Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation and Modification of Hydrochar
2.3. Soil Samples and Their Physicochemical Properties
2.4. Extraction and Detection of Antimony and Arsenic in Soil
2.5. Stabilization of Sb and As in Soil of Antimony Mining Area: Short-Term and Long-Term Effects
2.5.1. Effect of Material Dosage on Short-Term Stabilization Effect
2.5.2. Comprehensive Evaluation of the Short-Term Stabilization Effect of Sb/As by FMHC
2.5.3. Comprehensive Evaluation of the Long-Term Stabilization Effect of Sb/As by FMHC
2.6. Figures
3. Results
3.1. Stabilization of Sb/As in Soil by HC and FMHC: Effect of Dosage
3.2. Stabilization Effect of Sb/As by FMHC: Short-Term and Long-Term
3.2.1. Evaluation Based on Leaching Toxicity
3.2.2. Evaluation Based on Bioavailability
3.2.3. Evaluation Based on Bioaccessibility
3.3. Stabilization Mechanism of Sb/As via FMHC: Change in Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, W.; Ran, Y.; Mou, Y.; Cui, Y.; Sun, B.; Yu, L.; Wan, D.; Hu, D.; Zhao, P. Pollution characteristics and risk assessment of antimony and arsenic in a typical abandoned antimony smelter. Environ. Geochem. Health 2023, 45, 5467–5480. [Google Scholar] [CrossRef]
- Li, Q.; Cao, Y.; Meng, T.; He, L.; Zhang, S. Biogeochemical behavior, health risk assessment and source identification of antimony and arsenic in soil from a legacy antimony smelter in Gansu, Northwest China. Environ. Sci. Eur. 2023, 35, 114. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Wang, H.; Qin, H.; Fu, Z. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. J. Environ. Manag. 2021, 289, 112493. [Google Scholar] [CrossRef] [PubMed]
- Adlassnig, W.; Schmidt, B.; Jirsa, F.; Gradwohl, A.; Ivesic, C.; Koller-Peroutka, M. The Arsenic–Antimony Creek at Sauerbrunn/Burgenland, Austria: A Toxic Habitat for Amphibians. Int. J. Environ. Res. Public Health 2022, 19, 6010. [Google Scholar] [CrossRef] [PubMed]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Shahzad Munir, H.M.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S.; et al. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environ. Res. 2022, 214, 113918. [Google Scholar] [CrossRef]
- Xue, R.; Zhao, Q.; Yuan, L.; Wei, L.; Jiang, J.; Ding, J.; Wang, K.; Wang, Y. Review of Fe/Mn-based chemical stabilizers for remediating arsenic and antimony co-contaminated soil. J. Environ. Manag. 2025, 387, 125879. [Google Scholar] [CrossRef]
- Hiller, E.; Jurkovič, Ľ.; Faragó, T.; Vítková, M.; Tóth, R.; Komárek, M. Contaminated soils of different natural pH and industrial origin: The role of (nano) iron- and manganese-based amendments in As, Sb, Pb, and Zn leachability. Environ. Pollut. 2021, 285, 117268. [Google Scholar] [CrossRef]
- Guo, J.; Yin, Z.; Zhong, W.; Jing, C. Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron. J. Environ. Sci. 2022, 112, 152–160. [Google Scholar] [CrossRef]
- Chu, D.; Dong, H.; Li, Y.; Xiao, J.; Xiang, S.; Dong, Q.; Hou, X. Insights into the correlation between different adsorption/oxidation/catalytic performance and physiochemical characteristics of Fe-Mn oxide-based composites. J. Hazard. Mater. 2022, 439, 129631. [Google Scholar] [CrossRef]
- Lin, L.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z.; Chau, H.W. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicol. Environ. Saf. 2017, 144, 514–521. [Google Scholar] [CrossRef]
- Lin, L.; Gao, M.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environ. Pollut. 2017, 231, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, Z.; Liu, X.; Qiu, W.; Song, Z. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environ. Pollut. 2019, 244, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, J.; Li, C.; Chen, Y.; Zheng, L.; Ding, D.; Shan, S. Synergistic mechanism of iron manganese supported biochar for arsenic remediation and enzyme activity in contaminated soil. J. Environ. Manag. 2023, 347, 119127. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Ji, H.-Y.; Lyu, H.-H.; Liu, Y.-X.; He, L.-L.; You, L.-C.; Zhou, C.-H.; Yang, S.-M. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam. After amendment with Fe–Mn-Modified biochar. J. Clean. Prod. 2019, 231, 556–564. [Google Scholar] [CrossRef]
- Han, J.; Zhao, C.; Yang, M.; Ye, M.; Li, Y.; Zhou, K.; Zhang, J.; Song, P. Comparative Remediation of Arsenic and Antimony Co-Contaminated Soil by Iron- and Manganese-Modified Activated Carbon and Biochar. Toxics 2024, 12, 740. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Liu, R.; Qu, J. Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J. Hazard. Mater. 2009, 168, 820–825. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, J.; Liu, H.; Liu, R.; Wu, R. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007, 41, 1921–1928. [Google Scholar] [CrossRef]
- HJ 658-2013; Soil—Determination of Organic Carbon—Combustion Oxidation—Titration Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2013.
- HJ 889-2017; Soil Quality—Determination of Cation Exchange Capacity (CEC)—Hexamminecobalt Trichloride Solution-Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2017.
- HJ/T 299-2007; Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2007.
- HJ 557-2010; Solid Waste-Extraction Procedure for Leaching Toxicity-Horizontal Vibration Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2010.
- SW-846 Test Method 1311; Toxicity Characteristic Leaching Procedure. Environmental Protection Agency: Washington, DC, USA, 1992.
- Zhong, Q.; Ma, C.; Chu, J.; Wang, X.; Liu, X.; Ouyang, W.; Lin, C.; He, M. Toxicity and bioavailability of antimony in edible amaranth (Amaranthus tricolor Linn.) cultivated in two agricultural soil types. Environ. Pollut. 2020, 257, 113642. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Zhao, L.; Zhang, J.; Shangguan, Y.; Li, F.; Hou, H. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicol. Environ. Saf. 2014, 110, 308–315. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.; Wang, D.; Shen, M.; Hu, D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J. Hazard. Mater. 2020, 398, 122977. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Netherway, P.; Eshtiaghi, N.; Paz-Ferreiro, J. Arsenic immobilization in soil affected by mining waste using waste-derived functional hydrochar and iron-encapsulated materials. J. Environ. Qual. 2023, 52, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Fu, Z.; Lu, H.; Sun, Y.; Shen, Y.; Wu, F. Antimony and arsenic interactions with iron oxides and aluminum oxides in surface environment: A review focused on processes and mechanisms. Sci. Total Environ. 2025, 979, 179423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Du, Y.; Feng, Y.; Sun, H.; Xia, W.; Yuan, H. Stabilization of arsenic and antimony Co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms. Chemosphere 2022, 301, 134644. [Google Scholar] [CrossRef]
- Bagherifam, S.; Lakzian, A.; Fotovat, A.; Khorasani, R.; Komarneni, S. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: Bioaccessibility, bioavailability and speciation studies. J. Hazard. Mater. 2014, 273, 247–252. [Google Scholar] [CrossRef]
- Yang, X.; Fan, J.; Jiang, L.; Zhu, F.; Yan, Z.; Li, X.; Jiang, P.; Li, X.; Xue, S. Using Fe/H2O2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. Sci. Total Environ. 2024, 912, 168775. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Z.; Fu, P.; Wang, X.; Xue, T.; Chen, Y. Simultaneous stabilization of arsenic and antimony co-contaminated mining soil by Fe(II) activated-Fenton sludge: Behavior and mechanisms. Environ. Pollut. 2023, 337, 122538. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, T.; He, M.; Liu, X.; Lin, C.; Ouyang, W. Simultaneous stabilization of Sb and As co-contaminated soil by FeMg modified biochar. Sci. Total Environ. 2022, 830, 154831. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Li, G.; Luo, J.; Bolan, N.S.; Hou, D. Long-term immobilization of soil metalloids under simulated aging: Experimental and modeling approach. Sci. Total Environ. 2022, 806, 150501. [Google Scholar] [CrossRef]
- Hei, E.; He, M.; Zhang, E.; Yu, H.; Chen, K.; Qin, Y.; Zeng, X.; Zhou, Z.; Fan, H.; Shangguan, Y.; et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles. Environ. Monit. Assess. 2024, 196, 448. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, X.a.; Li, X. Remediation of As(III)-contaminated soil by biochar-loaded Fe-Mn oxides: Remediation efficiency and mechanism. Environ. Res. 2025, 270, 121008. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, J.; Li, C.; Chen, H.; Fang, Z.; Adusei-Fosu, K.; Wang, Y.; Trakal, L.; Wang, H. A novel magnetic graphene-loaded biochar gel for the remediation of arsenic- and antimony-contaminated mining soil. Sci. Total Environ. 2024, 927, 172149. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, X.; Wang, P.; Yu, Y.; Sun, L.; Li, M. Influence of freeze-thaw process on As migration and microorganisms in aggregates of paddy soil. J. Environ. Manag. 2024, 370, 122847. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Wang, F.; Sakanakura, H.; Tabelin, C.B. Effective immobilization of geogenic As and Pb in excavated marine sedimentary material by magnesia under wet–dry cycle, freeze–thaw cycle, and anaerobic exposure scenarios. Sci. Total Environ. 2022, 848, 157734. [Google Scholar] [CrossRef]
- Yang, J.-K.; Barnett, M.O.; Jardine, P.M.; Basta, N.T.; Casteel, S.W. Adsorption, Sequestration, and Bioaccessibility of As(V) in Soils. Environ. Sci. Technol. 2002, 36, 4562–4569. [Google Scholar] [CrossRef]
- Hassan, M.U.; Guoqin, H.; Nawaz, M.; Shah, A.N.; Li, S.; Khan, T.A.; Al-Anazi, K.M.; Noor, M.A.; Rasheed, A.; Huifang, X.; et al. Simultaneous alleviation of antimony toxicity in rice and in-Vitro bio-accessibility by using biochar and seaweed based fertilizer blend. Environ. Pollut. 2025, 366, 125259. [Google Scholar] [CrossRef]
- Lima, J.Z.; Rodrigues, V.G.S. Effects of Biochar on Arsenic-Contaminated Soil: Chemical Fractionation, Vegetation Growth, and Oral Bioaccessibility. Environ. Manag. 2025, 75, 392–401. [Google Scholar] [CrossRef]
- Alankarage, D.; Betts, A.; Scheckel, K.G.; Herde, C.; Cavallaro, M.; Juhasz, A.L. Remediation options to reduce bioaccessible and bioavailable lead and arsenic at a smelter impacted site—Consideration of treatment efficacy. Environ. Pollut. 2024, 341, 122881. [Google Scholar] [CrossRef]
- Hu, L.; Xu, X.; Gui, X.; Liang, J.; Zhao, L.; Qiu, H.; Cao, X. Time-dependent redistribution of soil arsenic induced by transformation of iron species during zero-valent iron biochar composites amendment: Effects on the bioaccessibility of As in soils. Sci. Total Environ. 2024, 955, 176956. [Google Scholar] [CrossRef]
- Aftabtalab, A.; Rinklebe, J.; Shaheen, S.M.; Niazi, N.K.; Moreno-Jiménez, E.; Schaller, J.; Knorr, K.-H. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere 2022, 286, 131790. [Google Scholar] [CrossRef]
- Kim, H.-B.; Kim, S.-H.; Jeon, E.-K.; Kim, D.-H.; Tsang, D.C.W.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M.; Bundschuh, J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar] [CrossRef]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Pan, H.; Yang, X.; Chen, H.; Sarkar, B.; Bolan, N.; Shaheen, S.M.; Wu, F.; Che, L.; Ma, Y.; Rinklebe, J.; et al. Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil. Sci. Total Environ. 2021, 763, 144218. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ni, Q.; Lin, Q.; Khan, K.Y.; Li, T.; Khan, M.B.; He, Z.; Yang, X. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars. Environ. Pollut. 2017, 229, 394–402. [Google Scholar] [CrossRef]
Parameters | Soil#1 a | Soil#2 a |
---|---|---|
pH | 8.55 | 7.96 |
EC (mS/m) | 151.7 | 150.7 |
CEC (cmol(+)·kg−1) | 33.2 | 32.8 |
TOC (%) | 0.764 | 0.485 |
Sand (0.05–2 mm)% | 27.4 | 14 |
Silt (0.002–0.05 mm)% | 52.2 | 51.2 |
Clay (<0.002 mm)% | 20.3 | 34.8 |
Total Sb (mg·kg−1) | 661.98 ± 71.91 | 238.69 ± 32.97 |
Total As (mg·kg−1) | 51.79 ± 4.21 | 25.04 ± 2.11 |
Extraction Agents | Solid/Liquid Ratio | Extraction Conditions | |
---|---|---|---|
Single-Step Extraction | |||
HNO3-H2SO4 a | A 2:1 (v/v) H2SO4-HNO3 mixture was added dropwise to deionized (DI) water to achieve pH 3.20 | 1.0 g/10 mL | 25 °C/30 rpm/18 h |
H2O b | DI water | 1.0 g/10 mL | 25 °C/110 rpm/8 h, stand for 16 h |
TCLP c | In total, 5.7 mL of glacial acetic acid was diluted to 1 L with distilled water (pH = 2.88) | 1.0 g/20 mL | 25 °C/30 rpm/18 h |
Bioavailability d | 0.1 M Na2HPO4 | 1.0 g/10 mL | 20 °C/200 rpm/2 h |
Bioaccessibility PBET e | PBETG (gastric phase): A total of 1.25 g pepsin, 0.5 g sodium malate, and 0.5 g sodium citrate were mixed with 420 μL lactic acid and 500 μL glacial acetic acid. The pH was adjusted to 1.5 with HCl, and the solution was diluted to 1.0 L with DI water | 0.4 g/40 mL | 37 °C/60 rpm/1 h, stand for 15 min |
PBETI (intestinal phase): A total of 70 mg of bile salts and 20 mg of trypsin were added to 40 mL of the simulated gastric juice extracts, and the pH of the mixture was adjusted to 7.0 with saturated NaHCO3 | 37 °C/60 rpm/4 h | ||
Wenzel SEP f | |||
F1 (Non-specifically sorbed (easily mobilizable, outer-sphere complexes)) | 0.05 M (NH4)2SO4 | 1.0 g/25 mL | 25 °C/4 h |
F2 (Specifically sorbed (readily mobilizable, inner-sphere complexes)) | 0.05 M NH4H2PO4 | 1.0 g/25 mL | 25 °C/16 h |
F3 (Amorphous and poorly crystalline hydrous oxides of Fe and Al) | 0.2 M NH4-oxalate (pH = 3.25) | 1.0 g/25 mL | 25 °C/4 h |
F4 (Well-crystallized hydrous oxides of Fe and Al) | 0.2 M NH4-oxalate + 0.1 M ascorbic (pH = 3.25) | 1.0 g/25 mL | 96 °C/0.5 h |
F5 (Residual) | HF–HNO3–HClO4 (v/v/v = 1:3:2) | 0.1 g/50 mL | Digestion under 180 °C, near dryness |
Proportion of Extractable Part in Total Amount | ||||||||
---|---|---|---|---|---|---|---|---|
Extraction | Soil#1-Sb | Soil#2-Sb | Soil#1-As | Soil#2-As | ||||
Control a | FMHC b | Control a | FMHC b | Control a | FMHC b | Control a | FMHC b | |
H2O | 6.77% | 1.27% | 1.52% | 0.22% | 6.55% | 0.22% | 0.28% | 0.01% |
HNO3-H2SO4 | 4.99% | 1.09% | 1.29% | 0.20% | 4.89% | 0.20% | 0.20% | 0.01% |
TCLP | 8.35% | 1.84% | 2.71% | 0.49% | 5.72% | 0.49% | 1.38% | 0.03% |
Na2HPO4 | 6.51% | 3.59% | 3.05% | 1.92% | 15.07% | 1.92% | 6.11% | 4.95% |
PBET-G | 20.04% | 12.72% | 9.62% | 7.37% | 14.65% | 7.37% | 9.30% | 3.70% |
PBET-I | 20.88% | 12.44% | 10.31% | 8.38% | 13.99% | 8.38% | 8.46% | 2.07% |
F1 | 3.36% | 1.16% | 1.28% | 0.45% | 6.70% | 0.45% | 1.03% | 0.005% |
F2 | 9.92% | 5.69% | 3.33% | 1.74% | 18.52% | 1.74% | 8.88% | 6.82% |
F3 | 8.10% | 9.12% | 5.83% | 5.24% | 9.01% | 5.24% | 8.41% | 5.30% |
F4 | 34.74% | 39.91% | 54.05% | 51.81% | 30.76% | 51.81% | 23.89% | 27.74% |
F5 | 35.51% | 40.76% | 35.51% | 40.76% | 57.79% | 40.76% | 57.79% | 60.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Geng, Y.; Hou, H.; Li, X. Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils. Toxics 2025, 13, 674. https://doi.org/10.3390/toxics13080674
Wang J, Geng Y, Hou H, Li X. Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils. Toxics. 2025; 13(8):674. https://doi.org/10.3390/toxics13080674
Chicago/Turabian StyleWang, Junhuan, Yue Geng, Hong Hou, and Xianjun Li. 2025. "Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils" Toxics 13, no. 8: 674. https://doi.org/10.3390/toxics13080674
APA StyleWang, J., Geng, Y., Hou, H., & Li, X. (2025). Iron–Manganese-Modified Hydrochar for Synergistic Stabilization of Antimony and Arsenic in Smelter-Impacted Soils. Toxics, 13(8), 674. https://doi.org/10.3390/toxics13080674