Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = bioavailable fractions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 447 KiB  
Article
Evaluation of Insect Farming Residue (Frass) as a Phosphate Fertilizer Within the Context of the Circular Economy
by Juan Nieto-Cantero, Miguel A. Romero-Gil, Gina P. Suárez-Cáceres, Antonio Delgado and Víctor M. Fernández-Cabanás
Agronomy 2025, 15(9), 2019; https://doi.org/10.3390/agronomy15092019 - 22 Aug 2025
Abstract
Phosphorus (P) stock scarcity is driving the need to develop alternatives to mineral fertilizers. The growing production of insects for high-protein feed results in significant amounts of residues (frass), which can be used as fertilizers. However, its efficiency as such a basic indicator [...] Read more.
Phosphorus (P) stock scarcity is driving the need to develop alternatives to mineral fertilizers. The growing production of insects for high-protein feed results in significant amounts of residues (frass), which can be used as fertilizers. However, its efficiency as such a basic indicator for promoting the recycling of these residues has been rarely assessed. This work aimed to evaluate the efficiency of frass as a P fertilizer. To this end a study was conducted involving P fractionation of frass from two different species (TM: Tenebrio molitor and BSF: black soldier fly or Hermetia illucens) together with vermicompost and a 48-day pot experiment with lettuce (Lactuca sativa). In both frasses, water-soluble P and organic P accounted for more than 30% and 50% of total P, respectively. These P fractions explained the short- and long-term effects of frasses as P fertilizer, which showed a higher P use efficiency than mineral phosphate and vermicompost, with mineral fertilizer replacement values (MFRVs) of 150 and 180% for BSF and TM frass, respectively. Additionally, frass increased P bioavailability in soils more than superphosphate and boosted C and P cycling, thereby enhancing the soil P availability to plants. Therefore, frasses can be effective alternatives to mineral P fertilizers which also contribute to the enhancement of soil health indicators. Full article
Show Figures

Figure 1

17 pages, 1880 KiB  
Article
Dual-Phase Ocular Insert with Bromfenac-Loaded PLGA MPs in a PVA Matrix for Sustained Postoperative Anti-Inflammatory Delivery
by Farhan Alshammari, Bushra Alshammari, Asma Khalaf Alshamari, Kaushik Sarkar and Raghu Raj Singh Thakur
Pharmaceutics 2025, 17(8), 1066; https://doi.org/10.3390/pharmaceutics17081066 - 17 Aug 2025
Viewed by 475
Abstract
Background: Postoperative ocular inflammation is a frequent complication of eye surgeries commonly managed using corticosteroids or nonsteroidal anti-inflammatory drug (NSAIDs) eye drops. However, poor ocular bioavailability and patient non-adherence due to frequent dosing limit the therapeutic efficacy of conventional eye drops. This study [...] Read more.
Background: Postoperative ocular inflammation is a frequent complication of eye surgeries commonly managed using corticosteroids or nonsteroidal anti-inflammatory drug (NSAIDs) eye drops. However, poor ocular bioavailability and patient non-adherence due to frequent dosing limit the therapeutic efficacy of conventional eye drops. This study aimed to develop a sustained-release ocular insert containing bromfenac sodium (BS)-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) with an initial 3% (w/w) free BS fraction incorporated into a poly(vinyl alcohol) (PVA) matrix designed to achieve a dual-phase release profile for improved postoperative therapy. Methods: PLGA-based MPs were fabricated using a double emulsion solvent evaporation technique and incorporated into PVA films to produce ocular inserts with varying MP content. Formulations were characterized for morphology, particle size, zeta potential, drug loading, entrapment efficiency, mucoadhesion, drug distribution, and in vitro release. Data were analyzed by an ANOVA and t-tests with p < 0.05 as significance. Results: MPs were smooth, spherical, and well-dispersed in the PVA inserts. Particle sizes ranged from 3.7 to 5.6 µm, with drug loading 7–8% and entrapment efficiencies 47–52%. Multiphoton imaging confirmed uniform drug distribution. In vitro release showed a dual-phase profile with an initial burst followed by sustained release for up to 4 days, with only negligible further release through Day 6 in one formulation (M1-7525). Conclusions: The developed BS-loaded PLGA MP/PVA insert demonstrated a dual-phase release profile relevant to postoperative ocular inflammation. Its biodegradable, single-application design holds promise for enhancing compliance and therapeutic outcomes in ophthalmic care. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

32 pages, 1548 KiB  
Review
The Dark Side of Vascular Aging: Noncoding Ribonucleic Acids in Heart Failure with Preserved Ejection Fraction
by Jianning Chen, Xiao Xiao, Charles Zhou, Yajing Zhang, James Rhee and Haobo Li
Cells 2025, 14(16), 1269; https://doi.org/10.3390/cells14161269 - 16 Aug 2025
Viewed by 592
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a growing global public health challenge, now accounting for approximately half of all heart failure cases and often linked to a systemic pathophysiological process in older adults with multiple comorbidities. Despite increasing recognition of the [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) represents a growing global public health challenge, now accounting for approximately half of all heart failure cases and often linked to a systemic pathophysiological process in older adults with multiple comorbidities. Despite increasing recognition of the vascular contributions to HFpEF, the precise molecular mechanisms, particularly the role of noncoding Ribonucleic Acids (ncRNAs) in mediating vascular aging and subsequent cardiac dysfunction, remain incompletely understood. This review provides a comprehensive overview of the mechanistic link between vascular aging and HFpEF, with a specific focus on the pivotal roles of ncRNAs in this complex interplay. We delineate the classification of vascular aging, its cellular hallmarks, including endothelial senescence, vascular smooth muscle cell phenotypic switching, and extracellular matrix remodeling, and its systemic implications, such as inflammaging, oxidative stress, and reduced nitric oxide bioavailability. We then detail how these vascular alterations, including increased ventricular afterload and impaired myocardial perfusion due to coronary microvascular dysfunction, contribute to HFpEF pathophysiology. The review extensively discusses recent findings on how diverse classes of ncRNAs, notably microRNAs, long noncoding RNAs, and circular RNAs, along with emerging evidence for PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and tRNA-derived small RNAs, regulate these vascular aging processes and serve as molecular bridges connecting vascular dysfunction to heart failure. In conclusion, understanding the regulatory landscape of ncRNAs in vascular aging may reveal novel biomarkers and therapeutic avenues, offering new strategies for precision medicine in HFpEF. Full article
(This article belongs to the Special Issue Molecular Pathogenesis of Cardiovascular Diseases)
Show Figures

Figure 1

22 pages, 1037 KiB  
Article
Nanoparticle-Driven Modulation of Soil Fertility and Plant Growth: Evaluating Fe2O3 and CuO Nanofertilizers in Sandy Loam Soils
by Beata Smolińska
Agronomy 2025, 15(8), 1967; https://doi.org/10.3390/agronomy15081967 - 15 Aug 2025
Viewed by 317
Abstract
The excessive use of conventional fertilizers has led to low nutrient-use efficiency and significant environmental challenges. To address these limitations, this study aimed to evaluate the effects of Fe2O3 and CuO nanoparticles (NPs) as potential nanofertilizers, on the soil chemical [...] Read more.
The excessive use of conventional fertilizers has led to low nutrient-use efficiency and significant environmental challenges. To address these limitations, this study aimed to evaluate the effects of Fe2O3 and CuO nanoparticles (NPs) as potential nanofertilizers, on the soil chemical composition, nutrient fractionation, enzyme activity, and Lepidium sativum L. growth. The results of the study showed that Fe2O3-NPs improved nitrogen bioavailability and enhanced plant biomass, particularly at low to moderate doses. CuO-NPs, in contrast, reduced nitrogen and phosphorus mobility and showed phytotoxic effects at high concentrations. Enzyme activity was suppressed at high NP levels, likely due to oxidative stress. Nutrient fractionation revealed the increased immobilization of phosphorus and the moderate mobilization of potassium and copper, depending on NP type. Based on the results, Fe2O3-NPs show potential as a nanofertilizer for enhancing soil fertility and plant growth in sandy loam soils, whereas CuO-NPs require caution due to toxicity risks. Future research should focus on long-term environmental impact, optimal NP concentrations, and their interaction with soil microbial communities. Full article
Show Figures

Figure 1

16 pages, 2190 KiB  
Article
Potentially Toxic Element Migration Characteristics and Bioavailability in Soils of the Black Shale Region, Western Zhejiang Province, China
by Huanyuan Chen, Baoliang Chen, Chunlei Huang, Xinzhe Lu, Ruosong Zou and Yutong Wei
Toxics 2025, 13(8), 679; https://doi.org/10.3390/toxics13080679 - 14 Aug 2025
Viewed by 401
Abstract
Some soil heavy metal pollution, such as As (Arsenic) and Cd (cadmium), in the black shale areas of western Zhejiang, exhibits significant geological background characteristics, yet the migration patterns and bioavailability are unclear. This study systematically integrated geochemical investigations of the rock-weathered soil–water–soil [...] Read more.
Some soil heavy metal pollution, such as As (Arsenic) and Cd (cadmium), in the black shale areas of western Zhejiang, exhibits significant geological background characteristics, yet the migration patterns and bioavailability are unclear. This study systematically integrated geochemical investigations of the rock-weathered soil–water–soil system to reveal the migration mechanisms and the species of the potentially toxic elements (PTEs) in black shale regions. The results showed that strongly acidic drainage (pH = 3.9) released from black shale weathering led to significant enrichment of Cd and As in soils. The mean Cd concentration (0.84 mg/kg) was 3.3 times higher than the Zhejiang background value, with active speciation (exchangeable fraction and humic acid-bound fraction) dominating during migration. This research provides a scientific basis for PTE prevention and control in geologically high-background regions. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

21 pages, 6637 KiB  
Article
Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils
by Junhuan Wang, Yue Geng, Hong Hou and Xianjun Li
Toxics 2025, 13(8), 674; https://doi.org/10.3390/toxics13080674 - 10 Aug 2025
Viewed by 560
Abstract
Soil co-contamination with antimony (Sb) and arsenic (As) presents significant ecological and human health risks, demanding effective stabilization solutions. This study evaluated iron–manganese-modified hydrochar (FMHC) for synergistic Sb-As stabilization in contaminated smelter soils. Through 60-day natural aging and 30 accelerated aging cycles, we [...] Read more.
Soil co-contamination with antimony (Sb) and arsenic (As) presents significant ecological and human health risks, demanding effective stabilization solutions. This study evaluated iron–manganese-modified hydrochar (FMHC) for synergistic Sb-As stabilization in contaminated smelter soils. Through 60-day natural aging and 30 accelerated aging cycles, we assessed stabilization performance using toxicity leaching tests (acid/water/TCLP), bioavailable fraction analysis, bioaccessibility assessment, and Wenzel sequential extraction. The key findings reveal that FMHC (5 wt%) achieves durable stabilization: (1) leaching concentrations remained stable post-aging (Sb: 0.3–4.5 mg·L−1, >70% stabilization; As: <0.4 mg·L−1, >94% stabilization); (2) bioavailable fractions showed maximum reductions of 64% (Sb) and 53% (As), though with some fluctuation; and (3) bioaccessible As was consistently reduced (55–77%), while Sb exhibited greater variability (maximum 58% reduction). Speciation analysis revealed similar stabilization pathways: Sb stabilization resulted from decreased non-specifically and specifically adsorbed fractions, while As stabilization involved the reduction in non-specifically/specifically adsorbed and amorphous to poorly crystalline Fe/Al hydrous oxide-bound fractions. These transformation mechanisms explain FMHC’s superior performance in converting labile Sb/As into stable forms, offering a sustainable solution for the green remediation of Sb-As co-contaminated soils in mining areas. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

19 pages, 3653 KiB  
Article
A Novel Integrated Strategy for Discovering Absorbable Anticoagulant Bioactive Peptides: A Case Study on Leech Protein Hydrolysates
by Ke-Xin Fang, Xi Sun, Liang-Ke Chen, Kun Wang, Chao-Jie Yang, Shan-Shan Mei, Chu-Ying Huang and Yao-Jun Yang
Molecules 2025, 30(15), 3184; https://doi.org/10.3390/molecules30153184 - 30 Jul 2025
Viewed by 430
Abstract
Medicinal plants and animal-derived proteins represent valuable natural sources of bioactive components with pharmaceutical potential. Whilst some medicinal plants and animal-derived proteins also offer rich sources of anticoagulant bioactive peptides, their development faces multiple challenges: anticoagulant evaluation relies on single-parameter assays with limited [...] Read more.
Medicinal plants and animal-derived proteins represent valuable natural sources of bioactive components with pharmaceutical potential. Whilst some medicinal plants and animal-derived proteins also offer rich sources of anticoagulant bioactive peptides, their development faces multiple challenges: anticoagulant evaluation relies on single-parameter assays with limited reliability, native proteins demonstrate suboptimal activity without enzymatic treatment, and few researchers investigate bioavailable peptides. Our study establishes an innovative framework using the leech as a case study to overcome these barriers. A novel anticoagulant evaluation model was first established with the Critic-G1 weighting method. And we optimized the enzymatically hydrolyzed extracts with high activity using Box–Behnken response surface methodology. Subsequently, the everted gut sac model was implemented to simulate intestinal absorption and screen for absorbable peptide fractions. Furthermore, peptidomics was employed to identify the bioactive peptides. Lastly, we identified the bioactivity using anticoagulation assays. Results indicated that the optimal hydrolysis conditions were achieved with trypsin at 50.48 °C, an enzyme-to-substrate ratio of 6.78%, 7.51 h, and pH of 8.06. The peptide DLRWM was identified through integrated peptidomics and molecular docking approaches, with subsequent activity validation demonstrating its potent anticoagulant effects. This study has successfully identified a novel anticoagulant peptide (DLRWM) with confirmed intestinal absorption properties and provides a template for unlocking the pharmaceutical potential of medicinal animal proteins. Full article
Show Figures

Figure 1

23 pages, 1316 KiB  
Article
The Mobility and Distribution of Lead and Cadmium in the Ecosystems of Two Lakes in Poland and Their Effect on Humans and the Environment
by Monika Rajkowska-Myśliwiec, Mikołaj Protasowicki and Agata Witczak
Water 2025, 17(15), 2255; https://doi.org/10.3390/w17152255 - 29 Jul 2025
Viewed by 426
Abstract
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the [...] Read more.
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the bottom sediments, in common reed and in the organs of pike, bream and roach. The work also evaluates Pb and Cd bioavailability in bottom sediments, their potential for biomagnification, their bioaccumulation in the food chain and risk to human consumers. Metal concentrations were determined by graphite furnace atomic absorption spectrometry (GFAAS). The geochemical fractions of the metals were isolated by sequential extraction. Both Pb and Cd demonstrated low bioavailability, with the carbonate fraction playing a key role in their bioconversion. The concentrations of Pb and Cd in some organs and tissue types of fish and reeds correlated with their levels in water and sediments. No biomagnification was observed between the studied fish species. Calculations based on BMDL, TWI and THQ concentrations found Pb and Cd levels in the edible parts of fish to be within permissible limits and not to pose any threat to consumer health. Full article
Show Figures

Figure 1

22 pages, 6478 KiB  
Article
Human Small Intestinal Tissue Models to Assess Barrier Permeability: Comparative Analysis of Caco-2 Cells, Jejunal and Duodenal Enteroid-Derived Cells, and EpiIntestinalTM Tissues in Membrane-Based Cultures with and Without Flow
by Haley L. Moyer, Leoncio Vergara, Clifford Stephan, Courtney Sakolish, Hsing-Chieh Lin, Weihsueh A. Chiu, Remi Villenave, Philip Hewitt, Stephen S. Ferguson and Ivan Rusyn
Bioengineering 2025, 12(8), 809; https://doi.org/10.3390/bioengineering12080809 - 28 Jul 2025
Viewed by 468
Abstract
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced [...] Read more.
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced physiological relevance but require comparative validation. We performed a head-to-head evaluation of Caco-2 cells, human jejunal (J2) and duodenal (D109) enteroid-derived cells, and EpiIntestinalTM tissues cultured on either static Transwell and flow-based MPS platforms. We assessed tissue morphology, barrier function (TEER, dextran leakage), and permeability of three model small molecules (caffeine, propranolol, and indomethacin), integrating the data into a physiologically based gut absorption model (PECAT) to predict human oral bioavailability. J2 and D109 cells demonstrated more physiologically relevant morphology and higher TEER than Caco-2 cells, while the EpiIntestinalTM model exhibited thicker and more uneven tissue structures with lower TEER and higher passive permeability. MPS cultures offered modest improvements in epithelial architecture but introduced greater variability, especially with enteroid-derived cells. Predictions of human fraction absorbed (Fabs) were most accurate when using static Caco-2 data with segment-specific corrections based on enteroid-derived values, highlighting the utility of combining traditional and advanced in vitro gut models to optimize predictive performance for Fabs. While MPS and enteroid-based systems provide physiological advantages, standard static models remain robust and predictive when used with in silico modeling. Our findings support the need for further refinement of enteroid-MPS integration and advocate for standardized benchmarking across gut model systems to improve translational relevance in drug development and regulatory reviews. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

25 pages, 689 KiB  
Article
Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion
by Dorota Sosnowska, Małgorzata Zakłos-Szyda, Dominika Kajszczak and Anna Podsędek
Molecules 2025, 30(14), 2976; https://doi.org/10.3390/molecules30142976 - 15 Jul 2025
Viewed by 307
Abstract
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions [...] Read more.
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions obtained after simulated in vitro digestion in the stomach, as well as in the small and large intestine. The results have demonstrated higher levels of total phenolics (by 70.35%) and total hydroxycinnamic acids (3.5 times increase), an increase in scavenging efficiency toward ABTS•+ and superoxide anion radicals, and an increase in the reduction potential (FRAP method) in the gastric bioaccessible fraction. In contrast, small intestinal digestion negatively affected phenolic content (a reduction of 53.30–75.63%), except for total hydroxycinnamic acids (3-fold increase). Incubation of the non-bioavailable fraction with bacterial enzymes led to further degradation. Undigested microgreens had no negative impact on Caco-2, HT-29, and SH-SY5Y cells’ metabolism at 0.05–2 mg/mL, while all digested samples at 1 mg/mL revealed their cytotoxic potential. All samples used at a non-cytotoxic concentration showed protective activity against H2O2 and corticosterone-induced oxidative stress generation as well as reduced proinflammatory cytokines production. Overall, radish microgreens may exhibit a broad spectrum of biological activities when consumed. Full article
Show Figures

Graphical abstract

18 pages, 2052 KiB  
Article
Distribution Characteristics of Cadmium in Soil Aggregates and Their Regulating Effects on Cd Bioavailability
by Ying Chen, Ya Zhang, Hanqing Li and Shiqiang Wei
Agriculture 2025, 15(14), 1514; https://doi.org/10.3390/agriculture15141514 - 14 Jul 2025
Viewed by 388
Abstract
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable [...] Read more.
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable soils, including acidic, neutral, and calcareous purple soils and calcareous yellow soil (APS, NPS, CPS, and CYS), were sampled from Chongqing, China, for aggregate separation and determination of the total Cd(T-Cd) distribution, fractionation, and extractability in various-sized aggregates. A pot experiment with ryegrass (Lolium perenne L.) was conducted to evaluate the Cd bioavailability in bulk soils as influenced by aggregates. The results show that the composition of soil aggregates varies a lot among soils: lower soil pH tends to increase the proportion of macroaggregates while decreasing that of smaller aggregates. The Cd distribution, HCl-extractability, and active fraction (AF, T-Cd/HCl-Cd) in aggregates are all soil type-dependent, with pH and particle size being the main determining factors; the distribution pattern of Cd concentrated in smaller aggregates is only found for CPS and CYS (pH > 7.5) upon exogenous Cd addition, though the finest aggregates (silt–clay, <0.053 mm) consistently exhibited the highest Cd enrichment for all tested soils. The Cd extractability and AF values in all aggregates show a sequence of APS > NPS > CPS > CYS, indicating the fundamental influence of soil pH on Cd availability. Higher AF values over bulk soils, either in silt–clay aggregates or in microaggregates (0.053–0.25 mm), whereas lower AF in macroaggregates (1–2 mm) are found for APS and NPS, which correspond to the relative portions of Ex-Cd and Fe/Mn oxide-bound Cd (Fe/Mn-Cd) in these aggregates. In contrast, less variation of AF values among aggregates is observed for CPS and CYS and for APS/NPS upon Cd addition. Pot experiments demonstrated strong positive correlations between ryegrass Cd uptake and HCl-Cd in silt–clay aggregates and T-Cd in microaggregates, while a negative correlation was observed with T-Cd in macroaggregates. These findings supply new insight into the mechanisms of aggregates in controlling Cd bioavailability in bulk soils and shed light on the development of new strategies for remediating Cd-polluted soils. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Remediation in Agricultural Soils)
Show Figures

