Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,834)

Search Parameters:
Keywords = biological roles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 676 KiB  
Article
Steady Quiet Asthma Without Biologics: One-Year Outcomes of Single-Inhaler Triple Therapy for Severe Asthma with Small Airway Dysfunction
by Vitaliano Nicola Quaranta, Francesca Montagnolo, Andrea Portacci, Silvano Dragonieri, Maria Granito, Gennaro Rociola, Santina Ferrulli, Leonardo Maselli and Giovanna Elisiana Carpagnano
J. Clin. Med. 2025, 14(15), 5602; https://doi.org/10.3390/jcm14155602 (registering DOI) - 7 Aug 2025
Abstract
Background: Small airway dysfunction (SAD) plays a critical role in the management of severe asthma, particularly in patients at risk of requiring biological therapies (BTs). Short-term studies have shown that switching to single-inhaler triple therapy (SITT) with extrafine beclomethasone–formoterol–glycopyrronium improves outcomes and [...] Read more.
Background: Small airway dysfunction (SAD) plays a critical role in the management of severe asthma, particularly in patients at risk of requiring biological therapies (BTs). Short-term studies have shown that switching to single-inhaler triple therapy (SITT) with extrafine beclomethasone–formoterol–glycopyrronium improves outcomes and helps achieve quiet asthma, a state marked by symptom control, no exacerbations or oral steroids, reduced inflammation, and better small airway function. This study investigated whether, over one year, patients could maintain this state as Steady Quiet Asthma (SQA) and whether baseline measures could predict this sustained response. Methods: Twenty-six patients with severe asthma and SAD were transitioned from open triple-inhaler therapy to a closed, single-inhaler triple therapy containing extrafine beclomethasone–formoterol–glycopyrronium. Assessments at baseline (T0) and at one-year follow-up (T12) included clinical evaluations, spirometry, and impulse oscillometry, with a focus on Fres as a predictor for the need for BT. When prescribed, biologic therapies included mepolizumab, benralizumab, and dupilumab. Results: Of the 26 patients, 9 (34.6%) achieved SQA and did not require biologic therapy at the one-year follow-up, while 17 patients (65.4%) initiated biologic treatment. At T0, patients who required biologics had significantly higher median Fres (21 (19.47; 24.58) vs. 17.61 (15.82; 20.63); p = 0.049) compared to those who remained biologic-free. They also exhibited higher residual volume to total lung capacity ratio (%RV/TLC) values and lower forced expiratory volume in one second/forced vital capacity ratios (FEV1/FVC). At T12, patients spared from BT showed significant reductions in Fres (p = 0.014) and improvements in small airway function (difference in airway resistance between 5 Hz and 20 Hz (R5–20), forced expiratory flow between 25% and 75% of FVC (%FEF25–75), and better asthma control (ACT). In contrast, patients on BT demonstrated less favorable changes in these parameters. Conclusions: Baseline Fres, FEV1/FVC ratio, and %FEV25–75 are valuable predictors of achieving Steady Quiet Asthma (SQA) and sparing biologic therapy. These findings support the use of SITT in severe asthma and highlight the importance of early functional assessments to guide personalized management. Full article
24 pages, 4458 KiB  
Review
Selenium-Enriched Microorganisms: Metabolism, Production, and Applications
by Lin Luo, Xue Hou, Dandan Yi, Guangai Deng, Zhiyong Wang and Mu Peng
Microorganisms 2025, 13(8), 1849; https://doi.org/10.3390/microorganisms13081849 (registering DOI) - 7 Aug 2025
Abstract
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms [...] Read more.
Microorganisms, as abundant biological resources, offer significant potential in the development of selenium-enrichment technologies. Selenium-enriched microorganisms not only absorb, reduce, and accumulate selenium efficiently but also produce various selenium compounds without relying on synthetic chemical processes. In particular, nano-selenium produced by these microorganisms during cultivation has garnered attention due to its unique physicochemical properties and biological activity, making it a promising raw material for functional foods and pharmaceutical products. This paper reviews selenium-enriched microorganisms, focusing on their classification, selenium metabolism, and transformation mechanisms. It explores how selenium is absorbed, reduced, and transformed within microbial cells, analyzing the biochemical processes by which inorganic selenium is converted into organic and nano-selenium forms. Finally, the broad applications of selenium-enriched microbial products in food, medicine, and agriculture are explored, including their roles in selenium-rich foods, nano-selenium materials, and disease prevention and treatment. Full article
(This article belongs to the Special Issue Exploring the Diversity of Microbial Applications)
Show Figures

Figure 1

13 pages, 7865 KiB  
Article
FlbD: A Regulator of Hyphal Growth, Stress Resistance, Pathogenicity, and Chlamydospore Production in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Yu Zhang, Shun-Qiao Peng, Wang-Ting He, Fei-Fei Gao, Qian-Fei Shi and Guo-Hong Li
Microorganisms 2025, 13(8), 1847; https://doi.org/10.3390/microorganisms13081847 (registering DOI) - 7 Aug 2025
Abstract
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In [...] Read more.
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In this study, we analyzed the physicochemical properties and conserved domains of AfFlbD and constructed the AfFlbD knockout strains (ΔAfFlbD) using homologous recombination. Our functional analysis revealed that the mutants produced more cottony aerial mycelia at the colony center. Additionally, the cell length of the mutants was reduced, indicating that AfFlbD regulates cell morphology in A. flagrans. Chemical stress tolerance assays of the mutants demonstrated reduced sensitivity to NaCl and sorbitol stresses but increased sensitivity to SDS and H2O2 stresses compared to the WT strain. Interestingly, the mutants spontaneously produced traps, and its pathogenicity to nematodes was significantly enhanced, suggesting that AfFlbD negatively regulates the pathogenicity of A. flagrans. Furthermore, the number of chlamydospores produced by the mutants was markedly reduced, though their morphology remained unchanged. Fluorescence localization analysis showed that AfFlbD localizes to the nuclei of chlamydospores, thereby regulating chlamydospore formation. This study provides important theoretical insights into the biological function of the FlbD transcription factor and offers new perspectives for the application of nematode-trapping fungi as a method of controlling plant-parasitic nematodes. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology, 2nd Edition)
Show Figures

Figure 1

16 pages, 1826 KiB  
Article
Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
by Rosanna Guarnieri, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato and Viviana Caputo
Appl. Sci. 2025, 15(15), 8749; https://doi.org/10.3390/app15158749 (registering DOI) - 7 Aug 2025
Abstract
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp [...] Read more.
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs)—show promise for regenerative dentistry due to their multilineage differentiation potential. Epigenetic regulation, particularly DNA methylation, is hypothesized to underpin their distinct regenerative capacities. This study reanalyzed publicly available DNA methylation data generated with Illumina Infinium HumanMethylation450 BeadChip arrays (450K arrays) from DPSCs, PDLSCs, and DFPCs. High-confidence CpG sites were selected based on detection p-values, probe variance, and genomic annotation. Principal Component Analysis (PCA) and hierarchical clustering identified distinct methylation profiles. Functional enrichment analyses highlighted biological processes and pathways associated with specific methylation clusters. Noncoding RNA analysis was integrated to construct regulatory networks linking DNA methylation patterns with key developmental genes. Distinct epigenetic signatures were identified for DPSCs, PDLSCs, and DFPCs, characterized by differential methylation across specific genomic contexts. Functional enrichment revealed pathways involved in odontogenesis, osteogenesis, and neurodevelopment. Network analysis identified central regulatory nodes—including genes, such as PAX6, FOXC2, NR2F2, SALL1, BMP7, and JAG1—highlighting their roles in tooth development. Several noncoding RNAs were also identified, sharing promoter methylation patterns with developmental genes and being implicated in regulatory networks associated with stem cell differentiation and tissue-specific function. Altogether, DNA methylation profiling revealed that distinct epigenetic landscapes underlie the developmental identity and differentiation potential of dental-derived mesenchymal stem cells. This integrative analysis highlights the relevance of noncoding RNAs and regulatory networks, suggesting novel biomarkers and potential therapeutic targets in regenerative dentistry and orthodontics. Full article
Show Figures

