Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity
Abstract
1. Introduction
2. Nature’s Simplicity: Examples at Different Scales
2.1. Molecular Scale: Self-Assembly and Minimal Energy Structures
2.2. Microscale: Hierarchical Yet Minimalistic Structures
2.3. Macroscale: Load-Optimized, Adaptive Forms
3. Translating Simplicity into Additive Manufacturing
3.1. Geometry, Material, and Function: Towards Integrating Bioinspired Designs in AM
3.2. Challenges: Material Limitations, Printing Resolution, and Integration of Functionality
4. Complexity Through Simplicity: Novel Capabilities in BAM
4.1. Four-Dimensional Printing and Programmable Materials: Dynamic Behaviors Inspired by Plants or Skin
4.2. Soft Robotics: Bioinspired Movement Without Rigid Components
4.3. Self-Morphing Structures: From Simple Stimuli to Complex Shape Transformations
5. Challenges and Gaps
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
4D Printing | Additive manufacturing of dynamic, shape-changing structures over time |
AI | Artificial Intelligence |
AM | Additive Manufacturing |
BAM | Biomimetic Additive Manufacturing |
CAD | Computer-Aided Design |
DNA | Deoxyribonucleic Acid |
DOE | Design of Experiments |
DLP | Digital Light Processing |
ECM | Extracellular Matrix (often referenced in biohybrid systems) |
FDM | Fused Deposition Modeling (a common 3D printing technique) |
IoT | Internet of Things |
ISO | International Organization for Standardization |
LCEs | Liquid Crystal Elastomers (stimuli-responsive materials) |
ML | Machine Learning |
PLA | Polylactic Acid (common biopolymer used in 3D printing) |
SLA | Stereolithography |
SLS | Selective Laser Sintering |
References
- Di Salvo, S. Biomimetics and 4D Printing: A Synergy for the Development of Innovative Materials. In Biomimetics, Biodesign and Bionics; Springer Nature: Cham, Switzerland, 2024; pp. 173–200. ISBN 9783031513107. [Google Scholar]
- Zeng, C.; Liu, L.; Xin, X.; Zhao, W.; Lin, C.; Liu, Y.; Leng, J. 4D Printed Bio-Inspired Mesh Composite Materials with High Stretchability and Reconfigurability. Compos. Sci. Technol. 2024, 249, 110503. [Google Scholar] [CrossRef]
- Ehrlich, H. Biomaterialien und biologische Materialien. In Meeresbiologisches Materialien wirbellosen Ursprungs; Springer Nature: Cham, Switzerland, 2024; pp. 3–18. ISBN 9783031512810. [Google Scholar]
- Wei, X.; Wang, Y.; Liu, Y.; Ji, K.; Li, K.; Wang, J.; Gu, Z. Biomimetic Design Strategies for Biomedical Applications. Matter 2024, 7, 826–854. [Google Scholar] [CrossRef]
- de Sá, A.A.M.; Viana, D.M. Design and Biomimicry: A Review of Interconnections and Creative Potentials. Biomimetics 2023, 8, 61. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Jiang, B.; Xin, Z.; Jiao, Z. Three-Dimensional-Printed Biomimetic Structural Ceramics with Excellent Tribological Properties. Materials 2025, 18, 1376. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Wu, C.; Su, K.; Kan, X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. Micromachines 2023, 14, 1216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, J.; Yu, T.X. Dynamic Behaviors of Bio-Inspired Structures: Design, Mechanisms, and Models. Eng. Struct. 2022, 265, 114490. [Google Scholar] [CrossRef]
- Rodriguez-Palomo, A.; Østergaard, M.; Birkedal, H. Bone Hierarchical Structure: Heterogeneity and Uniformity. Adv. Funct. Mater. 2024, 34, 2307026. [Google Scholar] [CrossRef]
- Zengiaro, N. Vibrant Worlds: An Artistic Interpretation of Material Intelligence in the Spider’s Umwelt. Biosemiotics 2024, 17, 671–691. [Google Scholar] [CrossRef]
- Dziedzic, I.; Dydek, K.; Trzciński, J.; Boczkowska, A.; Voronkina, A.; Jesionowski, T.; Ehrlich, H. Creation of 3D Chitin/Chitosan Composite Scaffold from Naturally Pre-Structured Verongiid Sponge Skeleton. Carbohydr. Polym. Technol. Appl. 2024, 8, 100587. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T. From Static to Dynamic: Smart Materials Pioneering Additive Manufacturing in Regenerative Medicine. Int. J. Mol. Sci. 2023, 24, 15748. [Google Scholar] [CrossRef]
- Kantaros, A. Bio-Inspired Materials: Exhibited Characteristics and Integration Degree in Bio-Printing Operations. Am. J. Eng. Appl. Sci. 2022, 15, 255–263. [Google Scholar] [CrossRef]
- Kantaros, A.; Petrescu, F.I.T.; Ganetsos, T. From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Biomimetics 2025, 10, 125. [Google Scholar] [CrossRef]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef] [PubMed]
- Ortega Del Rosario, M.D.L.Á.; Beermann, K.; Chen Austin, M. Environmentally Responsive Materials for Building Envelopes: A Review on Manufacturing and Biomimicry-Based Approaches. Biomimetics 2023, 8, 52. [Google Scholar] [CrossRef]
- Nepal, D.; Kang, S.; Adstedt, K.M.; Kanhaiya, K.; Bockstaller, M.R.; Brinson, L.C.; Buehler, M.J.; Coveney, P.V.; Dayal, K.; El-Awady, J.A.; et al. Hierarchically Structured Bioinspired Nanocomposites. Nat. Mater. 2023, 22, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Pan, F.; Ping, H.; Yang, K.; Wang, Y.; Wang, Q.; Fu, Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. Research 2023, 6, 0164. [Google Scholar] [CrossRef]
- Tiwary, A.; Brown, N. Emerging Perspectives on Diverse Nature-Oriented Sustainability Strategies. Sustainability 2024, 16, 881. [Google Scholar] [CrossRef]
- Ehrlich, H. Kollagene aus wirbellosen Meerestieren. In Meeresbiologisches Materialien wirbellosen Ursprungs; Springer Nature: Cham, Switzerland, 2024; pp. 301–314. ISBN 9783031512810. [Google Scholar]
- Endo, M. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy. Molecules 2022, 27, 4224. [Google Scholar] [CrossRef]
- Elbahnasawy, M.A.; Nasr, M.L. DNA-Nanostructure-Templated Assembly of Planar and Curved Lipid-Bilayer Membranes. Front. Chem. 2022, 10, 1047874. [Google Scholar] [CrossRef]
- Jiang, Q.; Shang, Y.; Xie, Y.; Ding, B. DNA Origami: From Molecular Folding Art to Drug Delivery Technology. Adv. Mater. 2024, 36, e2301035. [Google Scholar] [CrossRef]
- Niranjan Dhanasekar, N.; Thiyagarajan, D.; Bhatia, D. DNA Origami in the Quest for Membrane Piercing. Chem. Asian J. 2022, 17, e202200591. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Suleman, S.; Anzar, N.; Narang, J.; Pilloton, R.; Timur, S.; Guler Celik, E.; Pundir, C.S.; Shukla, S.K. Origami-Inspired Biosensors: Exploring Diverse Applications and Techniques for Shape-Changing Sensor Platforms. Chemosensors 2024, 12, 276. [Google Scholar] [CrossRef]
- Ishida, H.; Ito, T.; Kuzuya, A. Molecular Origami: Designing Functional Molecules of the Future. Molecules 2025, 30, 242. [Google Scholar] [CrossRef]
- Solomonov, A.; Kozell, A.; Shimanovich, U. Designing Multifunctional Biomaterials via Protein Self-assembly. Angew. Chem. Weinh. Bergstr. Ger. 2024, 136, 202318365. [Google Scholar] [CrossRef]
- Ding, A.; Tang, F.; Alsberg, E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem. Rev. 2025, 125, 3663–3771. [Google Scholar] [CrossRef]
- Mohamed, M.Y.; Surmen, H.K. A Comprehensive Review on Additive Manufacturing and Its Applications in Biomimetics. In Fostering Cross-Industry Sustainability with Intelligent Technologies; IGI Global: Hershey, PA, USA, 2024; pp. 499–520. ISBN 9798369316382. [Google Scholar]
- Rešetič, A. Shape Programming of Liquid Crystal Elastomers. Polymers 2024, 7. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Zhang, L.; Chen, C.; Yang, S.; Dou, H.; Mann, S.; Li, J. Self-Assembly of Stabilized Droplets from Liquid-Liquid Phase Separation for Higher-Order Structures and Functions. Commun. Chem. 2024, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Cheng, H.; McClements, D.J.; Zhang, Z.; Zhang, R.; Zhou, H.; Wang, W.; Zhao, J.; Jin, Z.; Chen, L. Pearl-Inspired Functional Biomaterials: Review of Their Preparation, Characterization, and Application in Food Packaging. Trends Food Sci. Technol. 2024, 154, 104774. [Google Scholar] [CrossRef]
- Ehrlich, H. Biomineralisierung. In Meeresbiologisches Materialien wirbellosen Ursprungs; Springer Nature: Cham, Switzerland, 2024; pp. 47–53. ISBN 9783031512810. [Google Scholar]
- Wu, Z.; Huang, J.; Zhao, Y.; Ding, X.; Chen, J.; Liu, Z.; Liu, Z.; Zhu, Y. Lotus Leaf-Inspired Superhydrophobic Piezoelectric Nanofiber Films for Moisture-Proof Pressure Sensing and Energy Harvesting. Chem. Eng. J. 2025, 504, 158874. [Google Scholar] [CrossRef]
- Collins, C.M.; Safiuddin, M. Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures 2022, 7, 46. [Google Scholar] [CrossRef]
- Newton, M.A.A.; Gao, D.; Xin, B.; Zheng, Y.; Gong, H. Development of a Biomimetic Polyvinylidene Fluoride Membrane with a Lotus Leaf-Inspired Structure for Enhanced Oil-Water Separation. Colloids Surf. A Physicochem. Eng. Asp. 2025, 706, 135773. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J.; Park, T.; Jeong, J.; Lee, J.; Joo, H.; Mesa, J.C.; Alston, C.B.; Ji, Y.; Vega, S.R.; et al. Spider Silk-Inspired Conductive Hydrogels for Enhanced Toughness and Environmental Resilience via Dense Hierarchical Structuring. Adv. Sci. 2025, 12, e2500397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mu, Z.; Wang, Y.; Song, W.; Yu, H.; Zhang, S.; Li, Y.; Niu, S.; Han, Z.; Ren, L. Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics 2023, 8, 153. [Google Scholar] [CrossRef]
- Calin, B.S.; Paun, I.A. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. Int. J. Mol. Sci. 2022, 23, 14270. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.-Q.; Lin, B.; Liu, M.-C.; Zhang, Y.; Liu, S.-J.; Li, Y.; Zhao, Q. Two-Photon Polymerization-Based 3D Micro-Scaffolds toward Biomedical Devices. Chem. Eng. J. 2024, 493, 152469. [Google Scholar] [CrossRef]
- Savelyev, M.S.; Kuksin, A.V.; Murashko, D.T.; Otsupko, E.P.; Kurilova, U.E.; Selishchev, S.V.; Gerasimenko, A.Y. Conductive Biocomposite Made by Two-Photon Polymerization of Hydrogels Based on BSA and Carbon Nanotubes with Eosin-Y. Gels 2024, 10, 711. [Google Scholar] [CrossRef]
- Mercante, L.A.; Teodoro, K.B.R.; Dos Santos, D.M.; Dos Santos, F.V.; Ballesteros, C.A.S.; Ju, T.; Williams, G.R.; Correa, D.S. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers 2023, 15, 4299. [Google Scholar] [CrossRef]
- Ferreira, M.P.S.; Gonçalves, A.S.; Antunes, J.C.; Bessa, J.; Cunha, F.; Fangueiro, R. Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application. Polymers 2024, 16, 1345. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, M.Y.; Balk, M.; Mazurek-Budzyńska, M.; Schadewald, A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers 2023, 15, 4029. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Noghanian, S.; Khan, Z.U.; Alzahrani, S.; Alharbi, S.; Alhartomi, M.; Alsulami, R. Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications. Sensors 2025, 25, 1377. [Google Scholar] [CrossRef]
- Hossain, M.J.; Tabatabaei, B.T.; Kiki, M.; Choi, J.-W. Additive Manufacturing of Sensors: A Comprehensive Review. Int. J. Precis. Eng. Manuf.-Green Technol. 2025, 12, 277–300. [Google Scholar] [CrossRef]
- Paul, A.A.; Aladese, A.D.; Marks, R.S. Additive Manufacturing Applications in Biosensors Technologies. Biosensors 2024, 14, 60. [Google Scholar] [CrossRef]
- Castagneri, D.; Vacchiano, G.; Hacket-Pain, A.; DeRose, R.J.; Klein, T.; Bottero, A. Meta-Analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems 2022, 25, 30–43. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, D.; Choi, J. Developing and Comparing Individual Tree Growth Models of Major Coniferous Species in South Korea Based on Stem Analysis Data. Forests 2023, 14, 115. [Google Scholar] [CrossRef]
- Logerstedt, D.S.; Ebert, J.R.; MacLeod, T.D.; Heiderscheit, B.C.; Gabbett, T.J.; Eckenrode, B.J. Effects of and Response to Mechanical Loading on the Knee. Sports Med. 2022, 52, 201–235. [Google Scholar] [CrossRef]
- Niu, Y.; Du, T.; Liu, Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J. Funct. Biomater. 2023, 14, 212. [Google Scholar] [CrossRef]
- Ehrlich, H. Biozemente. In Meeresbiologisches Materialien wirbellosen Ursprungs; Springer Nature: Cham, Switzerland, 2024; pp. 251–258. ISBN 9783031512810. [Google Scholar]
- Muñoz-Moya, E.; García-Herrera, C.M.; Lagos, N.A.; Abarca-Ortega, A.F.; Checa, A.G.; Harper, E.M. Evaluation of Remodeling and Geometry on the Biomechanical Properties of Nacreous Bivalve Shells. Sci. Rep. 2022, 12, 710. [Google Scholar] [CrossRef]
- Ansari, A.I.; Sheikh, N.A.; Kumar, N. Visco-Mechanical Characterization of Molluscs (Sea Shell) Biomimetics Designs Structures. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 326. [Google Scholar] [CrossRef]
- Li, G.; Wong, T.-W.; Shih, B.; Guo, C.; Wang, L.; Liu, J.; Wang, T.; Liu, X.; Yan, J.; Wu, B.; et al. Bioinspired Soft Robots for Deep-Sea Exploration. Nat. Commun. 2023, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.; Rose, D.; Ranjbar, E.; Ghasri-Khouzani, M.; Tavakoli, M.; Henein, H.; Wolfe, T.; Jawad Qureshi, A. Large-Scale Metal Additive Manufacturing: A Holistic Review of the State of the Art and Challenges. Int. Mater. Rev. 2022, 67, 410–459. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Haghighi, A. Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect. Sustainability 2022, 14, 9782. [Google Scholar] [CrossRef]
- Kantaros, A.; Soulis, E.; Ganetsos, T.; Petrescu, F.I.T. Applying a Combination of Cutting-Edge Industry 4.0 Processes towards Fabricating a Customized Component. Processes 2023, 11, 1385. [Google Scholar] [CrossRef]
- Jin, L.; Zhai, X.; Jiang, J.; Zhang, K.; Liao, W.-H. Optimizing Stimuli-Based 4D Printed Structures: A Paradigm Shift in Programmable Material Response. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2024, Long Beach, CA, USA, 25–28 March 2024; Limongelli, M.P., Ng, C.T., Glisic, B., Eds.; SPIE: Bellingham, WA, USA, 2024. [Google Scholar]
- Deng, H.; Lin, J. 4D Printing: 3D Printing of Responsive and Programmable Materials. In 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2022; pp. 213–237. ISBN 9780128245521. [Google Scholar]
- Kantaros, A.; Ganetsos, T.; Piromalis, D. 3D and 4D Printing as Integrated Manufacturing Methods of Industry 4.0. Am. J. Eng. Appl. Sci. 2023, 16, 12–22. [Google Scholar] [CrossRef]
- Leśniewski, B.; Kopani, M.; Szczurek, A.; Matczak, M.; Dubowik, J.; Kotula, M.; Kubiak, A.; Tsurkan, D.; Romańczuk-Ruszuk, E.; Nowicki, M.; et al. Development of Magnetic Sponges Using Steel Melting on 3D Carbonized Spongin Scaffolds under Extreme Biomimetics Conditions. Biomimetics 2025, 10, 350. [Google Scholar] [CrossRef]
- Sztorch, B.; Romanczuk-Ruszuk, E.; Głowacka, J.; Kustosz, M.; Osiecki, T.; Jakubowska, P.; Seidlitz, H.; Przekop, R.E. Improving the Processing and Mechanical Properties of 3D Printable Biocomposite Based on Polylactide, Sediment Rock, and Natural Beeswax. Polym. Bull. 2024, 82, 2523–2553. [Google Scholar] [CrossRef]
- Babu, P.J.; Suamte, L. Applications of Silk-Based Biomaterials in Biomedicine and Biotechnology. Eng. Regen. 2024, 5, 56–69. [Google Scholar] [CrossRef]
- Sayegh, M.-A.; Daraghma, H.; Mekid, S.; Bashmal, S. Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors. Sensors 2022, 22, 2705. [Google Scholar] [CrossRef]
- Kiakojouri, F.; De Biagi, V.; Abbracciavento, L. Design for Robustness: Bio-Inspired Perspectives in Structural Engineering. Biomimetics 2023, 8, 95. [Google Scholar] [CrossRef]
- Yarramuthi, V.; Pilla, V.A.R.; Munagapati, V.S.; Wen, J.-C. A Comprehensive Analysis of Natural Honeycomb: Structure, Function, Dye Adsorption and Applications. J. Innov. Technol. 2025, 7, 21–32. [Google Scholar] [CrossRef]
- Rubiano-Navarrete, A.F.; Lesmes Fabian, C.; Torres-Pérez, Y.; Gómez-Pachón, E.Y. Durability Evaluation of New Composite Materials for the Construction of Beehives. Sustainability 2022, 14, 14683. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, X.; Li, J.; Su, X.; Chen, S.; Tang, J.; Chen, L.; Cai, N.; Xu, Y. Physiological Characteristics and Transcriptomic Responses of Pinus Yunnanensis Lateral Branching to Different Shading Environments. Plants 2024, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Carella, A.; Massenti, R.; Milazzo, G.; Caruso, T.; Lo Bianco, R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae 2022, 8, 109. [Google Scholar] [CrossRef]
- Pagonis, K.; Zacharia, P.; Kantaros, A.; Ganetsos, T.; Brachos, K. Design, Fabrication and Simulation of a 5-Dof Robotic Arm Using Machine Vision. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 9–10 June 2023; Volume 113, pp. 1–4. [Google Scholar]
- Zhu, Z.; Li, J.; Peng, H.; Liu, D. Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. Micromachines 2021, 12, 656. [Google Scholar] [CrossRef]
- Distefano, F.; Pasta, S.; Epasto, G. Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review. J. Funct. Biomater. 2023, 14, 125. [Google Scholar] [CrossRef]
- Rostami, M.; Badiei, A.; Fasihi-Ramandi, M.; Ehrlich, H.; Jourshabani, M.; Lee, B.-K.; Ziarani, G.M.; Rahimi-Nasrabadi, M. Bioinspired Heterogeneous N, S-Codoped 3D Carbon- CuWO4@Ag Nano-Architecture from CuWO4-Spongin Scaffold for Boosting Photocatalytic Efficiency and Cell Viability. Alex. Eng. J. 2025, 126, 393–407. [Google Scholar] [CrossRef]
- Coburn, B.; Salary, R.R. Mechanical Characterization of Porous Bone-like Scaffolds with Complex Microstructures for Bone Regeneration. Bioengineering 2025, 12, 416. [Google Scholar] [CrossRef]
- Kassem, M.A.M.; Tahon, R.R.; Khalil, K.M.; El-Ayat, M.A. Morphometric Studies on the Appendicular Bony Skeleton of the Ostriches (Struthio camelus). BMC Vet. Res. 2023, 19, 109. [Google Scholar] [CrossRef]
- Lim, E.L.; Ngeow, W.C.; Kadir, K.; Naidu, M. Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites. Biomimetics 2023, 8, 115. [Google Scholar] [CrossRef]
- Ciula, A.; Rubino, G.; Fanelli, P. The Mechanical Characterization of a Gyroid-Based Metamaterial by Compression Testing. Eng. Proc. 2025, 85, 17. [Google Scholar]
- Bean, P.; Lopez-Anido, R.A.; Vel, S. Numerical Modeling and Experimental Investigation of Effective Elastic Properties of the 3D Printed Gyroid Infill. Appl. Sci. 2022, 12, 2180. [Google Scholar] [CrossRef]
- Wawrzyniak, A.; Balawender, K. Structural and Metabolic Changes in Bone. Animals 2022, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yi, Y.; Zhang, J.; Chai, L.; Jin, H. Preparation and Mechanical Properties Analysis of Porous Structure for Bone Tissue Engineering. Biomed. Mater. Eng. 2022, 33, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Trossmann, V.T.; Lentz, S.; Scheibel, T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J. Funct. Biomater. 2023, 14, 434. [Google Scholar] [CrossRef]
- Hopfe, C.; Ospina-Jara, B.; Schulze, T.; Tischer, M.; Morales, D.; Reinhartz, V.; Esfahani, R.E.; Valderrama, C.; Pérez-Rigueiro, J.; Bleidorn, C.; et al. Impact of Environmental Factors on Spider Silk Properties. Curr. Biol. 2024, 34, 56–67.e5. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Ramoni, M.; Yodo, N. A Survey on Fused Filament Fabrication to Produce Functionally Gradient Materials. Materials 2024, 17, 3675. [Google Scholar] [CrossRef]
- Pragya, A.; Ghosh, T.K. Soft Functionally Gradient Materials and Structures—Natural and Manmade: A Review. Adv. Mater. 2023, 35, e2300912. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef]
- Góra, P.; Łopato, P. Metamaterials’ Application in Sustainable Technologies and an Introduction to Their Influence on Energy Harvesting Devices. Appl. Sci. 2023, 13, 7742. [Google Scholar] [CrossRef]
- Lee, Y. Metamaterials and Their Devices. Crystals 2025, 15, 119. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Fidan, I.; Huseynov, O.; Ali, M.A.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Hasanov, S.; Tantawi, K.; Yasa, E.; Yilmaz, O.; et al. Recent Inventions in Additive Manufacturing: Holistic Review. Inventions 2023, 8, 103. [Google Scholar] [CrossRef]
- Mahmood, A.; Perveen, F.; Chen, S.; Akram, T.; Irfan, A. Polymer Composites in 3D/4D Printing: Materials, Advances, and Prospects. Molecules 2024, 29, 319. [Google Scholar] [CrossRef]
- Antezana, P.E.; Municoy, S.; Ostapchuk, G.; Catalano, P.N.; Hardy, J.G.; Evelson, P.A.; Orive, G.; Desimone, M.F. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023, 15, 2743. [Google Scholar] [CrossRef] [PubMed]
- Azher, K.; Nazir, A.; Farooq, M.U.; Haq, M.R.U.; Ali, Z.; Dalaq, A.S.; Abubakar, A.A.; Hussain, S.; Syed, M.N.; Ullah, A.; et al. Revolutionizing the Future of Smart Materials: A Review of 4D Printing, Design, Optimization, and Machine Learning Integration. Adv. Mater. Technol. 2025, 10, 202401369. [Google Scholar] [CrossRef]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, P.; Liu, M.; Bissett, M.; Kinloch, I.A. A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials. Adv. Mater. Technol. 2022, 7, 2200025. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, S.A.; Shabbir, S.; Umar, M.; Mohapatra, S.; Khuroo, T.; Naseef, P.P.; Kuruniyan, M.S.; Iqbal, Z.; Mirza, M.A. Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022, 15, 116. [Google Scholar] [CrossRef]
- Pivar, M.; Vrabič-Brodnjak, U.; Leskovšek, M.; Gregor-Svetec, D.; Muck, D. Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures. Polymers 2024, 16, 2138. [Google Scholar] [CrossRef]
- Cai, H.; Xu, X.; Lu, X.; Zhao, M.; Jia, Q.; Jiang, H.-B.; Kwon, J.-S. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers 2023, 15, 2405. [Google Scholar] [CrossRef]
- Deo, D.; Singh, S.P.; Mohanty, S.; Guhathakurata, S.; Pal, D.; Mallik, S. Biomimicking of Phyto-Based Super-Hydrophobic Surfaces towards Prospective Applications: A Review. J. Mater. Sci. 2022, 57, 8569–8596. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, B.; Xiao, J.; Zhang, Q. An Approach to Improve the Resolution of DLP 3D Printing by Parallel Mechanism. Appl. Sci. 2022, 12, 12905. [Google Scholar] [CrossRef]
- Lin, C.; Xu, W.; Liu, B.; Wang, H.; Xing, H.; Sun, Q.; Xu, J. Three-Dimensional Printing of Large Objects with High Resolution by Dynamic Projection Scanning Lithography. Micromachines 2023, 14, 1700. [Google Scholar] [CrossRef]
- Chang, J.; Yang, D.; Lu, C.; Shu, Z.; Deng, S.; Tan, L.; Wen, S.; Huang, K.; Duan, P. Application of Microbially Induced Calcium Carbonate Precipitation (MICP) Process in Concrete Self-Healing and Environmental Restoration to Facilitate Carbon Neutrality: A Critical Review. Environ. Sci. Pollut. Res. Int. 2024, 31, 38083–38098. [Google Scholar] [CrossRef] [PubMed]
- Galchenko, J.; Ozaryan, J. Research on the Self-Healing of Biota in Natural Ecosystems Disturbed by Mining Enterprises. In Springer Proceedings in Earth and Environmental Sciences; Springer Nature: Cham, Switzerland, 2024; pp. 113–123. ISBN 9783031644221. [Google Scholar]
- Dei Rossi, G.; Vergani, L.M.; Buccino, F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. Materials 2024, 17, 5305. [Google Scholar] [CrossRef] [PubMed]
- Loukas, A.-T.; Papadourakis, M.; Panagiotopoulos, V.; Zarmpala, A.; Chontzopoulou, E.; Christodoulou, S.; Katsila, T.; Zoumpoulakis, P.; Matsoukas, M.-T. Natural Compounds for Bone Remodeling: A Computational and Experimental Approach Targeting Bone Metabolism-Related Proteins. Int. J. Mol. Sci. 2024, 25, 5047. [Google Scholar] [CrossRef]
- Ardelean, A.I.; Mârza, S.M.; Marica, R.; Dragomir, M.F.; Rusu-Moldovan, A.O.; Moldovan, M.; Pașca, P.M.; Oana, L. Evaluation of Biocomposite Cements for Bone Defect Repair in Rat Models. Life 2024, 14, 1097. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Pan, P.; Shan, G.; Du, M. Bioinspired Stimuli-responsive Hydrogel with Reversible Switching and Fluorescence Behavior Served as Light-controlled Soft Actuators. Macromol. Mater. Eng. 2021, 306, 2100379. [Google Scholar] [CrossRef]
- Farrukh, A.; Nayab, S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024, 10, 270. [Google Scholar] [CrossRef]
- Michalicha, A.; Belcarz, A.; Giannakoudakis, D.A.; Staniszewska, M.; Barczak, M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. Materials 2024, 17, 278. [Google Scholar] [CrossRef]
- Etawy, M.; Nassar, G.; Mohammed, N.; Nawar, S.; Hassabo, A. 4D Printing of Stimuli-Responsive Materials. J. Text. Color. Polym. sci. 2024, 21, 241–258. [Google Scholar] [CrossRef]
- Balcerak-Woźniak, A.; Dzwonkowska-Zarzycka, M.; Kabatc-Borcz, J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives. Materials 2024, 17, 4255. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, S.C.; Sisodia, R. Plant Movements. In Plant Physiology, Development and Metabolism; Springer Nature: Singapore, 2023; pp. 641–659. ISBN 9789819957354. [Google Scholar]
- Devin, K.M.; Tang, J.; Hamilton, A.R.; Moser, D.; Jiang, L. Assessment of 3D Printed Mechanical Metamaterials for Prosthetic Liners. Proc. Inst. Mech. Eng. H 2024, 238, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Huang, J.; Gu, G.; Li, Z.; Wu, X.; Ren, J. Smart Implants: 4D-Printed Shape-Morphing Scaffolds for Medical Implantation. Int. J. Bioprint. 2023, 9, 764. [Google Scholar] [CrossRef]
- Chen, J.; Virrueta, C.; Zhang, S.; Mao, C.; Wang, J. 4D Printing: The Spotlight for 3D Printed Smart Materials. Mater. Today 2024, 77, 66–91. [Google Scholar] [CrossRef]
- Razzaq, M.Y.; Gonzalez-Gutierrez, J.; Mertz, G.; Ruch, D.; Schmidt, D.F.; Westermann, S. 4D Printing of Multicomponent Shape-Memory Polymer Formulations. Appl. Sci. 2022, 12, 7880. [Google Scholar] [CrossRef]
- Rusu, D.-M.; Mândru, S.-D.; Biriș, C.-M.; Petrașcu, O.-L.; Morariu, F.; Ianosi-Andreeva-Dimitrova, A. Soft Robotics: A Systematic Review and Bibliometric Analysis. Micromachines 2023, 14, 359. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Hou, X.; Zhang, X.; Qi, W.; Cai, S.; Xiong, X.; Guo, J. Pneumatic Soft Robots: Challenges and Benefits. Actuators 2022, 11, 92. [Google Scholar] [CrossRef]
- Liu, K.; Chen, W.; Yang, W.; Jiao, Z.; Yu, Y. Review of the Research Progress in Soft Robots. Appl. Sci. 2022, 13, 120. [Google Scholar] [CrossRef]
- Sarker, A.; Ul Islam, T.; Islam, M.R. A Review on Recent Trends of Bioinspired Soft Robotics: Actuators, Control Methods, Materials Selection, Sensors, Challenges, and Future Prospects. Adv. Intell. Syst. 2025, 7, 414. [Google Scholar] [CrossRef]
- Ambaye, G.; Boldsaikhan, E.; Krishnan, K. Soft Robot Design, Manufacturing, and Operation Challenges: A Review. J. Manuf. Mater. Process. 2024, 8, 79. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Su, L. Soft Optical Waveguides for Biomedical Applications, Wearable Devices, and Soft Robotics: A Review. Adv. Intell. Syst. 2024, 6, 202300482. [Google Scholar] [CrossRef]
- Alotaibi, A. Flexible 3D Force Sensor Based on Polymer Nanocomposite for Soft Robotics and Medical Applications. Sensors 2024, 24, 1859. [Google Scholar] [CrossRef] [PubMed]
- Pandeya, S.P.; Zou, S.; Roh, B.-M.; Xiao, X. Programmable Thermo-Responsive Self-Morphing Structures Design and Performance. Materials 2022, 15, 8775. [Google Scholar] [CrossRef]
- Alshebly, Y.S.; Mustapha, K.B.; Zolfagharian, A.; Bodaghi, M.; Mohamed Ali, M.S.; Almurib, H.A.; Nafea, M. Bioinspired Pattern-Driven Single-Material 4D Printing for Self-Morphing Actuators. Sustainability 2022, 14, 10141. [Google Scholar] [CrossRef]
- Song, J.; Feng, Y.; Hong, Z.; Hu, B.; Tan, J.; Song, X. Self-Morphing of Elastic Bilayers Induced by Mismatch Strain: Deformation Simulation and Bio-Inspired Design. arXiv 2023, arXiv:2309.09596. [Google Scholar]
- Patel, D.K.; Zhong, K.; Xu, H.; Islam, M.F.; Yao, L. Sustainable Morphing Matter: Design and Engineering Practices. Adv. Mater. Technol. 2023, 8, 202300678. [Google Scholar] [CrossRef]
- Mendenhall, R.; Eslami, B. Experimental Investigation on Effect of Temperature on FDM 3D Printing Polymers: ABS, PETG, and PLA. Appl. Sci. 2023, 13, 11503. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, C.; Cheng, J.; He, X.; Ye, H.; Jian, B.; Li, H.; Bai, J.; Ge, Q. Direct 4D Printing of Ceramics Driven by Hydrogel Dehydration. Nat. Commun. 2024, 15, 758. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Ye, H.; Jian, B.; He, X.; Cheng, J.; Sun, Z.; Wang, R.; Chen, Z.; Lin, J.; et al. Reconfigurable 4D Printing via Mechanically Robust Covalent Adaptable Network Shape Memory Polymer. Sci. Adv. 2024, 10, eadl4387. [Google Scholar] [CrossRef]
- Xie, R.; Cao, Y.; Sun, R.; Wang, R.; Morgan, A.; Kim, J.; Callens, S.J.P.; Xie, K.; Zou, J.; Lin, J.; et al. Magnetically Driven Formation of 3D Freestanding Soft Bioscaffolds. Sci. Adv. 2024, 10, eadl1549. [Google Scholar] [CrossRef]
- Boda, R.; Panda, B.; Kumar, S. Bioinspired Nested-Isotropic Lattices with Tunable Anisotropy for Additive Manufacturing. arXiv 2024, arXiv:2405.11596. [Google Scholar]
- Takács, Á.; Albert, J. Additive Manufacturing from Biomimetic Approach. Des. Mach. Struct. 2024, 14, 5–12. [Google Scholar] [CrossRef]
- Hampton, C.; Bharti, K.; Song, M.J. Tissue Engineering of Outer Blood Retina Barrier for Therapeutic Development. Curr. Opin. Biomed. Eng. 2024, 31, 100538. [Google Scholar] [CrossRef] [PubMed]
- Suhas; Quadros, J.D.; Mogul, Y.I.; Mohin, M.; Aabid, A.; Baig, M.; Ahmed, O.S. A Review on Mechanical Metamaterials and Additive Manufacturing Techniques for Biomedical Applications. Mater. Adv. 2025, 6, 887–908. [Google Scholar] [CrossRef]
- Gottlieb, G. From Gene to Organism. In The Heredity Hoax; Routledge: New York, NY, USA, 2025; pp. 279–289. ISBN 9781032702988. [Google Scholar]
- Rock, T.; Wills, M.A. Quantifying the Configurational Complexity of Biological Systems in Multivariate “Complexity Space”. J. R. Soc. Interface 2025, 22, 20240558. [Google Scholar] [CrossRef]
- Appuhamillage, G.A.; Ambagaspitiya, S.S.; Dassanayake, R.S.; Wijenayake, A. 3D and 4D Printing of Biomedical Materials: Current Trends, Challenges, and Future Outlook. Explor. Med. 2024, 5, 17–47. [Google Scholar] [CrossRef]
- Hossain, M.J. Fatigue Behavior of 4D Printed Materials: A Review. Prog. Addit. Manuf. 2025, 10, 775–782. [Google Scholar] [CrossRef]
- Cheng, T.; Tahouni, Y.; Sahin, E.S.; Ulrich, K.; Lajewski, S.; Bonten, C.; Wood, D.; Rühe, J.; Speck, T.; Menges, A. Weather-Responsive Adaptive Shading through Biobased and Bioinspired Hygromorphic 4D-Printing. Nat. Commun. 2024, 15, 10366. [Google Scholar] [CrossRef]
- Yarali, E.; Mirzaali, M.J.; Ghalayaniesfahani, A.; Accardo, A.; Diaz-Payno, P.J.; Zadpoor, A.A. 4D Printing for Biomedical Applications. Adv. Mater. 2024, 36, e2402301. [Google Scholar] [CrossRef]
- Estévez, M.; Batoni, E.; Cicuéndez, M.; Bonatti, A.F.; Fernández-Marcelo, T.; De Maria, C.; González, B.; Izquierdo-Barba, I.; Vozzi, G. Fabrication of 3D Biofunctional Magnetic Scaffolds by Combining Fused Deposition Modelling and Inkjet Printing of Superparamagnetic Iron Oxide Nanoparticles. Tissue Eng. Regen. Med. 2025, 22, 627–646. [Google Scholar] [CrossRef]
- Byrne, R.; Carrico, A.; Lettieri, M.; Rajan, A.K.; Forster, R.J.; Cumba, L.R. Bioinks and Biofabrication Techniques for Biosensors Development: A Review. Mater. Today Bio 2024, 28, 101185. [Google Scholar] [CrossRef] [PubMed]
- Monfred, V. Application of Artificial Intelligence (Machine Learning) in Additive Manufacturing, Bio-Systems, Bio-Medicine, and Composites. In Additive Manufacturing for Biocomposites and Synthetic Composites; CRC Press: Boca Raton, FL, USA, 2023; pp. 152–203. ISBN 9781003362128. [Google Scholar]
- Ciulla, M.G.; Massironi, A.; Sugni, M.; Ensign, M.A.; Marzorati, S.; Forouharshad, M. Recent Advances in the Development of Biomimetic Materials. Gels 2023, 9, 833. [Google Scholar] [CrossRef]
- Montagut Marques, M.J.; Yuxuan, Q.; Sato, H.; Umezu, S. Cyborg Insect Repeatable Self-Righting Locomotion Assistance Using Bio-Inspired 3D Printed Artificial Limb. Npj Robot. 2024, 2, 3. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Kempiński, M.; Galas, K.; Piszcz, A. Emerging Applications of Machine Learning in 3D Printing. Appl. Sci. 2025, 15, 1781. [Google Scholar] [CrossRef]
- Messeder, S.J.; López-Peña, G.; Pepper, C.; Saratzis, A. Biomimetic Stents for Infrainguinal Peripheral Arterial Disease: Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 468–479. [Google Scholar] [CrossRef]
- Ramos, A.; Angel, V.G.; Siqueiros, M.; Sahagun, T.; Gonzalez, L.; Ballesteros, R. Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities through Innovative Printing Patterns. Materials 2025, 18, 1377. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Bita, B.; Negut, I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics 2024, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Mfoafo, K. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications. Gels 2024, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Morelli, G.; Pescara, T.; Greco, A.; Montanucci, P.; Basta, G.; Rossi, F.; Calafiore, R.; Gambelli, A.M. Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells. Energies 2022, 16, 374. [Google Scholar] [CrossRef]
- Kantaros, A. Intellectual Property Challenges in the Age of 3D Printing: Navigating the Digital Copycat Dilemma. Appl. Sci. 2024, 14, 11448. [Google Scholar] [CrossRef]
- Yaneva, A.; Shopova, D.; Bakova, D.; Mihaylova, A.; Kasnakova, P.; Hristozova, M.; Semerdjieva, M. The Progress in Bioprinting and Its Potential Impact on Health-Related Quality of Life. Bioengineering 2023, 10, 910. [Google Scholar] [CrossRef]
- Ricci, G.; Gibelli, F.; Sirignano, A. Three-Dimensional Bioprinting of Human Organs and Tissues: Bioethical and Medico-Legal Implications Examined through a Scoping Review. Bioengineering 2023, 10, 1052. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T.; Alysandratou, E. Bioprinting and Intellectual Property: Challenges, Opportunities, and the Road Ahead. Bioengineering 2025, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Lategan, L.O.K.; van der Merwe, A.F. Ethical Guidelines for Using Bioprinting for Humans. MATEC Web Conf. 2023, 388, 10005. [Google Scholar] [CrossRef]
- Lam, E.H.Y.; Yu, F.; Zhu, S.; Wang, Z. 3D Bioprinting for Next-Generation Personalized Medicine. Int. J. Mol. Sci. 2023, 24, 6357. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.A.H.; Al-Abdallah, G. Sustainable Development through Biomimicry: Enhancing Circular Economy Practices for Environmental Sustainability. Sustain. Dev. 2024, 32, 6045–6056. [Google Scholar] [CrossRef]
- Sztankovics, D.; Moldvai, D.; Petővári, G.; Gelencsér, R.; Krencz, I.; Raffay, R.; Dankó, T.; Sebestyén, A. 3D Bioprinting and the Revolution in Experimental Cancer Model Systems-A Review of Developing New Models and Experiences with in Vitro 3D Bioprinted Breast Cancer Tissue-Mimetic Structures. Pathol. Oncol. Res. 2023, 29, 1610996. [Google Scholar] [CrossRef]
- Gokcekuyu, Y.; Ekinci, F.; Guzel, M.S.; Acici, K.; Aydin, S.; Asuroglu, T. Artificial Intelligence in Biomaterials: A Comprehensive Review. Appl. Sci. 2024, 14, 6590. [Google Scholar] [CrossRef]
- Al-Zyoud, W.; Haddadin, D.; Hasan, S.A.; Jaradat, H.; Kanoun, O. Biocompatibility Testing for Implants: A Novel Tool for Selection and Characterization. Materials 2023, 16, 6881. [Google Scholar] [CrossRef]
- Suzuki, H.; Imajo, Y.; Funaba, M.; Ikeda, H.; Nishida, N.; Sakai, T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int. J. Mol. Sci. 2023, 24, 2528. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, B.; Hu, K.; Yuan, B.; Sun, X.; Song, X.; Tang, Z.; Lin, H.; Zhu, X.; Zheng, Y.; et al. Evidence-Based Biomaterials Research. Bioact. Mater. 2022, 15, 495–503. [Google Scholar] [CrossRef]
- Machello, C.; Bazli, M.; Rajabipour, A.; Rad, H.M.; Arashpour, M.; Hadigheh, A. Using Machine Learning to Predict the Long-Term Performance of Fibre-Reinforced Polymer Structures: A State-of-the-Art Review. Constr. Build. Mater. 2023, 408, 133692. [Google Scholar] [CrossRef]
- Duminis, T.; Heljak, M.; Święszkowski, W.; Ereskovsky, A.; Dziedzic, I.; Nowicki, M.; Pajewska-Szmyt, M.; Voronkina, A.; Bornstein, S.R.; Ehrlich, H. On the Mechanical Properties of Microfibre-Based 3D Chitinous Scaffolds from Selected Verongiida Sponges. Mar. Drugs 2023, 21, 463. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, A.; Broeckhoven, C. Functional Synergy of Biomimicry and Additive Manufacturing: Toward a Bio-Enhanced Engineering Approach. In Biomimicry for Materials, Design and Habitats; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–289. [Google Scholar]
- Dehghan, S.; Sattarpanah Karganroudi, S.; Echchakoui, S.; Barka, N. The Integration of Additive Manufacturing into Industry 4.0 and Industry 5.0: A Bibliometric Analysis (Trends, Opportunities, and Challenges). Machines 2025, 13, 62. [Google Scholar] [CrossRef]
- Terziyan, V.; Kaikova, O. Hybrid Additive Manufacturing: A Convergence of Physical, Digital, and Social Realms Driven by Generative AI. In Advances and Trends in Artificial Intelligence. Theory and Applications; Springer Nature: Singapore, 2024; pp. 427–441. ISBN 9789819746767. [Google Scholar]
- Kortman, V.G.; Mazzolai, B.; Sakes, A.; Jovanova, J. Perspectives on Intelligence in Soft Robotics. Adv. Intell. Syst. 2024, 7, 2400294. [Google Scholar] [CrossRef]
- Tejada, J.C.; Toro-Ossaba, A.; López-Gonzalez, A.; Hernandez-Martinez, E.G.; Sanin-Villa, D. A Review of Multi-Robot Systems and Soft Robotics: Challenges and Opportunities. Sensors 2025, 25, 1353. [Google Scholar] [CrossRef]
- Khobragade, S.S.; Deshmukh, M.; Vyas, U.; Ingle, R.G. Innovative Approaches in Bone Tissue Engineering: Strategies for Cancer Treatment and Recovery. Int. J. Mol. Sci. 2025, 26, 3937. [Google Scholar] [CrossRef]
- Aufa, A.N.; Ismail, Z.; Zaki Hassan, M. A Review of 4D Printing of Hydrogel in Biomedical Implant Applications. Mater. Today 2023. [Google Scholar] [CrossRef]
- Lin, Z.; Song, Y. Design Research on Climate-Responsive Building Skins from Prototype and Case Study Perspectives. In Advanced Materials in Smart Building Skins for Sustainability; Springer International Publishing: Cham, Switzerland, 2023; pp. 257–275. ISBN 9783031096945. [Google Scholar]
- Al-Shatnawi, Z.; Hachem-Vermette, C.; Lacasse, M.; Ziaeemehr, B. Advances in Cold-Climate-Responsive Building Envelope Design: A Comprehensive Review. Buildings 2024, 14, 3486. [Google Scholar] [CrossRef]
Aspect | Nature-Inspired Model | Additive Manufacturing Implementation | Current Challenges |
---|---|---|---|
Geometry | Honeycomb (hexagonal), lattice-like trabecular structures, gyroid surfaces (as found in corals), fractal branching (as seen in plants) | Lattice structures, gyroid geometries, fractal-inspired branching using 3D printing | Complexity in multiscale replication; geometric fidelity at micro/nanoscales |
Material Composition | Hierarchical materials (e.g., bone, spider silk, seashells) | Gradient composites, metamaterials, bio-based polymers | Limited material versatility; lack of multifunctionality (e.g., self-healing, tunability, responsiveness) |
Functionality | Adaptive systems (e.g., muscle contraction, self-healing skin) | 4D printing with shape-memory polymers, stimuli-responsive hydrogels | Limited control over dynamic behavior; challenges in encoding functional responses |
Material Limitations | Bio-composites evolved for strength, lightness, adaptability | Use of thermoplastics, resins, metals, experimental composites | Insufficient mimicry of biological versatility; scalability of advanced materials |
Printing Resolution | Nano- to macroscale organization (e.g., lotus leaf, insect wings) | Micro-extrusion, two-photon polymerization, direct laser writing | Resolution constraints hinder replication of fine biological features |
Functional Integration | Environmentally responsive and self-modifying biological systems | Embedded sensors, smart materials, hybrid structures | Difficulties in multifunctionality, stability, and long-term reliability |
Approach | Biological Inspiration | Enabling Technology | Key Functionalities | Potential Applications |
---|---|---|---|---|
4D Printing | Plant tropisms, adaptive skin | Shape memory polymers, hydrogels, composites | Shape change over time, responsiveness to stimuli | Smart implants, responsive wearables, adaptive architecture |
Soft Robotics | Octopus limbs, worm locomotion | Elastomers, pneumatic/hydraulic actuators | Flexible movement, dexterity, safe interaction | Minimally invasive surgery, soft grippers, disaster robotics |
Self-Morphing Structures | Mimosa pudica, metamorphosis, seed dispersal | Shape memory alloys, programmable hydrogels | Complex transformations, self-assembly, deployability | Biomedical devices, aerospace structures, adaptive robotics |
Challenge Area | Description | Implications for BAM | Current Solutions/Research |
---|---|---|---|
Material Science Bottlenecks | Limited availability of bioequivalent smart materials that can mimic the dynamic, multifunctional properties of biological tissues. | Inability to replicate the full range of natural material properties (e.g., self-healing, adaptability, responsiveness). Affects functionality and real-world applications. | Research on bio-based polymers, hydrogels, shape-memory alloys, and bioinspired composites. |
Scalability Issues | Difficulty in efficiently reproducing complex, large-scale biomimetic structures with high precision and consistency. | Loss of resolution, material inconsistencies, and structural integrity issues when scaling up 3D printing processes. Limits large-scale applications in industries like construction, healthcare, and aerospace. | Development of high-resolution 3D printing technologies, optimization of printing materials, and post-processing techniques. |
True Functional Mimicry vs. Esthetic Mimicry | Esthetic mimicry focuses on replicating appearance, while true functional mimicry involves replicating natural systems’ full range of behaviors. | Esthetic mimicry fails to achieve the functional capabilities of natural systems, such as mechanical strength, flexibility, and adaptability. Limits the real-world performance of BAM products. | Interdisciplinary research combining material science, biology, and engineering to replicate natural functionalities. |
Future Perspective | Description | Implications for BAM | Current Research/Trends |
---|---|---|---|
Machine Learning and Generative Design | Computational models and algorithms optimize designs based on biological principles. | Enables rapid iteration, material optimization, and performance prediction with minimal human input. | ML for predicting material behavior, generative algorithms for lattice and gyroid design. |
Living Materials and Hybrid Systems | Integration of living cells with synthetic materials to enable responsive, self-healing behaviors. | Bridges biology and engineering, creating materials that evolve, adapt, or integrate with living systems. | Biohybrid printing, tissue scaffolds, plant-inspired architectures. |
Ethical, Ecological and Sustainability Considerations | Environmental impact, biocompatibility, lifecycle assessment, and bioethics in design. | Promotes long-term viability, social acceptance, and regulatory compliance. | Green materials, ethical frameworks, circular manufacturing models. |
Standardization and Regulation | Development of protocols and metrics for BAM validation and scalability. | Facilitates industrial adoption, ensures reproducibility, and enhances trust in BAM-based solutions. | ISO frameworks, biomimicry scoring, reproducibility studies. |
Interdisciplinary Collaboration | Integration of expertise across biology, engineering, design, and computational science. | Essential for solving complex problems and translating research into real-world applications. | Joint research hubs, hybrid training programs, cross-disciplinary design platforms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantaros, A.; Ganetsos, T.; Pallis, E.; Papoutsidakis, M. Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity. Biomimetics 2025, 10, 453. https://doi.org/10.3390/biomimetics10070453
Kantaros A, Ganetsos T, Pallis E, Papoutsidakis M. Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity. Biomimetics. 2025; 10(7):453. https://doi.org/10.3390/biomimetics10070453
Chicago/Turabian StyleKantaros, Antreas, Theodore Ganetsos, Evangelos Pallis, and Michail Papoutsidakis. 2025. "Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity" Biomimetics 10, no. 7: 453. https://doi.org/10.3390/biomimetics10070453
APA StyleKantaros, A., Ganetsos, T., Pallis, E., & Papoutsidakis, M. (2025). Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature’s Simplicity. Biomimetics, 10(7), 453. https://doi.org/10.3390/biomimetics10070453