Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = biologic therapy sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 - 1 Aug 2025
Viewed by 215
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

23 pages, 1324 KiB  
Review
Advances and Challenges in the Management of Myelodysplastic Syndromes
by Jessica M. Stempel, Tariq Kewan and Amer M. Zeidan
Cancers 2025, 17(15), 2469; https://doi.org/10.3390/cancers17152469 - 25 Jul 2025
Viewed by 986
Abstract
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular [...] Read more.
Myelodysplastic syndromes/neoplasms (MDS) represent a biologically and clinically diverse group of myeloid malignancies marked by cytopenias, morphological dysplasia, and an inherent risk of progression to acute myeloid leukemia. Over the past two decades, the field has made significant advances in characterizing the molecular landscape of MDS, leading to refined classification systems to reflect the underlying genetic and biological diversity. In 2025, the treatment of MDS is increasingly individualized, guided by integrated clinical, cytogenetic, and molecular risk stratification tools. For lower-risk MDS, the treatment paradigm has evolved beyond erythropoiesis-stimulating agents (ESAs) with the introduction of novel effective agents such as luspatercept and imetelstat, as well as shortened schedules of hypomethylating agents (HMAs). For higher-risk disease, monotherapy with HMAs continue to be the standard of care as combination therapies of HMAs with novel agents have, to date, failed to redefine treatment paradigms. The recognition of precursor states like clonal hematopoiesis of indeterminate potential (CHIP) and the increasing use of molecular monitoring will hopefully enable earlier intervention/prevention strategies. This review provides a comprehensive overview of the current treatment approach for MDS, highlighting new classifications, prognostic tools, evolving therapeutic options, and ongoing challenges. We discuss evidence-based recommendations, treatment sequencing, and emerging clinical trials, with a focus on translating biological insights into improved outcomes for patients with MDS. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Figure 1

18 pages, 2486 KiB  
Article
The Unconventional Role of ABHD17A in Increasing the S-Palmitoylation and Antiviral Activity of IFITM1 by Downregulating ABHD16A
by Xuemeng Shi, Shuaiwu Chen, Mingyang Liu, Yali Fan, Xin Wen, Jingyi Wang, Xiaoling Li, Huimin Liu, Lin Mao, Li Yu, Yuxin Hu and Jun Xu
Biomolecules 2025, 15(7), 992; https://doi.org/10.3390/biom15070992 - 11 Jul 2025
Viewed by 387
Abstract
The broad-spectrum antiviral functions of interferon-inducible transmembrane 1 (IFITM1) rely on S-palmitoylation post-translational modification. α/β-hydrolase domain-containing 17A (ABHD17A) has been reported to be responsible for protein depalmitoylation over the past decade, but whether and how ABHD17A regulates the dynamic S-palmitoylation modification of IFITM1 [...] Read more.
The broad-spectrum antiviral functions of interferon-inducible transmembrane 1 (IFITM1) rely on S-palmitoylation post-translational modification. α/β-hydrolase domain-containing 17A (ABHD17A) has been reported to be responsible for protein depalmitoylation over the past decade, but whether and how ABHD17A regulates the dynamic S-palmitoylation modification of IFITM1 remains unknown. Here, we demonstrated that ABHD17A physically interacts with IFITM1 and increases the S-palmitoylation level of IFITM1. Sequence alignment revealed that ABHD17A lacked the DHHC motif, which is capable of catalyzing the S-palmitoylation modification. Thus, we screened multiple candidate palmitoylating and depalmitoylating enzymes that may contribute to ABHD17A-induced upregulation of IFITM1 S-palmitoylation. The recently discovered depalmitoylase ABHD16A was significantly downregulated by ABHD17A, which counteracted the palmitate-removing reactions of ABHD16A on IFITM1 and subsequently upregulated the S-palmitoylation level and antiviral activity of IFITM1. Our work therefore elucidated the unconventional role of depalmitoylase ABHD17A in elevating the S-palmitoylation modification, expanded the biological functions of ABHD17A in innate immunity, and provided potential targets for viral disease therapy. Full article
Show Figures