Figure 1

21 pages, 609 KiB  
Article
Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation
by Laia Fontana-Bria, Carla Quesada, Ángel Gálvez and Tatiana Pina
Educ. Sci. 2025, 15(8), 1015; https://doi.org/10.3390/educsci15081015 - 7 Aug 2025
Abstract
This study analyses the effectiveness of a contextualized teaching and learning sequence (TLS) based on forensic entomology (FE) to disprove the idea of spontaneous generation (SG) among students enrolled in the Higher Vocational Education and Training (VET) Cycle in Pathological Anatomy and Cytodiagnosis. [...] Read more.
This study analyses the effectiveness of a contextualized teaching and learning sequence (TLS) based on forensic entomology (FE) to disprove the idea of spontaneous generation (SG) among students enrolled in the Higher Vocational Education and Training (VET) Cycle in Pathological Anatomy and Cytodiagnosis. Through an inquiry- and project-based learning approach, students replicate a version of Francesco Redi’s historical experiments, enabling them to engage with core scientific concepts such as the metamorphic cycle of insects and the role of entomology in forensic science. The research adopts a semiquantitative and exploratory design. It investigates: (1) whether students’ prior knowledge about FE and related biological processes is sufficient to refute SG; (2) to what extent this knowledge is influenced by their previous academic background and gender; and (3) whether a contextualized TLS can significantly enhance their conceptual understanding. The results reveal that most students begin with limited initial knowledge of FE and multiple misconceptions related to SG, irrespective of their previous study. Gender differences were observed at baseline, with women showing lower prior knowledge, but these differences disappeared after the intervention. The post-intervention data demonstrate a significant improvement in student’s ability to reject SG and explain biological processes coherently. The study highlights the importance of integrating entomology into health-related VET programs, both as a means to promote scientific literacy and correct misconceptions and as a pedagogical tool to foster critical thinking. It also highlights the potential and historically grounded methodologies to equalize learning outcomes and strengthen the scientific preparation of future healthcare professionals. Full article
Show Figures

Figure 1

23 pages, 4484 KiB  
Article
Mechanistic Study of NT5E in Reg3β-Induced Macrophage Polarization and Cooperation with Plasma Proteins in Myocarditis Injury and Repair
by Shichao Zhang, Peirou Zhou, Fanfan Zhu, Yingying Wang, Xuesong Wang, Jingwen Chen, Yumeng Li and Xiaoyi Shao
Biology 2025, 14(8), 1017; https://doi.org/10.3390/biology14081017 - 7 Aug 2025
Abstract
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed [...] Read more.
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed using RNA sequencing, Western blotting, and quantitative polymerase chain reaction. Mendelian randomization was employed to identify NT5E and various plasma proteins as potential therapeutic targets for myocarditis. Mediation analysis, enrichment analysis, protein–protein interaction network analysis, drug prediction, molecular docking, and single-cell RNA sequencing were integrated to further evaluate the biological functions and pharmacological potential of the identified targets. Finally, phenome-wide association studies were conducted to assess the safety of targeting these proteins. Results: NT5E expression was elevated in Reg3β-stimulated M2 macrophages. The expression of Arg-1, a marker of M2 macrophages, decreased upon NT5E knockdown, suggesting that NT5E is involved in the Reg3β-mediated polarization of macrophages to the M2 phenotype. Mendelian randomization analysis identified NT5E and 80 other plasma proteins as being causally associated with myocarditis. Mediation analysis revealed 12 immune-cell types were mediators of the effects of plasma protein on myocarditis progression. Drug prediction identified candidates such as ICN 1229 and chrysin, which showed strong binding affinities in molecular docking analyses. These findings may contribute to the development of effective treatments for myocarditis. Conclusions: NT5E plays a dual role in Reg3β-induced macrophage polarization and in interacting with plasma proteins that influence the onset and progression of myocarditis through immune-cell pathways. Full article
Show Figures

Figure 1

17 pages, 241 KiB  
Article
Creating and Validating a Questionnaire on Dentists’ Perceptions Regarding Periodontics–Prosthodontics Interdisciplinary Clinical Practice
by Gabriel Rotundu, Dragos Ioan Virvescu, Zinovia Surlari, Dana Gabriela Budala, Florin Razvan Curca, Carina Balcos, Cristian Cojocaru, Vlad Constantin, Razvan Gradinariu and Ionut Luchian
Clin. Pract. 2025, 15(8), 149; https://doi.org/10.3390/clinpract15080149 - 7 Aug 2025
Abstract
Background: The interaction between prosthetic restorations and periodontal health is a critical factor for the long-term success of dental treatments. A biologically compatible prosthetic design supports periodontal stability, whereas neglecting periodontal principles can compromise treatment outcomes. This study aimed to validate a questionnaire [...] Read more.
Background: The interaction between prosthetic restorations and periodontal health is a critical factor for the long-term success of dental treatments. A biologically compatible prosthetic design supports periodontal stability, whereas neglecting periodontal principles can compromise treatment outcomes. This study aimed to validate a questionnaire designed to assess dentists’ perceptions regarding the influence of prosthetic restorations on the periodontium. Material and Methods: An observational cross-sectional study was conducted using a self-administered questionnaire distributed to licensed dentists across Romania. The questionnaire underwent expert review, pilot testing (n = 50), and statistical validation, including the Content Validity Index (CVI), Cronbach’s alpha for internal consistency, and Exploratory Factor Analysis (EFA) using Principal Component Analysis (PCA) with Varimax rotation. The final sample included 39 respondents. Data was analyzed using SPSS v26.0. Results: The questionnaire demonstrated excellent internal consistency (Cronbach’s alpha = 0.900; standardized alpha = 0.917). Most items had corrected item-total correlations > 0.40. EFA revealed eight coherent factors explaining 81.68% of total variance, with high communalities (0.549–0.966), strong Kaiser–Meyer–Olkin test (KMO) values, and significant Bartlett’s test values, confirming construct validity. Descriptive statistics showed predominantly positive attitudes among dentists regarding the periodontal considerations in prosthetic treatment. The highest-rated items emphasized oral hygiene, periodontal stability, and biological adaptation of restorations. Lower scores were associated with routine use of periodontal indices and recognition of failures due to insufficient evaluation. Conclusions: The validated instrument proved reliable and demonstrated strong psychometric properties in this exploratory validation, supporting its use in research and education. Romanian dentists demonstrated a favorable perception of the role of periodontal health in prosthetic success. This tool can inform curriculum development and interdisciplinary clinical protocols in prosthodontics and periodontology. Full article
31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

15 pages, 771 KiB  
Review
Trichoderma: Dual Roles in Biocontrol and Plant Growth Promotion
by Xiaoyan Chen, Yuntong Lu, Xing Liu, Yunying Gu and Fei Li
Microorganisms 2025, 13(8), 1840; https://doi.org/10.3390/microorganisms13081840 - 7 Aug 2025
Abstract
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various [...] Read more.
The genus Trichoderma plays a pivotal role in sustainable agriculture through its multifaceted contributions to plant health and productivity. This review explores Trichoderma’s biological functions, including its roles as a biocontrol agent, plant growth promoter, and stress resilience enhancer. By producing various enzymes, secondary metabolites, and volatile organic compounds, Trichoderma effectively suppresses plant pathogens, promotes root development, and primes plant immune responses. This review details the evolutionary adaptations of Trichoderma, which has transitioned from saprotrophism to mycoparasitism and established beneficial symbiotic relationships with plants. It also highlights the ecological versatility of Trichoderma in colonizing plant roots and improving soil health, while emphasizing its role in mitigating both biotic and abiotic stressors. With increasing recognition as a biostimulant and biocontrol agent, Trichoderma has become a key player in reducing chemical inputs and advancing eco-friendly farming practices. This review addresses challenges such as strain selection, formulation stability, and regulatory hurdles and concludes by advocating for continued research to optimize Trichoderma’s applications in addressing climate change, enhancing food security, and promoting a sustainable agricultural future. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
Show Figures

Figure 1

22 pages, 1479 KiB  
Article
Synthesis and Biological Evaluation of β-Phenylalanine Derivatives Containing Sulphonamide and Azole Moieties as Antiproliferative Candidates in Lung Cancer Models
by Vytautas Mickevičius, Kazimieras Anusevičius, Birutė Sapijanskaitė-Banevič, Ilona Jonuškienė, Linas Kapočius, Birutė Grybaitė, Ramunė Grigalevičiūtė and Povilas Kavaliauskas
Molecules 2025, 30(15), 3303; https://doi.org/10.3390/molecules30153303 - 7 Aug 2025
Abstract
In this study, a series of novel β-phenylalanine derivatives were synthesised and evaluated for their anticancer activity. The 3-(4-methylbenzene-1-sulfonamido)-3-phenylpropanoic acid (2) was prepared using β-phenylalanine as a core scaffold. The β-amino acid derivative 2 was converted to the [...] Read more.
In this study, a series of novel β-phenylalanine derivatives were synthesised and evaluated for their anticancer activity. The 3-(4-methylbenzene-1-sulfonamido)-3-phenylpropanoic acid (2) was prepared using β-phenylalanine as a core scaffold. The β-amino acid derivative 2 was converted to the corresponding hydrazide 4, which enabled the development of structurally diverse heterocyclic derivatives including pyrrole 5, pyrazole 6, thiadiazole 8, oxadiazole 11, triazoles 9 and 12 with Schiff base analogues 13 and series1,2,4-triazolo [3,4-b][1,3,4]thiadiazines 14. These modifications were designed to enhance chemical stability, solubility, and biological activity. All compounds were initially screened for cytotoxicity against the A549 human lung adenocarcinoma cell line, identifying N-[3-(3,5-dimethyl-1H-pyrazol-1-yl)-3-oxo-1-phenylpropyl]-4-methylbenzenesulfonamide (5) and (E)-N-{2-[4-[(4-chlorobenzylidene)amino]-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]-1-phenylethyl}-4-methylbenzenesulfonamide (13b) as the most active. The two lead candidates were further evaluated in H69 and H69AR small cell lung cancer lines to assess activity in drug-sensitive and multidrug-resistant models. Schiff base 13b containing a 4-chlorophenyl moiety, retained potent antiproliferative activity in both H69 and H69AR cells, comparable to cisplatin, while compound 5 lost efficacy in the resistant phenotype. These findings suggest Schiff base derivative 13b may overcome drug resistance mechanisms, a limitation commonly encountered with standard chemotherapeutics such as doxorubicin. These results demonstrate the potential role of β-phenylalanine derivatives, azole-containing sulphonamides, as promising scaffolds for the development of novel anticancer agents, particularly in the context of lung cancer and drug-resistant tumours. Full article
Show Figures

Graphical abstract

13 pages, 1201 KiB  
Article
Relationship Between Prostaglandin and Interleukin Concentrations in Seminal Fluid and Their Influence on the Rate of Fertilization in Men Undergoing ICSI
by Houda Amor, Fatina W. Dahadhah, Peter Michael Jankowski, Rami Al Nasser, Lisa Jung, Ingolf Juhasz-Böss, Erich Franz Solomayer and Mohamad Eid Hammadeh
Int. J. Mol. Sci. 2025, 26(15), 7627; https://doi.org/10.3390/ijms26157627 - 6 Aug 2025
Abstract
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, [...] Read more.
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, in general and after intracytoplasmic sperm injection (ICSI) procedures. This study aimed to investigate the possible influence of interleukins IL-17 and IL-18, and prostaglandins PGE2 and PGF2α on male infertility. Semen samples were collected from 58 males who underwent the ICSI procedure. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IL-17, IL-18, PGE2, and PGF2α, and these concentrations were then correlated with semen parameters and the rate of fertilization. Furthermore, the chromatin integrity of the sperm was evaluated with an Acridine Orange (AO) assay. The results showed an inversely proportional relationship between the AO binding intensity and fertilization rate (r = −0.394; p ≤ 0.002). Furthermore, a negative correlation was observed between the IL-18 concentration and positive AO (p ≤ 0.021). Moreover, the IL-18 concentration was positively correlated with the fertilization rate (p ≤ 0.05). In contrast, IL-17 did not significantly correlate with any semen parameters or with the fertilization rate. Seminal PGE2 levels were significantly correlated with embryo cleavage at 72 h (p ≤ 0.05). To conclude, this study revealed that denaturation of sperm nuclear deoxyribonucleic acid (DNA) contributes to low fertilization rates. In addition, this study proposed a potential role for IL-18 in fertilization. PGE2 likely influences embryo development, but further studies are needed to examine the impact of seminal PGE2 on the oocyte to fully elucidate its contribution to this complex biological process. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

17 pages, 2046 KiB  
Article
Characterization of Natural Products as Inhibitors of Shikimate Dehydrogenase from Methicillin-Resistant Staphylococcus aureus: Kinetic and Molecular Dynamics Simulations, and Biological Activity Studies
by Noé Fabián Corral-Rodríguez, Valeria Itzel Moreno-Contreras, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, Alfredo Téllez-Valencia and Claudia Avitia-Domínguez
Biomolecules 2025, 15(8), 1137; https://doi.org/10.3390/biom15081137 - 6 Aug 2025
Abstract
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible [...] Read more.
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible for the biosynthesis of chorismate from glycolysis and pentose phosphate pathway intermediates. This pathway plays a crucial role in producing aromatic amino acids, folates, ubiquinone, and other secondary metabolites in bacteria. Notably, SP is absent in humans, which makes it a specific and potential therapeutic target to explore for discovering new antibiotics against MRSA. The present study characterized in vitro and in silico natural products as inhibitors of the shikimate dehydrogenase from methicillin-resistant S. aureus (SaSDH). The results showed that, from the set of compounds studied, phloridzin, rutin, and caffeic acid were the most potent inhibitors of SaSDH, with IC50 values of 140, 160, and 240 µM, respectively. Furthermore, phloridzin showed a mixed-type inhibition mechanism, whilst rutin and caffeic acid showed non-competitive mechanisms. The structural characterization of the SaSDH–inhibitor complex indicated that these compounds interacted with amino acids from the catalytic site and formed stable complexes. In biological activity studies against MRSA, caffeic acid showed an MIC of 2.2 mg/mL. Taken together, these data encourage using these compounds as a starting point for developing new antibiotics based on natural products against MRSA. Full article
Show Figures

Figure 1

19 pages, 1680 KiB  
Article
Role of Endogenous Galectin-3 on Cell Biology of Immortalized Retinal Pigment Epithelial Cells In Vitro †
by Caspar Liesenhoff, Marlene Hillenmayer, Caroline Havertz, Arie Geerlof, Daniela Hartmann, Siegfried G. Priglinger, Claudia S. Priglinger and Andreas Ohlmann
Int. J. Mol. Sci. 2025, 26(15), 7622; https://doi.org/10.3390/ijms26157622 - 6 Aug 2025
Abstract
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, [...] Read more.
 Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we developed an immortalized human RPE cell line (ARPE-19) with a knockdown for galectin-3 expression (ARPE-19/LGALS3+/−) using a sgRNA/Cas9 all-in-one expression vector. By Western blot analysis, a reduced galectin-3 expression of approximately 48 to 60% in heterozygous ARPE-19/LGALS3+/− cells was observed when compared to native controls. Furthermore, ARPE-19/LGALS3+/− cells displayed a flattened, elongated phenotype with decreased E-cadherin as well as enhanced N-cadherin and α-smooth muscle actin mRNA expression, indicating an epithelial–mesenchymal transition of the cells. Compared to wildtype controls, ARPE-19/LGALS3+/− cells had significantly reduced metabolic activity to 86% and a substantially decreased proliferation to 73%. Furthermore, an enhanced cell adhesion and a diminished migration of immortalized galectin-3 knockdown RPE cells was observed compared to native ARPE-19 cells. Finally, by Western blot analysis, reduced pAKT, pERK1/2, and β-catenin signaling were detected in ARPE-19/LGALS3+/− cells when compared to wildtype controls. In summary, in RPE cells, endogenous galectin-3 appears to be essential for maintaining the epithelial phenotype as well as cell biological functions such as metabolism, proliferation, or migration, effects that might be mediated via a decreased activity of the AKT, ERK1/2, and β-catenin signaling pathways.  Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
16 pages, 1298 KiB  
Article
Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
by Jianzhou Shi, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao and Guirong Sun
Animals 2025, 15(15), 2300; https://doi.org/10.3390/ani15152300 - 6 Aug 2025
Abstract
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), [...] Read more.
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), we screened and validated miRNA SNPs. A SNP mutation in the miR-3528 precursor region was identified. Specific primers were designed to amplify the polymorphic fragment. Genotyping was performed for this individual SNP across the population, using the MassArray system. Association analyses were conducted between this SNP and chicken growth and body measurement traits, carcass traits, meat quality traits, and serum enzyme activities. (3) The rs14098602 (+12 bp A > G) was identified within the precursor region of gga-miR-3528. Significant associations (p < 0.05) were observed between this SNP and chicken growth traits (body weight at the age of 0 day, body weight at the age of 2 weeks, and body weight at the age of 4 weeks), carcass traits (evisceration weight), meat quality traits (subcutaneous fat rate and pectoral muscle density), and serum enzyme activities (total protein, albumin, globulin, cholinesterase, and lactate dehydrogenase). (4) These findings suggest that the polymorphism at rs14098602 may influence chicken growth, meat quality, and serum biochemical indices, through specific mechanisms. The gga-miR-3528 gene likely plays an important role in chicken development. Therefore, this SNP can serve as a molecular marker for genetic breeding and auxiliary selection of growth-related traits, facilitating the rapid establishment of elite chicken populations with superior genetic resources. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop