intelligent climbing robots. In Proceedings of the 2023 International Conference on Sustainable Technology and Engineering (i-COSTE), Nadi, Fiji, 4–6 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Saint, A. Lessons from nature. Eng. Technol. 2023, 18, 56–57. [Google Scholar] [CrossRef]
- Pugalenthi Aruna, M.; Khaoula, K.; Hassan Ahmed, F. Harnessing the power of biomimicry for sustainable innovation in construction industry. J. Infrastruct. Policy Dev. 2024, 8, 6663. [Google Scholar] [CrossRef]
- Kang, N. Current perspective on different bionic robots in medical field. Highl. Sci. Eng. Technol. 2024, 111, 209–216. [Google Scholar] [CrossRef]
- Bonnechère, B. Animals as architects: Building the future of technology-supported rehabilitation with biomimetic principles. Biomimetics 2024, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- Fofana, R. Robotics in healthcare. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 4, 709–713. [Google Scholar] [CrossRef]
- Li, W.; Luo, F.; Liu, Y.; Zou, Y.; Mo, L.; He, Q.; Lin, P.-J.; Xu, Q.; Liu, A.; Zhang, C.; et al. Bioinspired smart triboelectric soft pneumatic actuator-enabled hand rehabilitation robot. Adv. Mater. 2025, 37, 2419059. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, H.; Li, J.; Han, F.; Fan, S.; Zhang, Y. Bioinspired Artificial Intelligent Nociceptive Alarm System Based on Fibrous Biomemristors. ACS Sens. 2024, 9, 5312–5321. [Google Scholar] [CrossRef]
- Jena, B.R.; Rao, G.S.N.K.; Kothakota, N.J.; Budha, R.R.; Srinivas, L.; Rajkumar, J.; Kovvasu, S. Autonomous Robots: A Disruptive Technology in the Health Sector. In Creating Smart Healthcare with Blockchain and Advanced Digital Technology; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 365–398. [Google Scholar]
- Contreras, G.S.; Fernandez, E.J.L. Architecture Learns from Nature. The Influence of Biomimicry and Biophilic Design in Building. Mod. Appl. Sci. 2023, 17, 58. [Google Scholar] [CrossRef]
- Elsamadisy, R.; Sarhan, A.E.N.; Farghaly, Y.; Mamdouh, A. Biomimicryas a design approach for adaptation. J. Al-Azhar Univ. Eng. Sect. 2019, 14, 1516–1533. [Google Scholar] [CrossRef]
- Nasir, O.A.; Kamal, M.A. Inspiration from Nature: Biomimicry as a Paradigm for Architectural and Environmental Design. Am. J. Civ. Eng. Archit. 2022, 10, 126–136. [Google Scholar] [CrossRef]
- Fun, T.L.; Shahril Izuan, S.E.; Hamzah, Z.; Mohammad, N.; Tahir, M.M. Biomimicry Approach—Nature’s Inspiration in Architectural Design. J. Kejuruter. 2023, si6, 407–418. [Google Scholar] [CrossRef]
- Kakasor, J. A review on self-healing concrete: A biological approach. Reciklaža i Održivi Razvoj 2023, 16, 1–14. [Google Scholar] [CrossRef]
- Bansal, S.; Tamang, R.K.; Bansal, P.; Bhurtel, P. Biological Methods to Achieve Self-healing in Concrete; Springer: Singapore, 2020; pp. 63–71. [Google Scholar] [CrossRef]
- Paine, K.; Al-Tabbaa, A.; Gardner, D.R.; Jefferson, T. Resilient Materials for Life: Biomimetic Self-Healing and Self-Diagnosing Concretes. 2019. Available online: https://researchportal.bath.ac.uk/en/publications/resilient-materials-for-life-biomimetic-self-healing-and-self-dia (accessed on 23 May 2025).
- Bucciantini, M. Biomimicry in Architecture. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Knippers, J.; Speck, T.; Nickel, K.G. Biomimetic Research: A Dialogue Between the Disciplines; Springer: Cham, Switzerland, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Samy, S.; Nadim, W.; Abdelkader, M. Biomimicry in Architecture: The Potential Shift from Theory to Practice; Springer: Cham, Switzerland, 2020; pp. 89–103. [Google Scholar] [CrossRef]
- McKegney, J.M.; Shen, X.; Zhu, C.X.; Xu, B.; Yang, L.; Dala, L. Bio-inspired design of leading-edge tubercles on wind turbine blades. In Proceedings of the International Symposium on Environmental Friendly Energies and Applications, Bagatelle Moka MU, Mauritius, 14–16 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Yirijor, J.; Siaw-Mensah, N.A. Design and Optimisation of Horizontal Axis Wind Turbine Blades Using Biomimicry of Whale Tubercles. J. Eng. Res. Rep. 2023, 25, 100–112. [Google Scholar] [CrossRef]
- Ersanli, E.T.; Ersanlı, C.C. Biomimicry: Journey to the Future with the Power of Nature. Int. Sci. Vocat. Stud. J. 2023, 7, 149–160. [Google Scholar] [CrossRef]
- Yuan, Q.; Ma, Z.; Li, S.; Pan, L. Healthcare electronic skin devices. J. Semicond. 2019, 40, 030401. [Google Scholar] [CrossRef]
- Bi, X.; Yao, M.; Huang, Z.; Wang, Z.; Shen, H.; Wong, C.; Jiang, C. Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection. ACS Appl. Mater. Interfaces 2024, 16, 21341–21355. [Google Scholar] [CrossRef]
- Sun, X.; Guo, X.; Gao, J.; Wang, J.; Huang, F.; Zhang, J.; Huang, F.; Lu, X.; Shi, Y.; Pan, L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Adv. Cardiovasc. Dis. 2024, 12, 2307. [Google Scholar] [CrossRef]
- Guo, Q.; Qiu, X.-Q.; Zhang, X. Recent Advances in Electronic Skins with Multiple-Stimuli-Responsive and Self-Healing Abilities. Materials 2022, 15, 1661. [Google Scholar] [CrossRef]
- Ighodaro, A.; Osarobo, J.A.; Onuguh, I.C.; Ogbeide, O.K.; Ifijen, I.H. Challenges and Future Perspectives of Biomimetic Materials for Biomedical Applications: Bridging the Gap Between Nature and Medicine. In TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, C.; Wang, R.; Qin, H.; Zhang, Y.; Tan, W.; Yang, J.; Wang, F.; Liu, L. Biosyncretic Robots Actuated by Living Materials. Adv. Mater. Technol. 2024, 9, 2301183. [Google Scholar] [CrossRef]
- Messner, W.C.; Paik, J.; Shepherd, R.; Kim, S.; Trimmer, B.A. Energy for Biomimetic Robots: Challenges and Solutions. Soft Robot. 2014, 1, 106–109. [Google Scholar] [CrossRef]
- Mestre, R.; Astobiza, A.M.; Webster-Wood, V.A.; Ryan, M.; Saif, M.T.A. Ethics and Responsibility in Biohybrid Robotics Research. Proc. Natl. Acad. Sci. USA 2024, 121, e2310458121. [Google Scholar] [CrossRef]
- Hutler, B.; Rieder, T.N.; Mathews, D.J.H.; Handelman, D.A.; Greenberg, A.M. Designing Robots That Do No Harm: Understanding the Challenges of Ethics for Robots. AI Ethics 2024, 4, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Coeckelbergh, M. Robot Ethics. Perspect. Sci. Christ. Faith 2024, 76, 58–59. [Google Scholar] [CrossRef]
- Torras, C. Ethics of Social Robotics: Individual and Societal Concerns and Opportunities. Annu. Rev. Control Robot. Auton. Syst. 2024, 7, 1–18. [Google Scholar] [CrossRef]
- Wang, D.; Ping, T.; Du, Z.; Liu, X.; Zhang, Y. Lessons from nature: Advances and perspectives in bionic microwave absorption materials. Nano-Micro Lett. 2025, 17, 100. [Google Scholar] [CrossRef]
- Keshmiri, P. Biomimicry for a Sustainable Built Environment: A State-Of-The-Art Review of Nature-Inspired Building Solutions. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2025. [Google Scholar]
- Muñíz, R. Biomimética: Herramientas de diseño inspiradas en la naturaleza. Rev. Tekhné 2017, 20, 23–38. [Google Scholar]
- Fiorentino, C.; Hunt, K. Biomimicry: Una epistemología en construcción. Cent. Estud. Diseño Comun. 2021, 133, 117–129. Available online: https://core.ac.uk/download/478559348.pdf (accessed on 25 May 2025). [CrossRef]
- López-Forniés, I.; Berges Muro, L. XVIII. Analogies in natural product innovation. In Creativity and Innovation in Universities; Domínguez, D.C., Ed.; JAPSS Press: Albany, GA, USA, 2014; pp. 270–287. [Google Scholar]
- Cabrero-Olmos, R.; Calle-Sánchez, L.; Rodríguez-García, B.; Sevilla-Lucio, V. La espiral biomimética inspiradora de retos actuales de diseño y soluciones sostenibles innovadoras. Proyecta56 2021, 1, 57–67. [Google Scholar] [CrossRef]
- Wahl, D.C. Designing Regenerative Cultures; Triarchy Press: Bridport, UK, 2016; ISBN 978-1-909470-77-4. [Google Scholar]
- Gauger, E.M.; Rieper, E.; Morton, J.J.L.; Benjamin, S.C.; Vedral, V. Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 2011, 106, 040503. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Keennon, M.; Klingebiel, K.; Won, H.; Andriukov, A. Development of the Nano Hummingbird: A tailless flapping wing micro air vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Courchesne, N.-M.D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N.S. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv. Mater. 2018, 30, e1704847. [Google Scholar] [CrossRef]
- Borham, O.; Croxford, B.; Wilson, D. Biomimetic Strategies for Sustainable Resilient Cities: Review across Scales and City Systems. Biomimetics 2024, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Madmar, S.; Shah, M.Z.; Matusin, A.M.R.A.; Ilhan, A.A. Applications of biomimicry to urban planning: Interrogating the relevance of emerging approaches to design cities by inspiring from nature. IOP Conf. Ser. Earth Environ. Sci. 2023, 1274, 012015. [Google Scholar] [CrossRef]
- Rahubadda, R.V.A.D.; Kulatunga, U. Harnessing nature’s blueprint: Biomimicry in urban building design for sustainable and resilient cities. In Proceedings of the 12th World Construction Symposium, Colombo, Sri Lanka, 9–10 August 2024; Sandanayake, Y.G., Waidyasekara, K.G.A.S., Ranadewa, K.A.T.O., Chandanie, H., Eds.; pp. 532–543. [Google Scholar] [CrossRef]
- Yang, C.; Luo, S.; Lepora, N.F.; Ficuciello, F.; Lee, D.; Wan, W.; Su, C.-Y. Biomimetic Perception, Cognition, and Control: From Nature to Robots [From the Guest Editors]. IEEE Robot. Autom. Mag. 2022, 29, 8. [Google Scholar] [CrossRef]
- Fernandes, L.P.; Kharate, P.; Singh Mahinder Singh, B. The Future of High Performance Computing in Biomimetics and Some Challenges; Springer International Publishing: Berlin/Heidelberg, Germany, 2024; pp. 287–303. [Google Scholar] [CrossRef]
- Krichmar, J.L.; Severa, W.; Khan, S.M.; Olds, J.L. Making BREAD: Biomimetic strategies for Artificial Intelligence Now and in the Future. arXiv 2018, arXiv:1812.01184. Available online: https://arxiv.org/abs/1812.01184 (accessed on 26 May 2025). [CrossRef]
- Dhamdar, T.S.; Sandhya, K.V.; Basavaraj, B.V. Advancing Innovation through Biomimicry and AI: Inspiration to Implementation. Bionature 2024, 44, 16–27. [Google Scholar] [CrossRef]
- Stuttaford-Fowler, A.; Samani, H.; Yang, C. Biomimicry in Soft Robotics Actuation and Locomotion. In Proceedings of the International Conference on System Science and Engineering, Taichung, Taiwan, 26–29 May 2022; pp. 17–21. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Biomimetics and the Development of Humanlike Robots as the Ultimate Challenge. 2011. Available online: https://ntrs.nasa.gov/search.jsp?R=20120013813 (accessed on 26 May 2025).
- Habib, M.K.; Nagata, F. Biomimetics and the Evolution of Robotics and Intelligent Systems; IGI Global: Hershey, PA, USA, 2017; pp. 1–25. [Google Scholar] [CrossRef]
- Chowdhury, S.R. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics 2024, 9, 418. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Xu, W.; Li, Y.; Lai, R.; Qiu, X.; Xu, C.; Chen, Z.; Mi, B.; Wu, M.; et al. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023, 15, 2623. [Google Scholar] [CrossRef]
- Rising, A.; Johansson, J. Toward spinning artificial spider silk. Nat. Chem. Biol. 2015, 11, 309–315. [Google Scholar] [CrossRef]
Approach | Description |
---|---|
Agility and Adaptability | Insect-inspired robots can manoeuvre through confined spaces, which is crucial in disaster scenarios where access is limited [82]. |
Cyborg Insects | These robots are equipped with electronic enhancements that improve their communication and sensing capabilities, facilitating survivor recovery in challenging environments [83]. |
Swarm Robotics | Groups of insect-like robots can autonomously collaborate, enhancing efficiency in search operations [82]. |
Locomotion Strategies | Research on insect locomotion has led to the development of robots capable of climbing and overcoming obstacles efficiently, utilising adhesion-based and multimodal movement strategies [84]. |
Vision-Based Navigation | Systems inspired by insect visual processing have laid the foundation for the development of bioinspired models for autonomous navigation, reducing computational demands and enhancing efficiency [85]. |
Approach | Description |
---|---|
Biologically Inspired Fins | Miniature robotic fish utilise oscillating fins driven by Eccentric Rotating Mass (ERM) vibration motors, achieving speeds of 1.36 body lengths per second [86]. |
Fluidic Actuation | Soft robotic fish employ fluidic actuators that enable three-dimensional movement, enhancing manoeuvrability compared to traditional designs [87]. |
Adjustable Stiffness | Tail flexibility, optimised through adjustable stiffness, mimics real fish movements, improving propulsion efficiency [88]. |
Versatile Use Cases | These robots are suitable for various applications, including military operations, pollution detection, and underwater exploration [89,90]. |
Energy Efficiency | Biologically inspired designs significantly outperform traditional robots in energy consumption, making them more sustainable for prolonged missions [91]. |
Approach | Description |
---|---|
Climbing robots | Inspired by climbing organisms, these robots are designed for maintenance tasks in hard-to-reach areas, such as transmission towers and historical structures. They improve inspection efficiency and reduce labour intensity [92,93]. |
Technological integration | Advanced technologies, including 3D modelling and sensor fusion, enhance the operational efficiency of these robots, enabling precise localisation and motion control in complex environments [92,93]. |
Material efficiency | Biomimetics has led to the development of novel composite materials that mimic natural structures, such as bones and marine sponges, resulting in lightweight yet durable construction components [94]. |
Waste management | Innovations such as Mycocycle utilise fungi to recycle construction waste and convert it into new materials, addressing sustainability challenges in urban construction [94]. |
Approach | Description |
---|---|
Surgical Robots | Devices such as the Da Vinci surgical robot exemplify precision and minimally invasive techniques, improving surgical outcomes [96]. |
Robots and Devices for Rehabilitation | Innovations such as robotic exoskeletons and soft-body robots are designed to aid patient recovery by mimicking natural movements to promote effective rehabilitation [97,98]. Li et al. [99] analyse a bioinspired triboelectric soft pneumatic actuator for hand rehabilitation, demonstrating its application in spasticity assessment and rehabilitation enhancement through a CNN-enabled robot, highlighting the potential of biomimetic devices in medical assistance and rehabilitation. |
Wearable Sensors | Inspired by animal sensory systems, these devices provide real-time feedback for motor learning, which is crucial for rehabilitation [97]. |
Nociceptive Alarm Systems | Bioinspired artificial nociceptors can detect pain and provide alerts, enhancing patient safety and monitoring [100]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Parra, O.; Trejo-Macotela, F.R.; Ruiz-Vanoye, J.A.; Aguilar-Ortiz, J.; Ruiz-Jaimes, M.A.; Toledo-Navarro, Y.; Penna, A.F.; Barrera-Cámara, R.A.; Salgado-Ramirez, J.C. Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health. Appl. Sci. 2025, 15, 7323. https://doi.org/10.3390/app15137323
Diaz-Parra O, Trejo-Macotela FR, Ruiz-Vanoye JA, Aguilar-Ortiz J, Ruiz-Jaimes MA, Toledo-Navarro Y, Penna AF, Barrera-Cámara RA, Salgado-Ramirez JC. Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health. Applied Sciences. 2025; 15(13):7323. https://doi.org/10.3390/app15137323
Chicago/Turabian StyleDiaz-Parra, Ocotlán, Francisco R. Trejo-Macotela, Jorge A. Ruiz-Vanoye, Jaime Aguilar-Ortiz, Miguel A. Ruiz-Jaimes, Yadira Toledo-Navarro, Alejandro Fuentes Penna, Ricardo A. Barrera-Cámara, and Julio C. Salgado-Ramirez. 2025. "Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health" Applied Sciences 15, no. 13: 7323. https://doi.org/10.3390/app15137323
APA StyleDiaz-Parra, O., Trejo-Macotela, F. R., Ruiz-Vanoye, J. A., Aguilar-Ortiz, J., Ruiz-Jaimes, M. A., Toledo-Navarro, Y., Penna, A. F., Barrera-Cámara, R. A., & Salgado-Ramirez, J. C. (2025). Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health. Applied Sciences, 15(13), 7323. https://doi.org/10.3390/app15137323