Figure 1

23 pages, 3242 KiB  
Hypothesis
Vaxtherapy, a Multiphase Therapeutic Protocol Approach for Longvax, the COVID-19 Vaccine-Induced Disease: Spike Persistence as the Core Culprit and Its Downstream Effects
by Jose Crespo-Barrios
Diseases 2025, 13(7), 204; https://doi.org/10.3390/diseases13070204 - 30 Jun 2025
Viewed by 2082
Abstract
Background/Objectives: Chronic illness after COVID-19 vaccination (longvax) lacks a therapeutic protocol anchored in pathophysiology. Persistent vaccine derived spike protein appears to trigger microvascular fibrin amyloid microclots, immune dysfunction, pathogen reactivation and multisystem injury. This article proposes an integrative approach, Vaxtherapy, to tackle these [...] Read more.
Background/Objectives: Chronic illness after COVID-19 vaccination (longvax) lacks a therapeutic protocol anchored in pathophysiology. Persistent vaccine derived spike protein appears to trigger microvascular fibrin amyloid microclots, immune dysfunction, pathogen reactivation and multisystem injury. This article proposes an integrative approach, Vaxtherapy, to tackle these mechanisms. Methods: A narrative synthesis of peer reviewed literature from 2021 to 2025 on spike related injury and vaccine adverse events was conducted, supplemented by clinical case series and mechanistic observations from long COVID. The findings were arranged into a four stage therapeutic sequence ordered by pathophysiological precedence. Results: Stage one aims to reopen hypoperfused tissue through oral fibrinolytics that degrade fibrin amyloid resistant microclots; stage two intends to neutralise circulating or tissue bound spike via a receptor binding domain monoclonal antibody cocktail; stage three seeks to eliminate reactivated viral or microbial reservoirs with targeted antivirals or antimicrobials once perfusion is improved; and stage four aspires to support tissue repair with mitochondrial supplements and, when indicated, cell based therapies. Omitting or reordering stages may reduce efficacy or foster resistance. Conclusions: This hypothesis driven framework outlines a biologically plausible roadmap for longvax research. By matching interventions to specific mechanisms (fibrinolysis, spike neutralisation, pathogen clearance and regeneration), it aims to guide controlled trials and compassionate pilot programs directed at durable recovery rather than chronic symptom management. Full article
Show Figures

Graphical abstract

17 pages, 549 KiB  
Review
Idiopathic Short Stature in the Genomic Era: Integrating Auxology, Endocrinology, and Emerging Genetic Insights
by Roberto Paparella, Arianna Bei, Irene Bernabei, Francesca Tarani, Marcello Niceta, Ida Pucarelli and Luigi Tarani
Children 2025, 12(7), 855; https://doi.org/10.3390/children12070855 - 27 Jun 2025
Viewed by 521
Abstract
Idiopathic short stature (ISS) represents one of the most frequent yet enigmatic conditions in pediatric endocrinology. Traditionally defined by auxological parameters in the absence of identifiable causes, ISS has long served as a diagnosis of exclusion. However, with the advent of next-generation sequencing, [...] Read more.
Idiopathic short stature (ISS) represents one of the most frequent yet enigmatic conditions in pediatric endocrinology. Traditionally defined by auxological parameters in the absence of identifiable causes, ISS has long served as a diagnosis of exclusion. However, with the advent of next-generation sequencing, our understanding of the etiological landscape has significantly evolved. Recent studies have revealed that many children previously labeled as idiopathic actually harbor monogenic variants in genes related to the growth hormone–insulin-like growth factor axis, extracellular matrix components, or growth plate signaling pathways. This review integrates auxological assessment with current knowledge on molecular diagnostics to propose a more accurate and individualized approach to short stature. We examine emerging genotype–phenotype correlations, criteria for selecting candidates for genetic testing, and implications for recombinant human growth hormone therapy. Additionally, we advocate for a shift in clinical mindset: from a descriptive to a biologically grounded framework. ISS should be regarded as a transitional label pending further endocrine and genetic clarification. Recognizing this paradigm shift will improve diagnostic accuracy, personalize treatment strategies, and ultimately enhance care for children with growth failure in the genomic era. Full article
(This article belongs to the Special Issue Pediatric Growth and Skeletal Disorders)
Show Figures

Figure 1

13 pages, 1056 KiB  
Article
Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease
by Sheng-Hsuan Lin, Ru-Jen Lin, Chia-Ling Chu, Yan-Lin Chen and Shih-Chen Fu
Int. J. Mol. Sci. 2025, 26(13), 6146; https://doi.org/10.3390/ijms26136146 - 26 Jun 2025
Viewed by 381
Abstract
Impulse control disorders (ICDs) are a debilitating non-motor symptom of Parkinson’s disease (PD), often associated with dopaminergic therapy. However, their occurrence in some patients but not others suggests additional biological mechanisms, including the gut microbiome. In this study, we analyzed 191 PD patients [...] Read more.
Impulse control disorders (ICDs) are a debilitating non-motor symptom of Parkinson’s disease (PD), often associated with dopaminergic therapy. However, their occurrence in some patients but not others suggests additional biological mechanisms, including the gut microbiome. In this study, we analyzed 191 PD patients (14 with ICDs, 177 without) using 16S rRNA gene sequencing to explore the association between gut microbiota and ICDs. No significant differences were observed in alpha or beta diversity between groups, but several bacterial taxa showed differential abundances. Notably, Methanobrevibacter and Intestinimonas butyriciproducens were enriched in ICD patients. Functional pathway analysis revealed differences in metabolic pathways, including enrichment of xenobiotic degradation and nicotinate metabolism in the ICD group. These findings suggest that specific gut microbial taxa and their associated metabolic functions may contribute to ICDs in PD, highlighting a potential non-dopaminergic mechanism and opening new avenues for microbiome-targeted intervention. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 4745 KiB  
Article
Development of Detection Method Using Dried Blood Spot with Next-Generation Sequencing and LabDroid for Gene Doping Control
by Kiyoshi Maehara, Atsushi Hirokawa, Hinata Watanabe, Norihiro Otani, Jiawei Wan, Takanaga Shirai, Tohru Takemasa, Koichi Watanabe, Takeki Nishi, Ken Sato, Suzuka Shimmura, Kieu D. M. Nguyen, Yoichiro Takahashi and Takehito Sugasawa
Int. J. Mol. Sci. 2025, 26(13), 6129; https://doi.org/10.3390/ijms26136129 - 26 Jun 2025
Viewed by 539
Abstract
In recent years, as gene therapy technology has rapidly developed, there has been growing concern that it could be misused by athletes as a means of doping. However, current testing methods for gene doping have a range of limitations and require further improvement. [...] Read more.
In recent years, as gene therapy technology has rapidly developed, there has been growing concern that it could be misused by athletes as a means of doping. However, current testing methods for gene doping have a range of limitations and require further improvement. Furthermore, significant progress has been made in the fields of blood storage, next-generation sequencing (NGS), and LabDroid (experimental robots). Against this background, this study was implemented to develop a test method for gene doping using dried blood spot (DBS), NGS, and the LabDroid ”Maholo”. As a first step, recombinant adeno-associated virus containing the human erythropoietin gene (hEPO) was injected into mice to establish a gene doping model. Subsequently, DBS was created using whole blood. Maholo was used to extract DNA from the DBS and to create DNA libraries for NGS. NGS in combination with bioinformatic analysis clearly identified DNA fragments that provided definitive evidence of gene doping in the mouse model, which were absent in the control mouse. To the best of our knowledge, this is the first attempt to use a biological model of hEPO gene doping in conjunction with Maholo, NGS, and DBS. This method should facilitate the further development of gene doping tests. Full article
(This article belongs to the Special Issue Gene Doping Control)
Show Figures

Graphical abstract

28 pages, 939 KiB  
Review
Targets for CAR Therapy in Multiple Myeloma
by Olga A. Bezborodova, Galina V. Trunova, Elena R. Nemtsova, Varvara A. Khokhlova, Julia B. Venediktova, Natalia B. Morozova, Maria S. Vorontsova, Anna D. Plyutinskaya, Elena P. Zharova, Peter V. Shegai and Andrey D. Kaprin
Int. J. Mol. Sci. 2025, 26(13), 6051; https://doi.org/10.3390/ijms26136051 - 24 Jun 2025
Viewed by 716
Abstract
Multiple myeloma (MM or plasma cell myeloma) is a heterogenous B-cell malignant tumor that typically exhibits a high recurrence rate, resistance to drugs, and molecular diversity of tumor subclones. Given the limited efficacy of standard therapy options, cellular immunotherapy featuring a chimeric antigen [...] Read more.
Multiple myeloma (MM or plasma cell myeloma) is a heterogenous B-cell malignant tumor that typically exhibits a high recurrence rate, resistance to drugs, and molecular diversity of tumor subclones. Given the limited efficacy of standard therapy options, cellular immunotherapy featuring a chimeric antigen receptor (CAR) has proven tangible potential in treatment for relapsed and refractory forms of MM. The rational choice of a tumor target which shows high selectivity, stable expression, and biological significance is key to the successful implementation of CAR therapy. This review has summarized and analyzed data from the literature on biological properties, the features of expression, and the clinical development stages of CAR cell products for MM treatment which target BCMA, GPRC5D, FcRH5, SLAMF7, CD38, CD138, TACI, APRIL, CD19, TNFR2, CD44v6, CD70, NKG2D ligands, etc. Special focus is on strategic approaches to overcoming antigenic escape, such as multi-specific CAR constructs, logical activation sequences, and controlled safety systems. The analysis underscores the need for integrating the molecular selection of targets with cutting-edge bioengineering solutions as a key trend for raising the efficacy, stability, and safety of cellular therapy in the case of MM. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Graphical abstract

18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 898
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

19 pages, 24469 KiB  
Article
Beyond Transposons: TIGD1 as a Pan-Cancer Biomarker and Immune Modulator
by Merve Gulsen Bal Albayrak, Tuğcan Korak, Gurler Akpinar and Murat Kasap
Genes 2025, 16(6), 674; https://doi.org/10.3390/genes16060674 - 30 May 2025
Viewed by 747
Abstract
Background/ObjectivesTIGD1 (Trigger Transposable Element Derived 1) is a recently identified oncogene with largely unexplored biological functions. Emerging evidence suggests its involvement in multiple cellular processes across cancer types. This study aimed to perform a comprehensive pan-cancer analysis of TIGD1 to evaluate [...] Read more.
Background/ObjectivesTIGD1 (Trigger Transposable Element Derived 1) is a recently identified oncogene with largely unexplored biological functions. Emerging evidence suggests its involvement in multiple cellular processes across cancer types. This study aimed to perform a comprehensive pan-cancer analysis of TIGD1 to evaluate its expression patterns, diagnostic utility, prognostic value, and association with immunotherapy response and drug resistance. Methods: Transcriptomic and clinical data from TCGA and GTEx were analyzed using various bioinformatic tools. Expression profiling, survival analysis, immune correlation studies, gene set enrichment, single-cell sequencing, and drug sensitivity assessments were performed. Results: TIGD1 was found to be significantly upregulated in various tumor types, with notably high expression in colon adenocarcinoma. Elevated TIGD1 expression was associated with poor prognosis in several cancers. TIGD1 levels correlated with key features of the tumor immune microenvironment, including immune checkpoint gene expression, TMB, and MSI, suggesting a role in modulating anti-tumor immunity. GSEA and single-cell analyses implicated TIGD1 in oncogenic signaling pathways. Furthermore, high TIGD1 expression was linked to resistance to several therapeutic agents, including Zoledronate, Dasatinib, and BLU-667. Conclusions: TIGD1 may serve as a promising diagnostic and prognostic biomarker, particularly in colon, gastric, liver, and lung cancers. Its strong associations with immune modulation and therapy resistance highlight its potential as a novel target for precision oncology and immunotherapeutic intervention. Full article
Show Figures

Figure 1

24 pages, 742 KiB  
Review
Molecular Biomarkers of Glioma
by Punsasi Rajakaruna, Stella Rios, Hana Elnahas, Ashley Villanueva, David Uribe, Sophia Leslie, Walaa A. Abbas, Larissa Barroso, Stephanie Oyervides, Michael Persans, Wendy Innis-Whitehouse and Megan Keniry
Biomedicines 2025, 13(6), 1298; https://doi.org/10.3390/biomedicines13061298 - 26 May 2025
Viewed by 1501
Abstract
In this review, we discuss how mutations in glioma are associated with prognosis and treatment efficacy. A fascinating characteristic of glioma and all cancers is that while common growth and developmental pathways are altered, the characteristic mutations are distinct depending on the specific [...] Read more.
In this review, we discuss how mutations in glioma are associated with prognosis and treatment efficacy. A fascinating characteristic of glioma and all cancers is that while common growth and developmental pathways are altered, the characteristic mutations are distinct depending on the specific type of tumor with concomitant prognoses. Next-generation sequencing, precision medicine, and artificial intelligence are boosting the employment of molecular biomarkers in cancer diagnosis and treatment. Understanding the biological underpinnings of distinct mutations on critical signaling pathways is crucial for developing novel therapies for glioma. Full article
(This article belongs to the Special Issue Molecular Biomarkers of Tumors: Advancing Genetic Studies)
Show Figures

Graphical abstract

18 pages, 1692 KiB  
Review
Unraveling Homologous Recombination Deficiency in Ovarian Cancer: A Review of Currently Available Testing Platforms
by Nicola Marconato, Orazio De Tommasi, Dino Paladin, Diego Boscarino, Giulia Spagnol, Carlo Saccardi, Tiziano Maggino, Roberto Tozzi, Marco Noventa and Matteo Marchetti
Cancers 2025, 17(11), 1771; https://doi.org/10.3390/cancers17111771 - 25 May 2025
Viewed by 1253
Abstract
Homologous recombination deficiency (HRD) is a key biomarker associated with increased sensitivity to PARP inhibitors (PARPi) in advanced epithelial ovarian cancer. Accurate identification of HRD status is essential for selecting patients most likely to benefit from these therapies. Current diagnostic approaches combine sequencing [...] Read more.
Homologous recombination deficiency (HRD) is a key biomarker associated with increased sensitivity to PARP inhibitors (PARPi) in advanced epithelial ovarian cancer. Accurate identification of HRD status is essential for selecting patients most likely to benefit from these therapies. Current diagnostic approaches combine sequencing to detect mutations in homologous recombination repair genes—particularly BRCA1 and BRCA2—with genome-wide analysis of structural genomic alterations indicative of HRD. This review briefly outlines the biological basis of HRD and its clinical significance and then focuses on currently available assays for HRD assessment. We compare their molecular strategies, including the use of targeted gene panels and genomic instability metrics such as loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions. The review also highlights the strengths and limitations of each platform and discusses their role in guiding clinical decision-making. Challenges related to dynamic tumor evolution and the interpretation of HRD status in recurrent disease settings are also addressed. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 1115 KiB  
Article
Real-World Analysis of HRD Assay Variability in High-Grade Serous Ovarian Cancer: Impacts of BRCA1/2 Mutation Subtypes on HRD Assessment
by Giovanni Luca Scaglione, Valentina Lombardo, Maurizio Polano, Giuseppa Scandurra, Angela Pettinato, Corrado Giunta, Rosario Iemmolo, Paolo Scollo and Ettore D. Capoluongo
Biomolecules 2025, 15(5), 745; https://doi.org/10.3390/biom15050745 - 21 May 2025
Viewed by 1073
Abstract
The HRD (Homologous Recombination Deficiency) test is considered a genomic alteration useful for guiding therapeutic decisions in patients with ovarian cancer. Some commercial and in house alternative “academic” tests are available. Recent findings indicate that not all BRCA1/2 mutations determine the magnitude of [...] Read more.
The HRD (Homologous Recombination Deficiency) test is considered a genomic alteration useful for guiding therapeutic decisions in patients with ovarian cancer. Some commercial and in house alternative “academic” tests are available. Recent findings indicate that not all BRCA1/2 mutations determine the magnitude of HRD and that some patients carrying BRCA1/2 mutations may exhibit indeterminate or even negative HRD scores. Furthermore, certain therapies (e.g., olaparib and bevacizumab) offer particularly pronounced benefits for high-grade serous ovarian cancer (HGSOC) patients harboring mutations in the DNA-binding domain (DBD) of BRCA1/2. The aim of the present study is to investigate the relationship between the HRD scores and BRCA1/2 status of 51 HGSOC patients (50 BRCA1/2 mutated and 1 wild type). The HRD status was assessed by means of shallow whole-genome sequencing and BRCA1/2 status by the NGS pipeline. We did not find a correlation between the HRD status and type of BRCA1/2 alterations. A strong correlation between the HRD score and age was found. Our paper underlines the need to introduce other biological factors within the algorithms of the HRD evaluation in order to better tailor the HRD status, harmonize the metrics of the HRD assessment, and personalize therapies. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

25 pages, 9951 KiB  
Article
Establishment of Two Novel Ovarian Tumor Cell Lines with Characteristics of Mucinous Borderline Tumors or Dedifferentiated Carcinoma—Implications for Tumor Heterogeneity and the Complex Carcinogenesis of Mucinous Tumors
by Hasibul Islam Sohel, Umme Farzana Zahan, Tohru Kiyono, Masako Ishikawa, Sultana Razia, Kosuke Kanno, Hitomi Yamashita, Shahataj Begum Sonia, Kentaro Nakayama and Satoru Kyo
Cancers 2025, 17(10), 1716; https://doi.org/10.3390/cancers17101716 - 20 May 2025
Viewed by 1592
Abstract
Background/objective: Mucinous borderline tumors of the ovary (MBOTs) are characterized by their unique histological features and intermediate malignant potential; however, the factors underlying their molecular carcinogenesis and tumor biology remain largely unknown. Developing cell lines from these tumors presents an ongoing challenge. The [...] Read more.
Background/objective: Mucinous borderline tumors of the ovary (MBOTs) are characterized by their unique histological features and intermediate malignant potential; however, the factors underlying their molecular carcinogenesis and tumor biology remain largely unknown. Developing cell lines from these tumors presents an ongoing challenge. The purpose of this study is to establish MBOT cell lines and characterize their biological features. Methods: Epithelial cells were collected and purified from surgically removed MBOT samples and then stably maintained with an extended life span by overexpressing CyclinD1/CDK4 in combination with human telomerase reverse transcriptase. The characterization of resulting cell lines was defined by morphology, growth kinetics, functional analysis, whole-exome sequencing, and tumorigenicity in mice. Results: Two independent cell lines, HMucBOT-1 and HMucBOT-2, were successfully established from the tissues of a patient with an MBOT, with the latter showing more aggressive growth capacity. In the patient-derived xenograft model, HMucBOT-1 cells retained the original morphological characteristics of the MBOT, whereas HMucBOT-2 cells displayed a transition to mucinous carcinoma accompanying undifferentiated carcinoma, suggestive of dedifferentiated carcinoma. Genetic analysis of the original tumor sample and HMucBOT-2 cells revealed shared oncogenic mutations. However, KRAS amplification and certain copy number alterations were uniquely observed in the HMucBOT-2 cells. Conclusions: The above results indicate that HMucBOT-1 can serve as a preclinical model for investigating the biological behavior of and potential targeted therapies for human MBOTs, with HMucBOT-2 serving as a valuable tool for studying the heterogeneity and genetic diversity of this tumor and explaining the potential causes of treatment failure or relapse. Full article
(This article belongs to the Special Issue Gynecologic Cancer: From Diagnosis to Treatment)
Show Figures

Figure 1

18 pages, 2559 KiB  
Article
Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing
by Hui Yin, Jiaxing Wan, Siyu Zhang, Zhuozhuo Wu, Wanshan Zhang and Yuxia Gao
Biology 2025, 14(5), 576; https://doi.org/10.3390/biology14050576 - 20 May 2025
Viewed by 636
Abstract
HLB is a severe and devastating disease affecting citrus plants, for which no cure is currently available. The pathogen CLas is an unculturable, phloem-limited α-proteobacterium associated with HLB. Phages, known for their ability to directly lyse pathogenic bacteria, have been widely recognized as [...] Read more.
HLB is a severe and devastating disease affecting citrus plants, for which no cure is currently available. The pathogen CLas is an unculturable, phloem-limited α-proteobacterium associated with HLB. Phages, known for their ability to directly lyse pathogenic bacteria, have been widely recognized as effective control agents in both medical and agricultural fields. In this study, we identified 191 prophages across 48 Liberibacter genomes using comparative genomics and phylogenetic methods. These prophages were classified into 17 distinct types, with 13 novel types, named NF1 to NF13. Diversity analysis revealed that the number of prophages per genome ranged from one to eight, with an average of four. Annotation showed that the genome sizes of NF1–NF13 ranged from 10,160 bp to 72,736 bp, with an average size of 27,616 bp, containing between 7 and 66 genes (average: 27 genes). Further functional enrichment of the sequences within 5 kb upstream and downstream of the integration site identified six main aspects, involving four core biological processes: genome structure modification, gene expression regulation, stress response activation, and metabolic pathway modulation. It is speculated that the insertion of the prophage significantly impacts the host. Six virulence factors, including carB, clpC, flhA, algW, rffG, and IlpA, were identified in the prophages. Interestingly, prophages containing carB or clpC are predominantly found in CLas, which may contribute to the global colonization of CLas. Notably, among the 35 identified Type 4 prophages, 19 were found to be active. Type 4 is the only active prophage type, making it a promising candidate for developing phage therapy against CLas. This study is significant for a deeper understanding of the diversity of Liberibacter and the interactions between prophages and their hosts. Full article
Show Figures

Figure 1

Back to TopTop