Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Pyrolysis Process
2.3. Characterization of SH and Biochar
2.3.1. Elemental Analysis (EA)
2.3.2. FT-IR Spectroscopy
2.3.3. Leachability (CODcr)
2.3.4. Antimicrobial/Leachate Toxicity Screening
2.4. Buoy Specimen Fabrication
2.4.1. Binder Selection
2.4.2. Specimen Preparation
2.5. Evaluation of Eco-Friendly Buoy Performance (Korean Case Standard)
2.5.1. Density Measurement
- Measure dry weight (Wdry) using an analytical balance
- Immerse specimen in distilled water and record submerged weight (Wwet)
- Assume water density (water) = 0.998 g/cm3
- Calculate density (, g/cm3):
2.5.2. Impact Resistance Test
2.5.3. Buoyancy in Saltwater
3. Results
3.1. Characteristics of Produced Biochar
3.1.1. Yield Analysis
3.1.2. Elemental Analysis (EA) Results
3.1.3. FT-IR Analysis
3.1.4. Leachability Evaluation (CODcr)
3.1.5. Antimicrobial/Leachate Toxicity Screening Results
3.2. Evaluation of Biochar-Based Buoys
3.2.1. Binder Selection Results
3.2.2. Optimization of Mixing Ratios
3.2.3. Characterization of Biochar Composite Specimens
3.3. Comparison with Domestic Standards and Environmental Conditions
Compliance with Korean Buoy Standards
- (1)
- Density Comparison
- (2)
- Impact Resistance Evaluation
- (3)
- Performance in Saline Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SH | Sargassum horneri |
SFB | Sargassum horneri Feedstock Biochar |
SFBW | Sargassum horneri Feedstock Biochar Washed |
References
- Liu, F.; Liu, X.; Wang, Y.; Jin, Z.; Moejes, F.W.; Sun, S. Insights on the Sargassum horneri Golden Tides in the Yellow Sea Inferred from Morphological and Molecular Data. Limnol. Oceanogr. 2018, 63, 1762–1773. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; He, P.-M.; Wang, Z.; Shi, Y.; Wang, Y. The World’s Largest Macroalgal Bloom in the Yellow Sea, China: Formation and Implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Obie Farobie, A.; Amrullah, A.; Bayu, A.; Hartulistiyoso, E. In Depth Study of Bio-Oil and Biochar Production from Macroalgae Sargassum sp. via Slow Pyrolysis. RSC Adv. 2022, 12, 9567–9578. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.M.; Chen, C.W.; Huang, C.P.; Chen, C.-W.; Hsieh, S.; Dong, C.-D. Remediation of Contaminated Harbor Sediments by Persulfate Oxidation with Hydrodynamic Cavitation. J. Hazard. Mater. 2021, 420, 126594. [Google Scholar] [CrossRef]
- Choi, S.-K.; Oh, H.-J.; Yun, S.-H. Population Dynamics of the ‘Golden Tides’ Seaweed, Sargassum horneri, on the Southwestern Coast of Korea: Extent and Formation. Sustainability 2020, 12, 2903. [Google Scholar] [CrossRef]
- Hung, C.M.; Chen, C.W.; Huang, C.P.; Cheng, J.W.; Dong, C.D. Algae-Derived Metal-Free Boron-Doped Biochar as an Efficient Bioremediation Pretreatment for Persistent Organic Pollutants in Marine Sediments. J. Clean. Prod. 2022, 336, 130448. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.S.; Wu, Y.S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef]
- Goodman, A.J.; Walker, T.R.; Brown, C.J.; Wilson, B.R.; Gazzola, V.; Sameoto, J.A. Benthic Marine Debris in the Bay of Fundy, Eastern Canada: Spatial Distribution and Categorization Using Seafloor Video Footage. Mar. Pollut. Bull. 2020, 150, 110722. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Besseling, E.; Shim, W.-J. Nanoplastics in the Aquatic Environment: Critical Review. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 325–340. [Google Scholar] [CrossRef]
- Seo, S.; Park, Y.-G. Distribution and Environmental Impact of Expanded Polystyrene Buoys from Korean Aquaculture Farms. J. Mar. Sci. Eng. 2024, 12, 256. [Google Scholar] [CrossRef]
- Zeng, G.; Lou, S.; Ying, H.; Wu, X.; Dou, X.; Ai, N.; Wang, J. Preparation of Microporous Carbon from Sargassum horneri via Hydrothermal Carbonization and KOH Activation for CO2 Capture. J. Chem. 2018, 2018, 4319149. [Google Scholar] [CrossRef]
- Sun, J.; Ji, L.; Liu, J.; Yang, H.; Dong, T.; Liu, T. Zeolite-Like Algal Biochar Nanoparticles for Antibiotic Adsorption: Sorption Mechanisms and Theoretical Calculations. Colloids Surf. B 2024, 248, 114475. [Google Scholar] [CrossRef]
- Xu, Q.; Qian, Q.; Quek, A.; Ai, N.; Zeng, G.; Wang, J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain. Chem. Eng. 2014, 1, 1092–1101. [Google Scholar] [CrossRef]
- Atugoda, T.; Gunawardane, C.; Ahmad, M.; Vithanage, M. Mechanistic Interaction of Ciprofloxacin on Seaweed-Derived Biochar: Kinetics, Isotherm and Thermodynamics. Chemosphere 2021, 281, 130676. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Aguiar, E.; Gascó, G.; Lado, M.; Méndez, A.; Paz-Ferreiro, J.; Paz-González, A. Characterization of Biochar from Beach-Cast Seaweed and Its Use for Amelioration of Acid Soils. Land 2024, 13, 881. [Google Scholar] [CrossRef]
- Lin, Z.; He, L.; Zhou, J.; Shi, S.; He, X.; Fan, X.; Wang, Y.; He, Q. Biologically induced phosphate precipitation in heterotrophic nitrification processes of different microbial aggregates: Influences of nitrogen removal metabolisms and extracellular polymeric substances. Bioresour. Technol. 2022, 356, 127319. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Truong, Q.M.; Chen, C.W.; Dong, C.D. Pyrolysis of Marine Algae for Biochar Production for Adsorption of Ciprofloxacin from Aqueous Solutions. Bioresour. Technol. 2022, 351, 127043. [Google Scholar] [CrossRef]
- Senanu, S.; Paneru, M.; Lindstad, T.; Tranell, G. Feasibility of Biochar from Seaweed for Ferroalloy Production. J. Sustain. Metall. 2024, 10, 765–778. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Abdikheibari, S.; Parvizi, R.; Moayed, M.H.; Zebarjad, S.M.; Sajjadi, S.A. Beeswax-Colophony Blend: A Novel Green Organic Coating for Protection of Steel Drinking Water Storage Tanks. Metals 2015, 5, 1645–1664. [Google Scholar] [CrossRef]
- Gupta, G.; Anjali, K. Environmentally Friendly Beeswax: Properties, Composition, Adulteration, and Its Therapeutic Benefits. IOP Conf. Ser. Earth Environ. Sci. 2023, 1110, 012041. [Google Scholar] [CrossRef]
- KS F 2409; Testing Method for Compressive Strength of Concrete. Korean Standards Association: Seoul, Republic of Korea, 2016.
- Chandra, S.; Bhattacharya, J. Influence of Temperature and Duration of Pyrolysis on the Property Heterogeneity of Rice Straw Biochar and Optimization of Pyrolysis Conditions for Its Application in Soils. J. Clean. Prod. 2019, 215, 1123–1139. [Google Scholar] [CrossRef]
- Suarez, E.; Tobajas, M.; Mohedano, A.F.; Reguera, M.; Esteban, E.; de la Rubia, A. Effect of Garden and Park Waste Hydrochar and Biochar in Soil Application: A Comparative Study. Biomass Convers. Biorefinery 2023, 13, 16479–16493. [Google Scholar] [CrossRef]
- Hung, C.-M.; Huang, C.-P.; Chen, C.-W.; Dong, C.-D. Hydrothermal Cavitation Activation of Persulfate for PAH Degradation in Marine Sediments. Environ. Pollut. 2021, 286, 117245. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Wang, C.; Wei, W.; Jin, M.; Xiao, H. Golden Seaweed Tides from Beach Inundations as a Valuable Sustainable Fuel Resource: Fast Pyrolysis Characteristics and Pathway Study on Sargassum horneri. Algal Res. 2020, 48, 101888. [Google Scholar] [CrossRef]
- Camp Shinning. Hollow Glass Microspheres—Light Weight Low Density Fillers and Additives. Camp Shinning: China. Available online: https://www.rheologymodifiers.com/hollow-glass-microspheres/ (accessed on 30 August 2025).
Parameter | Performance Standard |
---|---|
Dimensions (Weight) | Specified individually (design-specific) |
Buoyancy (N) | (Displayed Volume (L) × 0.7) – weight (N) |
Impact Resistance | No cracks, fractures, or tears |
Internal Density | ≥18 |
Biochars | Elemental Composition(wt%) | H/C | O/C | ||||
---|---|---|---|---|---|---|---|
C | H | O | N | S | |||
SF-RAW | 49.02 | 6.95 | 39.99 | 3.14 | 0.90 | 0.14 | 0.82 |
SFB-300 | 58.21 | 5.93 | 30.70 | 4.64 | 0.52 | 0.10 | 0.53 |
SFB-400 | 60.61 | 4.58 | 29.51 | 4.36 | 0.94 | 0.08 | 0.49 |
SFB-500 SFB-600 | 65.03 | 2.66 | 28.63 | 3.57 | 0.11 | 0.04 | 0.44 |
68.56 | 1.99 | 26.00 | 3.24 | 0.21 | 0.03 | 0.38 | |
SFB-700 SFBW-300 SFBW-400 | 67.90 | 2.22 | 25.73 | 3.89 | 0.26 | 0.03 | 0.38 |
60.70 | 6.11 | 27.59 | 5.60 | 0.00 | 0.10 | 0.45 | |
68.36 | 5.02 | 21.80 | 4.82 | 0.00 | 0.07 | 0.32 | |
SFBW-500 SFBW-600 | 70.34 | 2.89 | 22.55 | 4.21 | 0.00 | 0.04 | 0.32 |
72.12 | 1.77 | 22.59 | 3.52 | 0.00 | 0.02 | 0.31 | |
SFBW-700 | 72.43 | 1.84 | 22.14 | 3.60 | 0.00 | 0.03 | 0.31 |
Parameter | Performance Standard | Test Specimen |
---|---|---|
Dimensions (Weight) | Specified individually (design-specific) | 1000 mm3 |
Buoyancy (N) | (Displayed Volume (L) × 0.7) – weight (N) | 0.19 |
Impact Resistance | No cracks, fractures, or tears | X |
Internal Density | ≥18 | O |
Parameter | Glass Microspheres | SFBW Composite Result |
---|---|---|
Bulk Density (g/cm3) | 0.62 | 0.36 |
True Density (g/cm3) | 0.33 | 0.24 |
Parameter | Test Result |
---|---|
Visual Damage | No significant breakage |
Max Deformation Depth (mm) | 1.8 ± 0.3 |
Repetitive Impact Durability (cycles) | 5 ± 2 |
Residual Strain Recovery (%) | 85 ± 5 |
Parameter | 5 °C | 25 °C | 40 °C |
---|---|---|---|
Seawater density (g/cm3) | 1027.6 | 1025.0 | 1200 |
Leachability | X | X | X |
Buoyancy (N) | 185.9 | 184.9 | 183.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-h.; Shin, D.-c. Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea. J. Mar. Sci. Eng. 2025, 13, 1870. https://doi.org/10.3390/jmse13101870
Kim C-h, Shin D-c. Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea. Journal of Marine Science and Engineering. 2025; 13(10):1870. https://doi.org/10.3390/jmse13101870
Chicago/Turabian StyleKim, Chae-ho, and Dong-chul Shin. 2025. "Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea" Journal of Marine Science and Engineering 13, no. 10: 1870. https://doi.org/10.3390/jmse13101870
APA StyleKim, C.-h., & Shin, D.-c. (2025). Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea. Journal of Marine Science and Engineering, 13(10), 1870. https://doi.org/10.3390/jmse13101870