Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Used in This Study
2.2. Indentification of Prophage in Liberibacter
2.3. Genome Annotation of Prophages in Liberibacter
2.4. Phylogenetic Analysis
2.5. PCR Amplification and Prophage Cloning
3. Results
3.1. The Diversity of Prophage in Liberibacter
3.2. Genome Structure of Novel Prophage
3.3. Prophage Impact on Host Organisms
3.4. Type 4 Prophage as a Candidate Phage Against CLas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Conflicts of Interest
References
- Harper, D.; Parracho, H.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and Biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Higuera, G.; Bastías, R.; Tsertsvadze, G.; Romero, J.; Espejo, R.T. Recently Discovered Vibrio Anguillarum Phages Can Protect against Experimentally Induced Vibriosis in Atlantic Salmon, Salmo Salar. Aquaculture 2013, 392, 128–133. [Google Scholar] [CrossRef]
- Kar, P.; Das, T.K.; Ghosh, S.; Pradhan, S.; Chakrabarti, S.; Mondal, K.C.; Ghosh, K. Characterization of a Vibrio-Infecting Bacteriophage, VPMCC5, and Proposal of Its Incorporation as a New Genus in the Zobellviridae Family. Virus Res. 2022, 321, 198904. [Google Scholar] [CrossRef]
- Hu, J.; Ye, H.; Wang, S.; Wang, J.; Han, D. Prophage Activation in the Intestine: Insights into Functions and Possible Applications. Front. Microbiol. 2021, 12, 785634. [Google Scholar] [CrossRef]
- Lamy-Besnier, Q.; Bignaud, A.; Garneau, J.R.; Titécat, M.; Conti, D.E.; von Strempel, A.; Monot, M.; Stecher, B.; Koszul, R.; Debarbieux, L.; et al. Chromosome Folding and Prophage Activation Reveal Specific Genomic Architecture for Intestinal Bacteria. Microbiome 2023, 11, 111. [Google Scholar] [CrossRef]
- Chevallereau, A.; Pons, B.J.; van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. Microbiol. 2022, 20, 49–62. [Google Scholar] [CrossRef]
- Song, W.; Sun, H.-X.; Zhang, C.; Cheng, L.; Peng, Y.; Deng, Z.; Wang, D.; Wang, Y.; Hu, M.; Liu, W.; et al. Prophage Hunter: An Integrative Hunting Tool for Active Prophages. Nucleic Acids Res. 2019, 47, W74–W80. [Google Scholar] [CrossRef]
- Canchaya, C.; Fournous, G.; Brüssow, H. The Impact of Prophages on Bacterial Chromosomes. Mol. Microbiol. 2004, 53, 9–18. [Google Scholar] [CrossRef]
- Bobay, L.-M.; Touchon, M.; Rocha, E.P.C. Pervasive Domestication of Defective Prophages by Bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 12127–12132. [Google Scholar] [CrossRef]
- Feiner, R.; Argov, T.; Rabinovich, L.; Sigal, N.; Borovok, I.; Herskovits, A.A. A New Perspective on Lysogeny: Prophages as Active Regulatory Switches of Bacteria. Nat. Rev. Microbiol. 2015, 13, 641–650. [Google Scholar] [CrossRef]
- Brussow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Nanda, A.M.; Thormann, K.; Frunzke, J. Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions. J. Bacteriol. 2015, 197, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Touchon, M.; Moura de Sousa, J.A.; Rocha, E.P. Embracing the Enemy: The Diversification of Microbial Gene Repertoires by Phage-Mediated Horizontal Gene Transfer. Curr. Opin. Microbiol. 2017, 38, 66–73. [Google Scholar] [CrossRef]
- Bondy-Denomy, J.; Davidson, A.R. To Acquire or Resist: The Complex Biological Effects of CRISPR–Cas Systems. Trends Microbiol. 2014, 22, 218–225. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Balogh, B.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Obradovic, A.; King, P.; Jackson, L.E. Improved Efficacy of Newly Formulated Bacteriophages for Management of Bacterial Spot on Tomato. Plant Dis. 2003, 87, 949–954. [Google Scholar] [CrossRef]
- Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of Citrus Canker and Citrus Bacterial Spot with Bacteriophages. Plant Dis. 2008, 92, 1048–1052. [Google Scholar] [CrossRef]
- Elhalag, K.M.; Nasr-Eldin, M.A.; Huang, Q.; Rabab, A.-E.-A.M.; Ahmad, A. Ahmad Lytic Phages Isolated from Egypt for Biocontrol of Potato Soft Rot Caused by Pectobacterium Carotovorum. Biol. Control. 2024, 189, 105444. [Google Scholar] [CrossRef]
- Ke, D.; Luo, J.; Liu, P.; Shou, L.; Ijaz, M.; Ahmed, T.; Shahid, M.S.; An, Q.; Mustać, I.; Ondrasek, G.; et al. Advancements in Bacteriophages for the Fire Blight Pathogen Erwinia Amylovora. Viruses 2024, 16, 1619. [Google Scholar] [CrossRef]
- Erdrich, S.H.; Schurr, U.; Frunzke, J.; Arsova, B. Seed Coating with Phages for Sustainable Plant Biocontrol of Plant Pathogens and Influence of the Seed Coat Mucilage. Microb. Biotechnol. 2024, 17, e14507. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing Is a Pathogen-Triggered Immune Disease That Can Be Mitigated with Antioxidants and Gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Cai, L.; Fleites, L.A.; Munoz-Bodnar, A.; Davis, M.J.; Gabriel, D.W. Liberibacter Crescens Is a Cultured Surrogate for Functional Genomies OfUncultured Pathogenic “Candidatus Liberibacter” Spp. And Is Naturally Competent for Transformation. Phytopathology 2019, 109, 1811–1819. [Google Scholar] [CrossRef]
- Naranjo, E.; Merfa, M.V.; Ferreira, V.; Jain, M.; Davis, M.J.; Bahar, O.; Gabriel, D.W.; De La Fuente, L. Liberibacter Crescens Biofilm Formation in Vitro: Establishment of a Model System for Pathogenic “Candidatus Liberibacter Spp.”. Sci. Rep. 2019, 9, 5150. [Google Scholar] [CrossRef]
- Wang, N. The Citrus Huanglongbing Crisis and Potential Solutions. Mol. Plant 2019, 12, 607–609. [Google Scholar] [CrossRef]
- Zheng, Z.; Bao, M.; Wu, F.; Van Horn, C.; Chen, J.; Deng, X. A Type 3 Prophage of “Candidatus Liberibacter Asiaticus” Carrying a Restriction-Modification System. Phytopathology 2018, 108, 454–461. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, F.; Zheng, Z.; Yokomi, R.; Kumagai, L.; Cai, W.; Rascoe, J.; Polek, M.; Chen, J.; Deng, X. Prophage Diversity of “Candidatus Liberibacter Asiaticus” Strains in California. Phytopathology 2019, 109, 551–559. [Google Scholar] [CrossRef]
- Zhou, L.; Powell, C.A.; Li, W.; Irey, M.; Duan, Y. Prophage-Mediated Dynamics of “Candidatus Liberibacter Asiaticus” Populations, the Destructive Bacterial Pathogens of Citrus Huanglongbing. PLoS ONE 2013, 8, e82248. [Google Scholar] [CrossRef]
- Zhang, S.; Flores-Cruz, Z.; Zhou, L.; Kang, B.-H.; Fleites, L.A.; Gooch, M.D.; Wulff, N.A.; Davis, M.J.; Duan, Y.-P.; Gabriel, D.W. “Ca. Liberibacter Asiaticus” Carries an Excision Plasmid Prophage and a Chromosomally Integrated Prophage That Becomes Lytic in Plant Infections. Mol. Plant-Microbe Interact. 2011, 24, 458–468. [Google Scholar] [CrossRef]
- Dominguez-Mirazo, M.; Jin, R.; Weitz, J.S. Functional and Comparative Genomic Analysis of Integrated Prophage-like Sequences in “Candidatus Liberibacter Asiaticus”. mSphere 2019, 4, e00409-19. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Bao, M.; Li, T.; Fang, F.; Zheng, Y.; Liu, Y.; Xu, M.; Chen, J.; Deng, X.; et al. A Novel Microviridae Phage (CLasMV1) from “Candidatus Liberibacter Asiaticus”. Front. Microbiol. 2021, 12, 754245. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A General Classification Scheme for Bacterial Virulence Factors. Nucleic Acids Res. 2021, 50, D912–D917. [Google Scholar] [CrossRef]
- Muller, J.; Szklarczyk, D.; Julien, P.; Letunic, I.; Roth, A.; Kuhn, M.; Powell, S.; von Mering, C.; Doerks, T.; Jensen, L.J.; et al. EggNOG V2.0: Extending the Evolutionary Genealogy of Genes with Enhanced Non-Supervised Orthologous Groups, Species and Functional Annotations. Nucleic Acids Res. 2009, 38, D190–D195. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Zhou, Z.; Charlesworth, J.; Achtman, M. Accurate Reconstruction of Bacterial Pan- and Core Genomes with PEPPAN. Genome Res. 2020, 30, 1667–1679. [Google Scholar] [CrossRef]
- Hess, P.N.; de Moraes Russo, C.A. An Empirical Test of the Midpoint Rooting Method. Biol. J. Linn. Soc. 2007, 92, 669–674. [Google Scholar] [CrossRef]
- Guo, J.; Song, X.; Zou, L.; Zou, H.; Chen, G. The Small and Large Subunits of Carbamoyl-Phosphate Synthase Exhibit Diverse Contributions to Pathogenicity in Xanthomonas Citri Subsp. Citri. J. Integr. Agric. 2015, 14, 1338–1347. [Google Scholar] [CrossRef]
- Queraltó, C.; Ortega, C.; Díaz-Yáñez, F.; Inostroza, O.; Espinoza, G.; Álvarez, R.; González, R.; Parra, F.; Paredes-Sabja, D.; Acuña, L.G.; et al. The Chaperone ClpC Participates in Sporulation, Motility, Biofilm, and Toxin Production of Clostridioides Difficile. J. Glob. Antimicrob. Resist. 2023, 33, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Liu, C.; Zhou, S.; Liu, C.; Eldridge, D.J.; Ai, C.; Wilhelm, S.W.; Singh, B.K.; Liang, X.; Radosevich, M.; et al. Prophage-Encoded Antibiotic Resistance Genes Are Enriched in Human-Impacted Environments. Nat. Commun. 2024, 15, 8315. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Xu, Y.; Qu, H.; Nong, F.; Shu, F.; Yuan, G.; Ruan, L.; Zheng, D. Trojan Horse Virus Delivering CRISPR-AsCas12f1 Controls Plant Bacterial Wilt Caused by Ralstonia Solanacearum. mBio 2024, 15, 00619–00624. [Google Scholar] [CrossRef]
NO. | Prophage | Species | Start | End | Length | Category | GC | Gene Number |
---|---|---|---|---|---|---|---|---|
1 | Liberibacter phage NF1 | CLas_LBR19TX2 | 85,461 | 127,782 | 42,322 | Inactive | 35.93% | 39 |
2 | Liberibacter phage NF2 | CLas_A4 | 35,088 | 64,469 | 29,382 | Inactive | 35.94% | 25 |
3 | Liberibacter phage NF3 | CLas_A4 | 169,378 | 196,298 | 26,921 | Inactive | 37.01% | 24 |
4 | Liberibacter phage NF4 | CLas_JXGZ-1 | 217,913 | 248,206 | 30,294 | Inactive | 35.64% | 30 |
5 | Liberibacter phage NF5 | CLso_ZC1 | 508,453 | 554,221 | 45,769 | Inactive | 35.65% | 37 |
6 | Liberibacter phage NF6 | Lcr_BT-0 | 384,631 | 421,836 | 37,206 | Inactive | 33.77% | 29 |
7 | Liberibacter phage NF7 | Lcr_BT-0 | 1,129,261 | 1,168,113 | 38,853 | Inactive | 33.48% | 31 |
8 | Liberibacter phage NF8 | Lcr_BT-1 | 1,133,653 | 1,157,569 | 23,917 | Inactive | 33.59% | 26 |
9 | Liberibacter phage NF9 | CLso_ZC1 | 326,297 | 355,216 | 28,920 | Inactive | 34.56% | 22 |
10 | Liberibacter phage NF10 | CLas_SGCA16 | 1 | 24,286 | 24,286 | Inactive | 34.96% | 15 |
11 | Liberibacter phage NF11 | CLas_YNJS7C | 1,003,695 | 1,024,766 | 21,072 | Inactive | 34.49% | 18 |
12 | Liberibacter phage NF12 | CLas_TX2351 | 14,137 | 54,885 | 40,749 | Inactive | 35.92% | 37 |
13 | Liberibacter phage NF13 | CLas_HHCA | 5560 | 20,683 | 15,124 | Inactive | 36.76% | 15 |
Prophage Name | Virulence Factor | Gene ID | Description | Pident | E-Value | Bitscore |
---|---|---|---|---|---|---|
NF1 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
NF2 | clpC | VFG000079 | endopeptidase Clp ATP-binding chain C | 46.0 | 1.24 × 10−241 | 695 |
NF3 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
NF4 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
NF5 | flhA | VFG016784 | flagellar biosynthesis protein | 56.3 | 1.46 × 10−257 | 724 |
NF6 | algW | VFG014984 | AlgW protein | 45.5 | 4.25 × 10−72 | 230 |
NF7 | rffG | VFG013368 | dTDP-glucose 46-dehydratase | 54.9 | 1.39 × 10−133 | 382 |
NF8 | IlpA | VFG045346 | immunogenic lipoprotein A | 42.4 | 2.19 × 10−66 | 204 |
NF10 | clpC | VFG000079 | endopeptidase Clp ATP-binding chain C | 45.2 | 2.16 × 10−237 | 684 |
NF12 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 56.4 | 0 | 1050 |
NF13 | clpC | VFG000079 | endopeptidase Clp ATP-binding chain C | 45.0 | 8.64 × 10−237 | 682 |
Type1 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
Type2 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
Type3 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
Type4 | carB | VFG047708 | carbamoyl phosphate synthase large subunit | 53.6 | 0 | 1160 |
NO. | Strain | Start | End | Length | Category | Score | Gene Number |
---|---|---|---|---|---|---|---|
1 | CLaf_Ang37 | 25,421 | 60,648 | 35,228 | Ambiguous | 0.69 | 33 |
2 | CLaf_PTSAPSY | 25,432 | 60,671 | 35,240 | Active | 0.81 | 38 |
3 | CLas_A4 | 1,126,504 | 1,157,896 | 31,393 | Active | 0.83 | 40 |
4 | CLas_AHCA1 | 1,126,566 | 1,160,514 | 33,949 | Active | 0.86 | 42 |
5 | CLas_AHCA17 | 2062 | 23,273 | 21,212 | Active | 0.96 | 29 |
6 | CLas_CoFLP | 1,126,499 | 1,157,891 | 31,393 | Active | 0.84 | 41 |
7 | CLas_DUR1TX1 | 1660 | 14,578 | 12,919 | Active | 0.96 | 23 |
8 | CLas_FL17 | 1,128,723 | 1,160,115 | 31,393 | Active | 0.86 | 42 |
9 | CLas_GFR3TX3 | 4166 | 25,372 | 21,207 | Active | 0.96 | 30 |
10 | CLas_gxpsy | 1,114,937 | 1,148,879 | 33,943 | Ambiguous | 0.8 | 44 |
11 | CLas_HHCA16 | 1146 | 13,703 | 12,558 | Active | 0.92 | 20 |
12 | CLas_Ishi-1 | 1,124,179 | 1,155,572 | 31,394 | Active | 0.82 | 39 |
13 | CLas_JRPAMB1 | 711,116 | 742,508 | 31,393 | Active | 0.83 | 41 |
14 | CLas_JXGC | 1,126,509 | 1,160,448 | 33,940 | Ambiguous | 0.8 | 44 |
15 | CLas_JXGZ-1 | 33,780 | 67,719 | 33,940 | Ambiguous | 0.79 | 45 |
16 | CLas_LBR19TX2 | 25,703 | 79,163 | 53,461 | Inactive | 0.38 | 59 |
17 | CLas_LBR23TX5 | 45,412 | 76,804 | 31393 | Active | 0.83 | 40 |
18 | CLas_Mex8 | 3426 | 24,493 | 21,068 | Ambiguous | 0.79 | 27 |
19 | CLas_MFL16 | 812 | 18,998 | 18,187 | Active | 0.9 | 30 |
20 | CLas_PA19 | 714 | 31,808 | 31,095 | Ambiguous | 0.65 | 41 |
21 | CLas_PA20 | 714 | 31,808 | 31,095 | Ambiguous | 0.67 | 40 |
22 | CLas_psy62 | 1,128,652 | 1,160,042 | 31,391 | Active | 0.85 | 42 |
23 | CLas_ReuSP1 | 1,126,150 | 1,157,542 | 31,393 | Active | 0.83 | 40 |
24 | CLas_SGCA16 | 28,111 | 59,503 | 31,393 | Active | 0.83 | 41 |
25 | CLas_TaiYZ2 | 1,126,514 | 1,157,907 | 31,394 | Active | 0.84 | 41 |
26 | CLas_TX2351 | 18 | 11,113 | 11,096 | Active | 0.89 | 19 |
27 | CLas_YCPsy | 688,253 | 722,192 | 33,940 | Ambiguous | 0.8 | 45 |
28 | CLas_YNJS7C | 1,122,402 | 1,153,794 | 31,393 | Active | 0.84 | 41 |
29 | CLas_YNXP-1 | 63 | 26,166 | 26,104 | Ambiguous | 0.54 | 33 |
30 | CLso_FIN111 | 66,818 | 111,284 | 44,467 | Inactive | 0.34 | 39 |
31 | CLso_FIN114 | 36,023 | 77,833 | 41,811 | Inactive | 0.41 | 39 |
32 | CLso_R1 | 2452 | 22,251 | 19,800 | Ambiguous | 0.72 | 24 |
33 | CLso_ZC1 | 800,958 | 839,738 | 38,781 | Inactive | 0.33 | 37 |
34 | Lcr_BT-0 | 885,577 | 922,825 | 37,249 | Inactive | 0.36 | 41 |
35 | Lcr_BT-1 | 831,656 | 886,627 | 54,972 | Inactive | 0.24 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Wan, J.; Zhang, S.; Wu, Z.; Zhang, W.; Gao, Y. Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing. Biology 2025, 14, 576. https://doi.org/10.3390/biology14050576
Yin H, Wan J, Zhang S, Wu Z, Zhang W, Gao Y. Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing. Biology. 2025; 14(5):576. https://doi.org/10.3390/biology14050576
Chicago/Turabian StyleYin, Hui, Jiaxing Wan, Siyu Zhang, Zhuozhuo Wu, Wanshan Zhang, and Yuxia Gao. 2025. "Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing" Biology 14, no. 5: 576. https://doi.org/10.3390/biology14050576
APA StyleYin, H., Wan, J., Zhang, S., Wu, Z., Zhang, W., & Gao, Y. (2025). Unveiling Prophage Diversity and Host Interactions in Liberibacter: Genomic Insights for Phage Therapy Against Citrus Huanglongbing. Biology, 14(5), 576. https://doi.org/10.3390/biology14050576