Figure 1

24 pages, 886 KiB  
Review
Cosmeceutical and Dermatological Potential of Olive Mill Wastewater: A Sustainable and Eco-Friendly Source of Natural Ingredients
by Adriana Albini, Paola Corradino, Danilo Morelli, Francesca Albini and Douglas Noonan
Cosmetics 2025, 12(4), 142; https://doi.org/10.3390/cosmetics12040142 - 3 Jul 2025
Viewed by 2012
Abstract
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. [...] Read more.
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. Key polyphenols such as hydroxytyrosol, oleuropein, and tyrosol exhibit potent antioxidant, anti-inflammatory, antimicrobial, and photoprotective effects. These compounds mitigate oxidative stress, prevent collagen degradation, modulate NF-κB and MAPK signaling, and promote cellular repair and regeneration. Skin health is increasingly recognized as crucial to overall well-being, driving interest in cosmeceuticals that combine cosmetic benefits with dermatological activity. This review examines the cosmeceutical and dermatological potential of OMWW, highlighting its incorporation into innovative topical formulations like oil-in-water nanoemulsions, liposomes, and microneedles that enhance skin penetration and bioavailability. Additionally, OMWW fractions have shown selective antiproliferative effects on melanoma cells, suggesting potential for skin cancer prevention. Valorization of OMWW through biorefinery processes aligns with circular-economy principles, converting agro-industrial waste into sustainable cosmeceutical ingredients. This approach not only meets consumer demand for natural, effective products, but also reduces the ecological footprint of olive oil production, offering a scalable, eco-friendly strategy for next-generation dermatological applications. Full article
Show Figures

Figure 1

26 pages, 9572 KiB  
Article
Geochemical Characteristics and Risk Assessment of PTEs in the Supergene Environment of the Former Zoige Uranium Mine
by Na Zhang, Zeming Shi, Chengjie Zou, Yinghai Zhu and Yun Hou
Toxics 2025, 13(7), 561; https://doi.org/10.3390/toxics13070561 - 30 Jun 2025
Viewed by 328
Abstract
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly [...] Read more.
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly at river confluences and downstream regions, attributed to leachate migration from ore bodies and tailings ponds. Surface samples exhibited high Cd bioavailability. The integrated BCR and mineral analysis reveals that Acid-soluble and reducible fractions of Ni, Cu, Zn, As, and Pb are governed by carbonate dissolution and Fe-Mn oxide dynamics via silicate weathering, while residual and oxidizable fractions show weak mineral-phase dependencies. Positive Matrix Factorization identified natural lithogenic, anthropogenic–natural composite, mining-related sources. Pollution assessments using geo-accumulation index and contamination factor demonstrated severe contamination disparities: soils showed extreme Cd pollution, moderate U, As, Zn contamination, and no Cr, Pb pollution (overall moderate risk); sediments exhibited extreme Cd pollution, moderate Ni, Zn, U levels, and negligible Cr, Pb impacts (overall extreme risk). USEPA health risk models indicated notable non-carcinogenic (higher in adults) and carcinogenic risks (higher in children) for both age groups. Ecological risk assessments categorized As, Cr, Cu, Ni, Pb, and Zn as low risk, contrasting with Cd (extremely high risk) and sediment-bound U (high risk). These findings underscore mining legacy as a critical environmental stressor and highlight the necessity for multi-source pollution mitigation strategies. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

23 pages, 7080 KiB  
Article
Distribution Characteristics of High-Background Elements and Assessment of Ecological Element Activity in Typical Profiles of Ultramafic Rock Area
by Jingtao Shi, Junjian Liu, Suduan Hu and Jiangyulong Wang
Toxics 2025, 13(7), 558; https://doi.org/10.3390/toxics13070558 - 30 Jun 2025
Viewed by 435
Abstract
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements [...] Read more.
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements (e.g., chromium (Cr) and nickel (Ni)) through precise sampling, the Tessier five-step sequential extraction method, and a migration coefficient model. Key findings include: (1) Element distribution and controlling mechanisms: The average Cr and Ni contents in the serpentinite profile are significantly higher than those in pyroxenite. However, the semi-weathered pyroxenite layer exhibits an inverted Cr enrichment ratio in relation to serpentinite, 1.8× and 1.2×, respectively, indicating that mineral metasomatic sequences driven by hydrothermal alteration dominate element differentiation; the phenomenon of inverted enrichment of high-background elements occurs in the weathering crust profiles of the two basic rocks. (2) Dual impacts of mining activities on heavy metal enrichment: Direct mining increases topsoil Cr content in serpentinite by 40% by disrupting parent material homology, while indirect activities introduce exogenous Zn and Cd (Spearman correlation coefficients with Cr/Ni are from ρ = 0.58 to ρ = 0.72). Consequently, the bioavailable fraction ratio value of Ni outside the mining area (21.14%) is significantly higher than that within the area (14.30%). (3) Element speciation and ecological element activity: Over 98% of Cr in serpentine exists in residual fractions, whereas the Fe-Mn oxide-bound fraction (F3) of Cr in extra-mining pyroxenite increases to 5.15%. The element activity in ecological systems ranking of Ni in soil active fractions (F1 + F2 = 15%) follows the order: granite > pyroxenite > serpentine. Based on these insights, a scientific foundation for targeted remediation in high-background areas (e.g., prioritizing the treatment of semi-weathered pyroxenite layers) can be provided. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

18 pages, 1849 KiB  
Article
Composting as a Sustainable Approach for Managing Mercury-Contaminated Aquatic Biomass
by María José Caraballo-Laza, Diana Marcela Ossa-Henao, Iván Urango-Cardenas, Mauricio Rosso-Pinto, Jean Remy Davée Guimarães, Roberth Paternina-Uribe, Yuber Palacios-Torres and José Marrugo-Negrete
Toxics 2025, 13(7), 553; https://doi.org/10.3390/toxics13070553 - 29 Jun 2025
Viewed by 393
Abstract
In this study, composting as an alternative approach for managing mercury-contaminated biomass in water bodies affected by gold mining in the Choco department was evaluated. A single-factor experiment with three treatments containing varying amounts of Eleocharis interstincta biomass sourced from mercury-contaminated sites was [...] Read more.
In this study, composting as an alternative approach for managing mercury-contaminated biomass in water bodies affected by gold mining in the Choco department was evaluated. A single-factor experiment with three treatments containing varying amounts of Eleocharis interstincta biomass sourced from mercury-contaminated sites was designed. During the composting process, physicochemical parameters were monitored such as temperature, pH, and electrical conductivity, while analyzing the behavior of mercury through mass balance assessments. Additionally, we determined the bioavailability of mercury in the final compost and characterized the physicochemical parameters of each compost sample. The mercury mass balance indicated a decrease in the total mercury content in the initial biomass over the composting period of 170 days. However, the total mercury concentration in the final compost increased due to the transformation and subsequent reduction of the original biomass. Mercury speciation analysis revealed that mercury was predominantly associated with the less bioavailable fractions (F4 and F5), suggesting its stabilization and low availability to biota. Therefore, the final compost has the potential to restore degraded soils by improving moisture retention, porosity, and soil fertility, thereby promoting plant growth. However, it does not fully meet the national and international technical standards for solid organic fertilizers or compost. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop