Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = biochar composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1839 KB  
Review
Bamboo for the Future: From Traditional Use to Industry 5.0 Applications
by Zishan Ahmad, Ritu Kumari, Bilal Mir, Taiba Saeed, Fatima Firdaus, Venkatesan Vijayakanth, Krishnamurthi Keerthana, Muthusamy Ramakrishnan and Qiang Wei
Plants 2025, 14(19), 3019; https://doi.org/10.3390/plants14193019 - 29 Sep 2025
Abstract
Bamboo (subfamily Bambusoideae, Poaceae) ranks among the fastest-growing plants on Earth, achieving up to 1 m day−1, significantly faster than other fast growing woody plant such as Eucalyptus (up to 0.6 m day−1) and Populus (up to 0.5 m [...] Read more.
Bamboo (subfamily Bambusoideae, Poaceae) ranks among the fastest-growing plants on Earth, achieving up to 1 m day−1, significantly faster than other fast growing woody plant such as Eucalyptus (up to 0.6 m day−1) and Populus (up to 0.5 m day−1). Native to Asia, South America and Africa, and cultivated on approximately 37 million ha worldwide, bamboo delivers multifaceted environmental, social, and economic benefits. Historically central to construction, handicrafts, paper and cuisine, bamboo has evolved into a high-value cash crop and green innovation platform. Its rapid renewability allows multiple harvests of young shoots in fast-growing species such as Phyllostachys edulis and Dendrocalamus asper. Its high tensile strength, flexibility, and ecological adaptability make it suitable for applications in bioenergy (bioethanol, biogas, biochar), advanced materials (engineered composites, textiles, activated carbon), and biotechnology (fermentable sugars, prebiotics, biochemicals). Bamboo shoots and leaves provide essential nutrients, antioxidants and bioactive compounds with documented health and pharmaceutical potential. With a global market value exceeding USD 41 billion, bamboo demand continues to grow in response to the call for sustainable materials. Ecologically, bamboo sequesters up to 259 t C ha−1, stabilizes soil, enhances agroforestry systems and enables phytoremediation of degraded lands. Nonetheless, challenges persist, including species- and age-dependent mechanical variability; vulnerability to decay and pests; flammability; lack of standardized harvesting and engineering codes; and environmental impacts of certain processing methods. This review traces bamboo’s trajectory from a traditional resource to a strategic bioresource aligned with Industry 5.0, underscores its role in low-emission, circular bioeconomies and identifies pathways for optimized cultivation, green processing technologies and integration into carbon-credit frameworks. By addressing these challenges through innovation and policy support, bamboo can underpin resilient, human-centric economies and drive sustainable development. Full article
Show Figures

Figure 1

14 pages, 784 KB  
Article
Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea
by Chae-ho Kim and Dong-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1870; https://doi.org/10.3390/jmse13101870 - 27 Sep 2025
Abstract
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis [...] Read more.
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis and utilizing the product as a core material for eco-friendly marine buoys. Biochars were produced at pyrolysis temperatures ranging from 300 °C to 700 °C and characterized for elemental composition, FT-IR spectra, leachability (CODcr), and biodegradability. Higher pyrolysis temperatures resulted in lower H/C and O/C molar ratios, indicating enhanced aromaticity and hydrophobicity. The biochar produced at 700 °C (SFBW-700) exhibited the highest structural and environmental stability, with minimal leachability and resistance to microbial degradation. A composite buoy was fabricated by mixing SFBW-700 with natural binders (beeswax and rosin), forming solid specimens without synthetic polymers or foaming agents. The optimized composition (biochar:beeswax:rosin = 85:10:5) showed excellent performance in density, buoyancy, and impact resistance, while fully meeting the Korean eco-friendly buoy certification criteria. This work presents a circular and scalable approach to mitigating marine macroalgal blooms and replacing plastic-based marine infrastructure with biochar-based eco-friendly composite alternatives. The findings suggest strong potential for the deployment of SH-derived biochar in marine engineering applications. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

14 pages, 2557 KB  
Article
Composite Material Formation Based on Biochar and Nickel (II)-Copper (II) Ferrites
by Nina P. Shabelskaya, Alexandr V. Vyaltsev, Neonilla G. Sundukova, Vera A. Baranova, Sergej I. Sulima, Elena V. Sulima, Yulia A. Gaidukova, Asatullo M. Radzhbov, Elena V. Vasileva and Elena A. Yakovenko
Molecules 2025, 30(19), 3900; https://doi.org/10.3390/molecules30193900 - 26 Sep 2025
Abstract
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). [...] Read more.
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). The obtained materials were characterized by X-ray phase analysis, scanning electron microscopy, and FTIR spectroscopy. It is shown that when replacing copper (II) cations with nickel (II) cations, the average parameters and volume of the unit cell gradually decrease, and the cation–anion distances in both the tetrahedral and octahedral spinel grids also decrease with regularity. The oxide materials were found to form a film on the surface of biochar, repeating its porous structure. The obtained materials exhibit high catalytic activity in the methyl orange decomposition reaction under the action of hydrogen peroxide in an acidic medium; the degradation of methyl orange in an aqueous solution occurs 30 min after the start of the reaction. This result may be associated with the formation of the Fenton system during the oxidation–reduction process. A significant increase in the reaction rate in the system containing mixed nickel–copper ferrite as a catalyst may be associated with the formation of a more defective structure due to the Jahn–Teller effect manifestation, which creates additional active centers on the catalyst surface. Full article
Show Figures

Figure 1

18 pages, 4277 KB  
Article
Synthesis of Zirconium-Based MOF–Biochar Composites for Efficient Congo Red Removal from Industrial Wastewater
by Yufei Zhang and Yifeng He
Water 2025, 17(19), 2814; https://doi.org/10.3390/w17192814 - 25 Sep 2025
Abstract
Organic dye pollution in industrial wastewater is severe and difficult to degrade, posing a significant challenge to environmental management and water resource security. To meet the demand for the efficient elimination of Congo Red (CR) dye from industrial wastewater, this work prepared two [...] Read more.
Organic dye pollution in industrial wastewater is severe and difficult to degrade, posing a significant challenge to environmental management and water resource security. To meet the demand for the efficient elimination of Congo Red (CR) dye from industrial wastewater, this work prepared two zirconium-based metal–organic framework (MOF)–biochar composites, UIO-66@BY and UIO-67@BY, by in situ loading zirconium-based MOFs (UIO-66 and UIO-67) onto biochar (BY) via a solvothermal method. The composite material was comprehensively characterized using transmission electron microscopy (TEM), BET surface area analysis, and X-ray photoelectron spectroscopy (XPS). The adsorption results indicate that UIO-67@BY exhibits a significantly higher maximum adsorption capacity for CR dye compared to pristine biochar (BY), while UIO-66@BY also shows enhanced adsorption performance, but one that is slightly lower than that of UIO-67@BY. Further investigations reveal that the adsorption behavior conformed to a pseudo-second-order kinetic model and was well described by the Langmuir isotherm, suggesting that the adsorbent exhibited a homogeneous adsorption surface, and that chemical adsorption played a dominant role in the process. The primary mechanisms responsible for CR dye uptake by the composite include pore structure characteristics, coordination with functional groups, π–π stacking interactions, and electrostatic forces. The composite material developed herein provides an environmentally sustainable and economically efficient strategy for mitigating wastewater contamination. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 1807 KB  
Article
Biochar Enhanced Anaerobic Digestion of Chicken Manure by Mitigating Ammonium Inhibition and Improving Methane Production
by Jiaoning Zhu, Qiyuzhou Meng, Xiaoyuan Zhang, Xiaochen Zhang, Yun Tang and Yongping Li
Fermentation 2025, 11(10), 549; https://doi.org/10.3390/fermentation11100549 - 23 Sep 2025
Viewed by 151
Abstract
Anaerobic digestion (AD) is a mature industrial fermentation technology for converting organic matter into renewable bioenergy, and chicken manure (CM) is a promising feedstock due to its high organic content. However, the industrial-scale AD of CM is often hindered by ammonium inhibition, particularly [...] Read more.
Anaerobic digestion (AD) is a mature industrial fermentation technology for converting organic matter into renewable bioenergy, and chicken manure (CM) is a promising feedstock due to its high organic content. However, the industrial-scale AD of CM is often hindered by ammonium inhibition, particularly under high organic loading rates (OLRs). Biochar has emerged as a sustainable additive that can enhance microbial activity, buffer pH, and improve system stability. In this study, the effects of biochar on the methane production and fermentation performance of CM in terms of AD were evaluated under both batch and continuous conditions, where batch experiments were conducted at different biochar-to-CM ratios. Ammonium nitrogen and methane production were monitored to determine the optimal biochar addition ratio. Continuous stirred-tank reactors (CSTRs) were then operated with the optimal biochar addition ratio under stepwise-increasing OLR conditions to assess methane production, fermentation parameters, and methanogen community composition. The results showed that an optimal biochar addition of 9% reduced total ammonium nitrogen (TAN) by 31.75% and increased cumulative methane production by 25.93% compared with the control. In continuous operation, biochar addition mitigated ammonium inhibition, stabilized pH, enhanced system stability and organic loading capacity, and improved methane production by 21.15%, 27.78%, and 83.33% at OLRs of 2.37, 4.74, and 7.11 g volatile solids (VS)/(L·d), respectively, compared to the control. Biochar also inhibited the growth of methylotrophic methanogen of RumEn_M2. These findings provide scientific and technical support for applying biochar as a process enhancer during the AD of CM. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

26 pages, 7690 KB  
Article
Green Synthesis of Biochar-Supported Nanoscale Zero-Valent Iron Using Tea Polyphenol for Efficient Cadmium Immobilization in Soil
by Ziyong Jia, Huizi Wang, Shupei Yuan, Weifeng Zhang and Daijun Zhang
Nanomaterials 2025, 15(19), 1460; https://doi.org/10.3390/nano15191460 - 23 Sep 2025
Viewed by 161
Abstract
With the increasing severity of cadmium (Cd) contamination in soil and its persistent toxicity, developing efficient remediation methods has become a critical necessity. In this study, sodium borohydride (NaBH4) and tea polyphenols (TP) were employed as reducing agents to synthesize biochar [...] Read more.
With the increasing severity of cadmium (Cd) contamination in soil and its persistent toxicity, developing efficient remediation methods has become a critical necessity. In this study, sodium borohydride (NaBH4) and tea polyphenols (TP) were employed as reducing agents to synthesize biochar (BC)-supported nanoscale zero-valent iron (nZVI), denoted as BH4-nZVI/BC and TP-nZVI/BC, respectively. The effects of dosage, pH, and reaction time on Cd immobilization efficiency were systematically investigated. Both composites effectively stabilized Cd, significantly reducing its mobility and toxicity. Toxicity Characteristic Leaching Procedure (TCLP) results showed that Cd leaching concentrations decreased to 8.23 mg/L for BH4-nZVI/BC and 4.65 mg/L for TP-nZVI/BC, corresponding to performance improvements of 29.9% and 60.5%. The immobilization process was attributed to the reduction of Cd(II) into less toxic species, together with adsorption and complexation with oxygen-containing groups (-OH, -COOH, phenolic) on biochar. TP-nZVI/BC exhibited superior long-term stability, while maintaining slightly lower efficiency than BH4-nZVI/BC under certain conditions. Microbial community analysis revealed minimal ecological disturbance, and TP-nZVI/BC even promoted microbial diversity recovery. Mechanistic analyses further indicated that tea polyphenols formed a protective layer on nZVI, which inhibited particle agglomeration and oxidation, reduced the formation of iron oxides, preserved Fe0 activity, and enhanced microbial compatibility. In addition, the hydroxyl and phenolic groups of tea polyphenols contributed directly to Cd(II) complexation, reinforcing long-term immobilization. Therefore, TP-nZVI/BC is demonstrated to be an efficient, sustainable, and environmentally friendly amendment for Cd-contaminated soil remediation, combining effective immobilization with advantages in stability, ecological compatibility, and long-term effectiveness. Full article
Show Figures

Figure 1

23 pages, 5573 KB  
Article
Valorization of Tomato Stem Waste: Biochar as a Filler in Three-Dimensional Printed PLA Composites
by Dimitrios Gkiliopoulos, Sotirios Pemas, Stylianos Torofias, Konstantinos Triantafyllidis, Dimitrios N. Bikiaris, Zoi Terzopoulou and Eleftheria Maria Pechlivani
Polymers 2025, 17(19), 2565; https://doi.org/10.3390/polym17192565 - 23 Sep 2025
Viewed by 212
Abstract
This study explores the valorization of tomato stem waste by converting it into biochar through slow pyrolysis and incorporating it into poly(lactic acid) (PLA) composites for fused filament fabrication (FFF) 3D printing. The objective was to improve the valorization and added value of [...] Read more.
This study explores the valorization of tomato stem waste by converting it into biochar through slow pyrolysis and incorporating it into poly(lactic acid) (PLA) composites for fused filament fabrication (FFF) 3D printing. The objective was to improve the valorization and added value of tomato stem waste. Biochar derived from tomato stems was characterized for its physicochemical properties, revealing a high surface area and small particle size. PLA-based composite filaments with 5% and 7.5% biochar were manufactured via melt extrusion. The effects of biochar concentration and printing infill patterns (concentric and rectilinear) on the mechanical and thermomechanical properties of the 3D-printed composites were investigated. Results indicated that biochar slightly increased the glass transition temperature of PLA and improved the flexural properties. Dynamic mechanical analysis (DMA) showed that the storage modulus was enhanced in the glassy region for composites with 5% biochar, suggesting improved stiffness. This research demonstrates the potential of using tomato stem-derived biochar as a sustainable filler in PLA composites, contributing to the circular economy and reducing environmental impact. Full article
Show Figures

Graphical abstract

22 pages, 5300 KB  
Article
Compressive Strength and CO2 Mineralization Mechanism of Copper Slag-GGBS Alkali-Activated Geopolymer Composites Enhanced by MgO and Biochar
by Quanbin Jin, Wei Xiang, Chenghua Xu, Guoyi Tang and Zhibin Liu
Materials 2025, 18(19), 4434; https://doi.org/10.3390/ma18194434 - 23 Sep 2025
Viewed by 160
Abstract
The escalating accumulation of industrial solid wastes (e.g., copper slag: CS, ground-granulated blast furnace slag: GGBS) and carbon-intensive cement production has intensified environmental challenges, driving the demand for sustainable construction materials that synergize waste valorization with carbon sequestration. This study investigates the evaluation [...] Read more.
The escalating accumulation of industrial solid wastes (e.g., copper slag: CS, ground-granulated blast furnace slag: GGBS) and carbon-intensive cement production has intensified environmental challenges, driving the demand for sustainable construction materials that synergize waste valorization with carbon sequestration. This study investigates the evaluation of the compressive strength, mineralogical evolution, and real-time CO2 capture of the alkali-activated geopolymer composite materials by optimizing the mixed design of precursor materials (CS/GGBS ratio: 7/3) with MgO (0–10%) and coconut shell (CSB), peanut shell (PSB), and durian shell biochar (DSB) (0–3%). Results reveal that the 5% MgO addition achieves an 89.5% early-age compressive strength increase versus the MgO-free specimen. The compressive strength of the geopolymer composite could be further increased by a 1.5% dosage of DSB with an average pore size of 8.98 nm. In addition, the incorporation of an appropriate amount of porous biochar could not only enhance the CO2 capture capacity of the geopolymer composite, but also further improve the CO2 mineralization efficiency. The optimal formulation (5% MgO + 1.5% DSB) could mineralize 40.2 kg CO2 per ton of solid waste at least. This work highlights a sustainable strategy for synchronizing industrial solid waste valorization with carbon-negative construction providing scalable CO2 sequestration solutions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 2008 KB  
Article
Biochar Surface Chemistry Modification by Blending Hardwood, Softwood, and Refuse-Derived Fuel: Insights from XPS, FTIR, and Zeta Potential Analysis
by Paul C. Ani, Hasan J. Al-Abedi, Joseph D. Smith and Zeyad Zeitoun
Fuels 2025, 6(3), 71; https://doi.org/10.3390/fuels6030071 - 22 Sep 2025
Viewed by 217
Abstract
This study investigates how the inclusion of refuse-derived fuel (RDF) alters the surface chemistry and electrostatic behavior of oak-based biochar. Biochars were produced using downdraft gasification at 850 °C from 100% oak (HW) and a ternary blend comprising 50% oak, 30% pine, and [...] Read more.
This study investigates how the inclusion of refuse-derived fuel (RDF) alters the surface chemistry and electrostatic behavior of oak-based biochar. Biochars were produced using downdraft gasification at 850 °C from 100% oak (HW) and a ternary blend comprising 50% oak, 30% pine, and 20% RDF (HW/SW/RDF). Characterization using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential, pH, and electrophoretic mobility was conducted to assess surface functionality and colloidal behavior. The RDF-containing biochar exhibited a 43.3% increase in surface nitrogen content (from 0.24% to 0.90%) and a 6.6% rise in calcium content (from 2.07% to 2.27%) alongside the introduction of chlorine (0.20%) and elevated silicon levels (0.69%) compared to RDF-free counterparts. A concurrent reduction in oxygen-containing functional groups was observed, as O1s decreased from 15.75% in HW to 13.37% in HW/SW/RDF. Electrokinetic measurements revealed a notable decrease in zeta potential magnitude from −31.5 mV in HW to −24.2 mV in HW/SW/RDF, indicating diminished surface charge and colloidal stability. Moreover, the pH declined from 10.25 to 7.76, suggesting a loss of alkalinity and buffering capacity. These compositional and electrostatic shifts demonstrate that RDF inclusion significantly modifies the surface reactivity of biochar, influencing its performance in catalysis, ion exchange, and nutrient retention. The findings underscore the need for tailored post-treatment strategies to enhance the functionality of RDF-modified biochars in environmental applications. Full article
Show Figures

Figure 1

17 pages, 2175 KB  
Article
From Thermal Conversion to Cathode Performance: Acid-Activated Walnut Shell Biochar in Li–S Batteries and Its Impact on Air Quality
by Fabricio Aguirre, Guillermina Luque, Gabriel Imwinkelried, Fernando Cometto, Clara Saux, Mariano Teruel and María Belén Blanco
Thermo 2025, 5(3), 34; https://doi.org/10.3390/thermo5030034 - 19 Sep 2025
Viewed by 302
Abstract
The thermal processing of walnut shells was investigated through pyrolysis within the range of 100–650 °C, highlighting the influence of thermal engineering parameters on biomass conversion. The resulting biochar was subjected to chemical activation with phosphoric acid, and its physicochemical properties were evaluated [...] Read more.
The thermal processing of walnut shells was investigated through pyrolysis within the range of 100–650 °C, highlighting the influence of thermal engineering parameters on biomass conversion. The resulting biochar was subjected to chemical activation with phosphoric acid, and its physicochemical properties were evaluated to determine how thermal processing enhances its performance as a cathode material for lithium–sulfur (Li–S) batteries. This approach underscores the role of thermal engineering in bridging biomass valorization with energy storage technologies. In parallel, the gaseous fraction generated during walnut shell fast pyrolysis was collected, and for the first time, volatile organic compounds (VOCs) under atmospheric conditions were identified using solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). The composition of the VOCs was characterized, quantifying aromatic compounds, hydrocarbons, furans, and oxygenated species. This study further linked the thermal decomposition pathways of these compounds to their atmospheric implications by estimating tropospheric lifetimes and evaluating their potential contributions to air quality degradation at the local, regional, and global scales. Full article
Show Figures

Figure 1

37 pages, 9734 KB  
Review
Valorization of River Sediments in Sustainable Cementitious Gel Materials: A Review of Characteristics, Activation, and Performance
by Yuanxun Zheng, Yuxiao Xie, Yu Zhang, Cong Wan, Li Miao and Peng Zhang
Gels 2025, 11(9), 755; https://doi.org/10.3390/gels11090755 - 18 Sep 2025
Viewed by 178
Abstract
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords [...] Read more.
River sediments have attracted increasing attention as alternative raw materials for sustainable cementitious materials due to their abundant availability and silica–alumina-rich composition. In this study, a systematic literature search was conducted in Web of Science and Google Scholar using combinations of the keywords “river sediment,” “cementitious materials,” “activation,” and “pozzolanic activity,” covering publications up to July 2025. In addition, a citation network tool (Connected Papers) was employed to trace related works and ensure comprehensive coverage of emerging studies. This review systematically examines the properties of river sediments from diverse regions, along with activation and modification techniques such as alkali/acid activation, thermal calcination, and mechanical milling. Their applications in various cementitious systems are analyzed, with mix design models compared to elucidate the effects of replacing fine aggregates, coarse aggregates, and cement on workability, strength, and durability. Multi-scale characterization via XRD, FTIR, and TG-DSC reveals the mechanisms of C–S–H and C–A–S–H gel formation, pore refinement, and interfacial transition zone densification. The review highlights three key findings: (1) moderate sediment replacement (20–30%) improves strength without compromising flowability; (2) alkali–water glass activation and calcination at 600–850 °C effectively enhance pozzolanic activity; and (3) combining the minimum paste thickness theory with additives such as water reducers, fibers, or biochar enables high-performance and low-carbon concrete design. This review provides a comprehensive theoretical foundation and technical pathway for the high-value utilization of river sediments, carbon reduction in concrete, and sustainable resource recycling. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

16 pages, 1975 KB  
Article
Response of Soil Organic Carbon in Citrus Orchards at Different Slope Positions to Citrus Peel Biochar and Field Snail Shell Powder
by Lening Hu, Zerui Ding, Rui Qin, Meifang Xiao, Mintuan Feng, Jingxiao Liang, Qijun Fan, Xianliang Li and Shengqiu Liu
Agronomy 2025, 15(9), 2209; https://doi.org/10.3390/agronomy15092209 - 18 Sep 2025
Viewed by 314
Abstract
Soil organic carbon (SOC) loss in sloping farmland is a critical challenge for agricultural sustainability. This study investigated how citrus peel biochar (CPB), field snail shell powder (SSP), and their composite (CPB + SSP) differentially regulate SOC dynamics across slope positions (upper, middle, [...] Read more.
Soil organic carbon (SOC) loss in sloping farmland is a critical challenge for agricultural sustainability. This study investigated how citrus peel biochar (CPB), field snail shell powder (SSP), and their composite (CPB + SSP) differentially regulate SOC dynamics across slope positions (upper, middle, lower) in Guangxi’s citrus orchards. Key findings revealed: CPB significantly increased SOC content (up to 5.5 g·kg−1 at lower slopes) via high carbon input but suppressed mineralization amount in lower slope position (reduction of 17.9%) due to its high C/N ratio. SSP neutralized soil acidity (pH 3.95 to 7.5), stimulating microbial activity and raising mineralization rates by 58.95% (lower slope), yet minimally enhanced SOC (only +0.7 g·kg−1). CPB + SSP effectively balanced carbon stability and active release: dissolved organic carbon (DOC) and readily oxidizable organic carbon (ROC) increased by 14.4 mg·kg−1 and 0.22 g·kg−1 (middle slope), while SOC rose significantly (e.g., +2.2 g·kg−1 at lower slope). Slope position effects strongly influenced outcomes: the lower slope (highest initial SOC) responded most strongly to CPB for carbon stabilization, while middle slopes benefited from CPB + SSP to reconcile carbon loss with fertility. These results provide slope-specific strategies for SOC management by integrating amendment synergy and machine learning-driven insights in citrus orchards. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 4971 KB  
Article
Study on the Regeneration-Cycle Mechanism of Cu-BTC@MWS Composites Following Mercury Adsorption
by Feng Wang and Yue Yu
Polymers 2025, 17(18), 2474; https://doi.org/10.3390/polym17182474 - 12 Sep 2025
Viewed by 292
Abstract
Coal-fired power plants, as the largest source of human-made mercury emissions, often lack specialized mercury emission control devices. Therefore, developing cost-effective adsorbents and studying their regeneration properties are highly important for mercury removal from flue gas. In this study, the regeneration efficiency and [...] Read more.
Coal-fired power plants, as the largest source of human-made mercury emissions, often lack specialized mercury emission control devices. Therefore, developing cost-effective adsorbents and studying their regeneration properties are highly important for mercury removal from flue gas. In this study, the regeneration efficiency and stability of a composite material made from polymetallic Fe/Cu-doped modified biochar combined with the MOF material Cu-BTC were investigated. Based on the analysis of microscopic characteristics, the molecular structure of the regenerated composites was modeled, and the adsorption and regeneration process of Hg0 on their surface was simulated using density functional theory. This helped uncover the underlying mechanisms of mercury removal and regeneration. The results indicate that the optimal regeneration temperature and atmosphere were 350 °C and 5% O2, resulting in the formation of a derived carbon material. The regeneration efficiency reached 92% of that of the original mercury adsorption capacity, and over 80% efficiency was maintained after 10 regeneration cycles. The regenerated samples adsorbed Hg0 through the combined action of surface metal oxides, the metal element Cu, and oxygen-containing functional groups. Full article
Show Figures

Graphical abstract

20 pages, 2623 KB  
Article
Nano Zero-Valent Iron—Rubber Seed Shell Biochar (nZVI-RSSB) Enhances Removal of Cadmium from Water
by Guoyan Zhan and Zhenhua Zhang
Appl. Sci. 2025, 15(17), 9807; https://doi.org/10.3390/app15179807 - 7 Sep 2025
Viewed by 553
Abstract
Cadmium {Cd (II)} poses a high risk to ecological security and human health due to its high toxicity, easy migration and difficult degradation. Using waste rubber seed shell biochar (RSSB) as the carrier material of nZVI may inhibit the caking oxidation of zero-valent [...] Read more.
Cadmium {Cd (II)} poses a high risk to ecological security and human health due to its high toxicity, easy migration and difficult degradation. Using waste rubber seed shell biochar (RSSB) as the carrier material of nZVI may inhibit the caking oxidation of zero-valent iron and improve the removal efficiency of Cd (II) from water. Through a series of batch experiments, the adsorption mechanism of modified biochar on Cd (II) clarified that the removal effect of nano-zero-valent iron-rubber seed shell biochar (nZVI-RSSB) on heavy metals in water was better than that of RSSB. The results showed that when the dosage of complex biochar was 80 mg, the initial concentration of Cd (II) was 50 mg/L, and the solution pH was 6, the maximum adsorption capacity of nZVI-RSSB for Cd (II) reached 30.42 mg/g, compared with the RSSB of 13.32 mg/g. The adsorption kinetics model showed that chemisorption and physical adsorption existed simultaneously. The results of the in-particle diffusion model show that the adsorption process may be divided into two stages. The Langmuir competitive adsorption model was followed. Electrostatic adsorption and precipitation/co-precipitation could be the main ways for the removal of Cd (II) by composite materials. Meanwhile, the synergistic adsorption of nZVI-RSSB composites with multiple metals in actual water showed its application potential in water pollution control. Hence, the nZVI-RSSB not only successfully inhibits the caking oxidation of zero-valent iron, but also effectively improves the removal efficiency of heavy metals from water. Full article
(This article belongs to the Special Issue Advanced Research in Activated Carbon Adsorption—2nd Edition)
Show Figures

Figure 1

18 pages, 5205 KB  
Article
Characterization of Hemp Hurd-Derived Biochar for Potential Agricultural Applications
by Alberto Assirelli, Elisa Fischetti, Antonio Scarfone, Enrico Santangelo, Monica Carnevale, Enrico Paris, Adriano Palma and Francesco Gallucci
Agronomy 2025, 15(9), 2136; https://doi.org/10.3390/agronomy15092136 - 5 Sep 2025
Viewed by 485
Abstract
Hemp (Cannabis sativa L.) is a high-yielding crop cultivated for fiber and seed production, generating substantial lignocellulosic residues such as hurds. These byproducts can be valorized through pyro-gasification, a thermochemical process that offers a sustainable alternative to combustion and produces biochar—a promising [...] Read more.
Hemp (Cannabis sativa L.) is a high-yielding crop cultivated for fiber and seed production, generating substantial lignocellulosic residues such as hurds. These byproducts can be valorized through pyro-gasification, a thermochemical process that offers a sustainable alternative to combustion and produces biochar—a promising soil amendment due to its ability to enhance soil quality and mitigate drought stress. This research explores the viability of utilizing industrial hemp hurds as a direct feedstock for biochar production within the context of agricultural exploitation. The study specifically focuses on assessing the feasibility of converting raw, unprocessed hemp hurds into biochar through pyrolysis. A comprehensive characterization of the resulting biochar is conducted to evaluate its properties and potential applications in agriculture, establishing a foundational understanding for future agronomic use. Specific analysis included proximate and ultimate analysis, thermogravimetric analysis (TGA), SEM-EDS, and phytotoxicity testing. The biochar exhibited an alkaline pH (≥9), a low H/C ratio (0.37), and suitable macro- and micronutrient levels. Microstructural analysis revealed a porous architecture favorable for nutrient retention and water absorption. Germination tests with corn (Zea mays L.) showed a germination index above 90% for substrates containing 0.5–1% biochar. These findings establish a foundation for future research aimed at thoroughly exploring the agricultural potential of this material. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

Back to TopTop