Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Equipment
2.2.1. Portable Hirst-Type Volumetric Sampler—FlyHirst
2.2.2. Isokinetic Impactor
2.2.3. Optical Particle Counter
2.2.4. Airborne Instrument Platform
2.3. Sampling Flights
2.4. Analysis of Samples and Data
3. Results
3.1. FlyHirst Performance
3.2. Variation in Diversity and Quantity of Airborne Pollen and Fungal Spores
3.3. Spore and Pollen Measurements at Monitoring Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBL | Planetary Boundary Layer |
a.g.l. | Above ground level |
a.s.l. | Above sea level |
AI | Artificial intelligence |
NGS | Next-generation sequencing |
OPC | Optical particle counter |
UL | Ultralight (aircraft) |
References
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Yang, J.; Seo, J.H.; Jee, Y.K.; Kim, Y.K.; Sohn, J.R. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized. Aerosol Air Qual. Res. 2023, 23, 210231. [Google Scholar] [CrossRef]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-Time Sensing of Bioaerosols: Review and Current Perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef]
- Buters, J.; Clot, B.; Galán, C.; Gehrig, R.; Gilge, S.; Hentges, F.; O’Connor, D.; Sikoparija, B.; Skjoth, C.; Tummon, F.; et al. Automatic Detection of Airborne Pollen: An Overview. Aerobiologia 2024, 40, 13–37. [Google Scholar] [CrossRef]
- EN 16868:2019; Ambient Air-Sampling and Analysis of Airborne Pollen Grains and Fungal Spores for Networks Related to Allergy-Volumetric Hirst Method CEN, Brussels . German Institute for Standardisation: Berlin, Germany, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/5f1349aa-f4cc-430a-978e-3044737e3f28/en-16868-2019 (accessed on 22 July 2025).
- Hirst, J.M. An Automatic Volumetric Spore Trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Zweifel, U.L.; Hagström, Å.; Holmfeldt, K.; Thyrhaug, R.; Geels, C.; Frohn, L.; Skjøth, C.A.; Gosewinkel, U.B. High Bacterial 16S rRNA Gene Diversity above the Atmospheric Boundary Layer. Aerobiologia 2012, 28, 481–498. [Google Scholar] [CrossRef]
- Damialis, A.; Kaimakamis, E.; Konoglou, M.; Akritidis, I.; Traidl-Hoffmann, C.; Gioulekas, D. Estimating the Abundance of Airborne Pollen and Fungal Spores at Variable Elevations Using an Aircraft: How High Can They Fly? Sci. Rep. 2017, 7, 44535. [Google Scholar] [CrossRef]
- Rodó, X.; Pozdniakova, S.; Borràs, S.; Matsuki, A.; Tanimoto, H.; Armengol, M.-P.; Pey, I.; Vila, J.; Muñoz, L.; Santamaria, S.; et al. Microbial Richness and Air Chemistry in Aerosols above the PBL Confirm 2,000-Km Long-Distance Transport of Potential Human Pathogens. Proc. Natl. Acad. Sci. USA 2024, 121, e2404191121. [Google Scholar] [CrossRef]
- Crazzolara, C.; Ebner, M.; Platis, A.; Miranda, T.; Bange, J.; Junginger, A. A New Multicopter-Based Unmanned Aerial System for Pollen and Spores Collection in the Atmospheric Boundary Layer. Atmos. Meas. Tech. 2019, 12, 1581–1598. [Google Scholar] [CrossRef]
- Comtois, P.; Fernández-González, D.; Valencia-Barrera, R.M.; Sánchez, J.L.; Fraile, R.; Rodier, S. Pollen Content Study of the Lower Atmosphere in León (Spain) by Use of a Tethered Balloon. Aerobiologia 2000, 16, 187–191. [Google Scholar] [CrossRef]
- Bieber, P.; Seifried, T.M.; Burkart, J.; Gratzl, J.; Kasper-Giebl, A.; Schmale, D.G.; Grothe, H. A Drone-Based Bioaerosol Sampling System to Monitor Ice Nucleation Particles in the Lower Atmosphere. Remote Sens. 2020, 12, 552. [Google Scholar] [CrossRef]
- Sikoparija, B.; Mimić, G.; Matavulj, P.; Panić, M.; Simović, I.; Brdar, S. Short Communication: Do We Need Continuous Sampling to Capture Variability of Hourly Pollen Concentrations? Aerobiologia 2020, 36, 3–7. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, P.; Schulte, N.; Zhou, X.; Mara, S.; Croes, B.; Herner, J.; Vijayan, A. A New Mobile Monitoring Approach to Characterize Community-Scale Air Pollution Patterns and Identify Local High Pollution Zones. Atmos. Environ. 2022, 272, 118936. [Google Scholar] [CrossRef]
- Plaza, M.P.; Charalampopoulos, A.; Leier-Wirtz, V.; Ørby, P.V.; Kloster, M.; Christiansen, M.D.; Traidl-Hoffmann, C.; Damialis, A.; Gosewinkel, U. Optimisation of Bioaerosol Sampling Using an Ultralight Aircraft: A Novel Approach in Determining the 3-D Atmospheric Biodiversity. Heliyon 2024, 10, e38924. [Google Scholar] [CrossRef]
- Den Komplette Pollenkalender-Astma-Allergi Danmark. Available online: https://www.astma-allergi.dk/pollenservices/den-komplette-pollenkalender/ (accessed on 22 July 2025).
- Grawe, S.; Jentzsch, C.; Schaefer, J.; Wex, H.; Mertes, S.; Stratmann, F. Next-Generation Ice-Nucleating Particle Sampling on Board Aircraft: Characterization of the High-Volume Flow aERosol Particle Filter sAmpler (HERA). Atmos. Meas. Tech. 2023, 16, 4551–4570. [Google Scholar] [CrossRef]
- Thomas, D.C.; Gosewinkel, U.; Christiansen, M.D.; Frohn, L.M.; Ye, Z.; Massling, A.; Skov, H. Application of Ultralight Aircraft for Aerosol Measurement Within and Above the Planetary Boundary Layer Above the City of Copenhagen. Atmosphere 2025, 16, 39. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Valkama, I.; Ilvonen, M.; Kukkonen, J. A Dispersion Modelling System SILAM and Its Evaluation against ETEX Data. Atmos. Environ. 2006, 40, 674–685. [Google Scholar] [CrossRef]
- Sofiev, M.; Genikhovich, E.; Keronen, P.; Vesala, T. Diagnosing the Surface Layer Parameters for Dispersion Models within the Meteorological-to-Dispersion Modeling Interface. J. Appl. Meteorol. Climatol. 2010, 49, 221–223. [Google Scholar] [CrossRef]
- GPS Elevation Calculator-Online Location (Lat/Long) Altitude Finder. Available online: https://www.dcode.fr/earth-elevation (accessed on 22 July 2025).
- Oteros, J.; Galán, C.; Alcázar, P.; Domínguez-Vilches, E. Quality Control in Bio-Monitoring Networks, Spanish Aerobiology Network. Sci. Total Environ. 2013, 443, 559–565. [Google Scholar] [CrossRef]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. EAS QC Working Group Pollen Monitoring: Minimum Requirements and Reproducibility of Analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- CORINE Land Cover 2018 (Raster 100 m), Europe, 6-Yearly-Version 2020_20u1. May 2020. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/960998c1-1870-4e82-8051-6485205ebbac (accessed on 23 July 2025).
- Tummon, F.; Bruffaerts, N.; Celenk, S.; Choël, M.; Clot, B.; Crouzy, B.; Galán, C.; Gilge, S.; Hajkova, L.; Mokin, V.; et al. Towards Standardisation of Automatic Pollen and Fungal Spore Monitoring: Best Practises and Guidelines. Aerobiologia 2024, 40, 39–55. [Google Scholar] [CrossRef]
- Mamali, D.; Marinou, E.; Sciare, J.; Pikridas, M.; Kokkalis, P.; Kottas, M.; Binietoglou, I.; Tsekeri, A.; Keleshis, C.; Engelmann, R.; et al. Vertical Profiles of Aerosol Mass Concentration Derived by Unmanned Airborne in Situ and Remote Sensing Instruments during Dust Events. Atmos. Meas. Tech. 2018, 11, 2897–2910. [Google Scholar] [CrossRef]
- Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A. ALADINA—An Unmanned Research Aircraft for Observing Vertical and Horizontal Distributions of Ultrafine Particles within the Atmospheric Boundary Layer. Atmos. Meas. Tech. 2015, 8, 1627–1639. [Google Scholar] [CrossRef]
- Bezantakos, S.; Schmidt-Ott, F.; Biskos, G. Performance Evaluation of the Cost-Effective and Lightweight Alphasense Optical Particle Counter for Use Onboard Unmanned Aerial Vehicles. Aerosol Sci. Technol. 2018, 52, 385–392. [Google Scholar] [CrossRef]
- Brady, J.M.; Stokes, M.D.; Bonnardel, J.; Bertram, T.H. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements. Environ. Sci. Technol. 2016, 50, 1376–1383. [Google Scholar] [CrossRef]
- Filioglou, M.; Tiitta, P.; Shang, X.; Leskinen, A.; Ahola, P.; Pätsi, S.; Saarto, A.; Vakkari, V.; Isopahkala, U.; Komppula, M. Lidar Estimates of Birch Pollen Number, Mass, and CCN-Related Concentrations. Atmos. Chem. Phys. 2025, 25, 1639–1657. [Google Scholar] [CrossRef]
- Bryan, N.C.; Stewart, M.; Granger, D.; Guzik, T.G.; Christner, B.C. A Method for Sampling Microbial Aerosols Using High Altitude Balloons. J. Microbiol. Methods 2014, 107, 161–168. [Google Scholar] [CrossRef]
- Gottwald, T. A Spore and Pollen Trap for Use on Aerial Remotely Piloted Vehicles. Phytopathology 1985, 75, 801–807. [Google Scholar] [CrossRef]
- Simović, I.; Matavulj, P.; Šikoparija, B. Manual and Automatic Quantification of Airborne Fungal Spores during Wheat Harvest Period. Aerobiologia 2023, 39, 227–239. [Google Scholar] [CrossRef]
- Sikoparija, B.; Matavulj, P.; Simovic, I.; Radisic, P.; Brdar, S.; Minic, V.; Tesendic, D.; Kadantsev, E.; Palamarchuk, J.; Sofiev, M. Classification Accuracy and Compatibility across Devices of a New Rapid-E+ Flow Cytometer. Atmos. Meas. Tech. 2024, 17, 5051–5070. [Google Scholar] [CrossRef]
- Ørby, P.V.; Andersen, J.L.; Ottosen, T.B.; Thrane, U.; Gosewinkel, U. Detection of a Biological Aerosol Using Optical Particle Counters. Atmos. Environ. 2024, 338, 120819. [Google Scholar] [CrossRef]
- Vélez-Rodríguez, Z.; Torres-Pratts, H.; Maldonado-Ramírez, S.L. Use of Drones to Recover Fungal Spores and Pollen from the Lower Atmosphere. Caribb. J. Sci. 2020, 50, 159–170. [Google Scholar] [CrossRef]
- Adkins, K.; Li, K.; Cabrera, J.; Neal, B.; Brines, S.; Perfecto, I.; Blasko, M.; James, T.; Hajian-Forooshani, Z. A Simple Mechanism for Uncrewed Aircraft Bioaerosol Sampling in the Lower Atmosphere. Landsc. Ecol. 2024, 39, 133. [Google Scholar] [CrossRef]
- Wang, A.; Mora, S.; Machida, Y.; deSouza, P.; Paul, S.; Oyinlola, O.; Duarte, F.; Ratti, C. Hyperlocal Environmental Data with a Mobile Platform in Urban Environments. Sci. Data 2023, 10, 524. [Google Scholar] [CrossRef]
- Hou, J.; Fujiyoshi, S.; Perera, I.U.; Nishiuchi, Y.; Nakajima, M.; Ogura, D.; Yarimizu, K.; Maruyama, F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J. Indian Inst. Sci. 2023, 103, 687–697. [Google Scholar] [CrossRef]
- CLC. Corine Land Cover Dataset. Copernicus Land Monitoring Service. 2018. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 22 July 2025).
Flight No. | Date | Time of Flight, Engine Start to Stop (UTC) | Airborne Time (UTC) | Time of Sampling, FlyHirst Motor Start to Stop (UTC) | Time of Sampling, FlyHirst Pumps On to Off (UTC) | Samplers | Discrete Heights Maintained (Minutes @ Meters a.g.l., in Sequence Named) | Land Use Observed, Partially with Figures in Supplementary Material | Supplementary Material |
---|---|---|---|---|---|---|---|---|---|
1 | 30 August early afternoon | 11:17–12:39 | 11:31–12:36 | 11:30–12:30 | 11:30–12:30 | 2 FlyHirsts (one under each wing) | 16@250 ± 24; 13@570 ± 35; 24@386 ± 64; | Major agric. fields, minor forest | Figure S1; file Flight1.kml |
2 | 30 August evening | 17:06–18:29 | 17:25–18:23 | 17:10–18:10 | 17:24–18:22 | 2 FlyHirsts (one under each wing) | 16@258 ± 25; 25@407 ± 32; | Mixture of agric. and forested areas | Figure S2; file Flight2.kml |
3 | 31 August afternoon | 11:04–12:18 | 11:16–12:14 | 11:04–12:04 | 11:15–12:11 | 2 FlyHirsts (one under each wing); Grimm OPC | 11@168 ± 39; | State forest (Bidstrup Skovene), Figure S4a; | Figure S3; file Flight3.kml |
7@103 ± 14; | Agric. fields, straw harvesting, Figure S4b; | ||||||||
13@152 ± 31; | Water (Ise and Roskilde Fjords); | ||||||||
5@148 ± 36; | Forest (Nordskoven), Figure S4c; | ||||||||
4@292 ± 26; | Urban area (Frederikssund), Figure S4d | ||||||||
4 | 31 August evening | 15:29–16:41 | 15:44–16:35 | 15:29–16:29 | 15:43–16:33 | 1 FlyHirst (under left wing); 2 isokinetic impactors (under right wing); Grimm OPC | 8@133 ± 32; 17@172 ± 42, isokinetic impactor no. 1; 20@404 ± 32, isokinetic impactor no. 2; | Primarily agric. areas, few minutes forest | Figure S5; file Flight4.kml |
5 | 1 September afternoon | 13:12–14:43 | 13:28–14:38 | 13:19–14:19 | 13:28–14:27 | 2 FlyHirsts (one under each wing); Grimm OPC | 3@571; 3@876; repeated climbing in 305 m steps, maintaining each for 3 min; max. height 3@2797; then descending in 305 m steps, maintaining each for 1 min | Altitude profile west of Roskilde | Figure S6; file Flight5.kml |
6 | 1 September evening | 15:47–16:35 | 16:02–16:30 | 16:05–16:28 | 16:05–16:28 | 2 FlyHirsts (one under each wing); Grimm OPC | 22@317 ± 62 | Agric. and urban | Figure S7; file Flight6.kml |
Flight No. 1 | Flight No. 2 | Flight No. 3 | Flight No. 4 | Flight No. 5 | Flight No. 6 | |
---|---|---|---|---|---|---|
30 August 11:30–12:30 UTC | 30 August 17:24–18:22 UTC | 31 August 11:15–12:11 UTC | 31 August 15:43–16:33 UTC | 1 September 13:28–14:37 UTC | 1 September 16:05–16:28 UTC | |
Cladosporium | 442 (69.14%) | 280 (43.33%) | 38 (22.96%) | 137 (33.79%) | 86 (43.66%) | 183 (40.76%) |
Alternaria | 71 (11.16%) | 172 (26.63%) | 30 (17.94%) | 90 (22.24%) | 25 (12.48%) | 36 (8.06%) |
Rusts a | 26 (4.07%) | 46 (7.04%) | 22 (13.19%) | 25 (6.21%) | 29 (15.20%) | 9 (1.90%) |
Hyphae | 23 (3.58%) | 29 (4.56%) | 11 (6.60%) | 62 (15.28%) | 8 (3.70%) | 17 (3.79%) |
Polythrincium | 8 (1.30%) | 24 (3.69%) | 3 (1.85%) | 6 (1.37%) | 4 (1.95%) | 21 (4.74%) |
Epicoccum | 6 (0.98%) | 12 (1.88%) | 8 (4.75%) | 7 (1.61%) | 4 (2.14%) | 8 (1.90%) |
Coprinus-type b | 6 (0.90%) | 8 (1.21%) | 8 (4.75%) | 13 (3.23%) | 6 (3.12%) | 11 (2.37%) |
Pithomyces | 3 (0.41%) | 1 (0.13%) | 3 (1.58%) | 1 (0.25%) | 1 (0.78%) | 7 (1.66%) |
Ganoderma | 5 (0.81%) | 2 (0.34%) | 1 (0.79%) | 7 (1.61%) | 8 (4.09%) | 15 (3.32%) |
Smuts c | 4 (0.65%) | 4 (0.67%) | 24 (14.25%) | 16 (3.85%) | 11 (5.65%) | 47 (10.43%) |
Torula | 8 (1.30%) | 6 (0.87%) | 1 (0.79%) | 6 (1.49%) | 1 (0.58%) | 9 (1.90%) |
Periconia-type | 1 (0.16%) | 1 (0.13%) | 1 (0.26%) | 1 (0.12%) | 3 (1.56%) | 0 (0%) |
Other d | 35 (5.54%) | 32 (4.96%) | 17 (10.29%) | 36 (8.94%) | 10 (5.07%) | 86 (19.19%) |
Station/Date | East | West | |||||
---|---|---|---|---|---|---|---|
Bioaerosol Class | 30 Aug. | 31 Aug. | 1 Sep. | 30 Aug. | 31 Aug. | 1 Sep. | |
Plantago | 1 | 2 | 1 | 0 | 0 | 0 | |
Sambucus | 2 | 0 | 0 | 0 | 0 | 0 | |
Urtica | 83 | 21 | 20 | 25 | 33 | 24 | |
Poaceae | 3 | 1 | 1 | 2 | 4 | 13 | |
Rumex | 0 | 0 | 0 | 2 | 0 | 0 | |
Artemisia vulgaris | 2 | 2 | 0 | 0 | 1 | 0 | |
Humulus | 2 | 0 | 1 | 1 | 0 | 0 | |
Alternaria | 105 | 35 | 30 | 69 | 207 | 282 | |
Ambrosia artemisiifolia | 0 | 0 | 0 | 0 | 0 | 0 | |
Salix | 1 | 0 | 0 | 0 | 0 | 0 | |
Asteraceae | 1 | 0 | 0 | 0 | 0 | 0 | |
Cladosporium | 1294 | 987 | 516 | 1585 | 609 | 1318 | |
Unspecified | 4 | 3 | 3 | 1 | 2 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikoparija, B.; Birgermajer, S.; Ivosevic, B.; Sazdovski, V.; Ørby, P.V.; Kloster, M.; Gosewinkel, U. Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores. Atmosphere 2025, 16, 1060. https://doi.org/10.3390/atmos16091060
Sikoparija B, Birgermajer S, Ivosevic B, Sazdovski V, Ørby PV, Kloster M, Gosewinkel U. Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores. Atmosphere. 2025; 16(9):1060. https://doi.org/10.3390/atmos16091060
Chicago/Turabian StyleSikoparija, Branko, Slobodan Birgermajer, Bojana Ivosevic, Vasko Sazdovski, Pia Viuf Ørby, Mathilde Kloster, and Ulrich Gosewinkel. 2025. "Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores" Atmosphere 16, no. 9: 1060. https://doi.org/10.3390/atmos16091060
APA StyleSikoparija, B., Birgermajer, S., Ivosevic, B., Sazdovski, V., Ørby, P. V., Kloster, M., & Gosewinkel, U. (2025). Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores. Atmosphere, 16(9), 1060. https://doi.org/10.3390/atmos16091060