Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = bio-flocculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4264 KB  
Article
Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
by Heng Yan, Xinxin Cao, Wei Wei, Yongjie Ding and Jukun Guo
Coatings 2025, 15(8), 917; https://doi.org/10.3390/coatings15080917 - 6 Aug 2025
Viewed by 374
Abstract
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into [...] Read more.
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into aged asphalt binder via direct mixing at controlled dosages. Their effects were assessed using microscopy, droplet diffusion analysis, rheological testing (DSR and BBR), and molecular dynamics simulations. The aim is to compare the compatibility, solubility behavior, and rejuvenation potential of plant-based and mineral-based oils. The results indicate that N-oil and F-oil promote asphaltene aggregation, which supports structural rebuilding. In contrast, A-oil and W-oil act as solvents that disperse asphaltenes. Among the tested oils, N-oil exhibited the best overall performance in enhancing flowability, low-temperature flexibility, and chemical compatibility. This study presents a novel method to evaluate rejuvenator effectiveness by quantifying colloidal stability through grayscale analysis of droplet diffusion patterns. This integrated approach offers both mechanistic insights and practical guidance for selecting bio-based rejuvenators in asphalt recycling. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 2888 KB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 420
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

17 pages, 5435 KB  
Article
Sustainable Wind Erosion Control in Arid Regions: Enhancing Soil Stability Using Aluminum Chloride-Modified Soybean Urease-Induced Carbonate Precipitation Technology
by Liangliang Li, Jin Zhu, Jie Peng, Renjie Wei, Di Dai, Lingxiao Liu, Jia He and Yufeng Gao
Sustainability 2025, 17(13), 5753; https://doi.org/10.3390/su17135753 - 23 Jun 2025
Viewed by 400
Abstract
In arid and semi-arid areas, soil is blown up by the wind because of its loose structure. Wind erosion causes soil quality and fertility loss, land degradation, air pollution, disruption of ecological balance, and agricultural and livestock losses. Consequently, there is an immediate [...] Read more.
In arid and semi-arid areas, soil is blown up by the wind because of its loose structure. Wind erosion causes soil quality and fertility loss, land degradation, air pollution, disruption of ecological balance, and agricultural and livestock losses. Consequently, there is an immediate imperative for methods to mitigate the impacts of wind erosion. SICP (soybean urease-induced carbonate precipitation) has emerged as a promising biogeotechnical technology in mitigating wind erosion in arid and semi-arid regions. To enhance bio-cementation efficacy and treatment efficiency of SICP, aluminum chloride (AlCl3) was employed as an additive to strengthen the SICP process. Multiple SICP treatment cycles with AlCl3 additive were conducted on Tengger Desert sand specimens, with the specimens treated without AlCl3 as the control group. The potential mechanisms by which AlCl3 enhances SICP may have two aspects: (1) its flocculation effect accelerates the salting-out of proteinaceous organic matter in the SICP solution, retaining these materials as nucleation sites within soil pores; (2) the highly charged Al3+ cations adsorb onto negatively charged sand particle surfaces, acting as cores to attract and coalesce free CaCO3 in solution, thereby promoting preferential precipitation at particle surfaces and interparticle contacts. This mechanism enhances CaCO3 cementation efficiency, as evidenced by 2.69–3.89-fold increases in penetration resistance at the optimal 0.01 M AlCl3 concentration, without reducing CaCO3 production. Wind erosion tests showed an 88% reduction in maximum erosion rate (from 1142.6 to 135.3 g·m−2·min−1), directly correlated with improved microstructural density observed via SEM (spherical CaCO3 aggregates at particle interfaces). Economic analysis revealed a 50% cost reduction due to fewer treatment cycles, validating the method’s sustainability. These findings highlight AlCl3-modified SICP as a robust, cost-effective strategy for wind erosion control in arid zones, with broad implications for biogeotechnical applications. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

32 pages, 2412 KB  
Review
Bio-Based Nanomaterials for Groundwater Arsenic Remediation: Mechanisms, Challenges, and Future Perspectives
by Md. Mahbubur Rahman, Md. Nizam Uddin, Md Mahadi Hassan Parvez, Md. Abdullah Al Mohotadi and Jannatul Ferdush
Nanomaterials 2025, 15(12), 933; https://doi.org/10.3390/nano15120933 - 16 Jun 2025
Viewed by 1195
Abstract
Arsenic contamination in water poses a significant global health risk, necessitating efficient and sustainable remediation strategies. Arsenic contamination affects groundwater in at least 106 countries, potentially exposing over 200 million people to elevated levels, primarily through contaminated drinking water. Among the most affected [...] Read more.
Arsenic contamination in water poses a significant global health risk, necessitating efficient and sustainable remediation strategies. Arsenic contamination affects groundwater in at least 106 countries, potentially exposing over 200 million people to elevated levels, primarily through contaminated drinking water. Among the most affected regions, Bangladesh remains a critical case study, where widespread reliance on shallow tubewells has resulted in one of the largest mass poisonings in history. Bio-based nanomaterials have emerged as promising solutions due to their eco-friendly nature, cost-effectiveness, and high adsorption capabilities. These nanomaterials offer a sustainable approach to arsenic remediation, utilizing materials like biochar, modified biopolymers, and bio-based aerogels, which can effectively adsorb arsenic and other pollutants. The use of environmentally friendly nanostructures provides a potential option for improving the efficiency and sustainability of arsenic remediation from groundwater. This review explores the mechanisms underlying arsenic remediation using such nanomaterials, including adsorption, filtration/membrane technology, photocatalysis, redox reactions, complexation, ion exchange, and coagulation–flocculation. Despite their potential, challenges such as scalability, stability, and regeneration hinder widespread application. We discuss recent advancements in material design, surface modifications, and hybrid systems that enhance performance. Finally, future perspectives are highlighted, including the integration of these bio-derived systems with smart sensing technologies, sustainable water-treatment frameworks, smart design, and life-cycle integration strategies, particularly for use in resource-constrained regions like Bangladesh and other globally impacted areas. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

23 pages, 4150 KB  
Article
Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts
by Ouiem Baatache, Abderrezzaq Benalia, Kerroum Derbal, Amel Khalfaoui and Antonio Pizzi
Water 2025, 17(12), 1793; https://doi.org/10.3390/w17121793 - 15 Jun 2025
Viewed by 687
Abstract
High turbidity in raw water poses a major challenge to drinking water quality and requires effective, sustainable treatment solutions. This work investigates the reduction in turbidity in raw water and the enhancement of overall drinking water quality through the coagulation–flocculation process. The performance [...] Read more.
High turbidity in raw water poses a major challenge to drinking water quality and requires effective, sustainable treatment solutions. This work investigates the reduction in turbidity in raw water and the enhancement of overall drinking water quality through the coagulation–flocculation process. The performance of Pine cone extract as a bio-coagulant was evaluated using four different solvent-based extractions (PC-H2O, PC-HCl, PC-NaCl, and PC-NaOH). The effects of key operational parameters were analyzed, and jar tests were carried out to enhance the coagulation–flocculation process by identifying the optimal conditions. Experimental design was further refined using RSM based on a BBD, incorporating three factors: initial pH, coagulant dosage, and settling time, with turbidity removal efficiency as the response variable. Statistical analysis confirmed that initial pH, coagulant dosage, and settling time significantly influenced turbidity reduction at a confidence level of p-value < 0.05 for all four solvents. Among the extracts tested, PC-HCl demonstrated the highest turbidity removal efficiency. The optimal conditions achieving 78.57% turbidity reduction were a pH of 8.5, a coagulant dosage of 100 mL/L, and a settling time of 120 min. These findings highlight the significant potential of Pine cone extract as an effective, sustainable, and eco-friendly organic coagulant for raw water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2522 KB  
Article
Phycobacteria Biodiversity, Selected Isolation, and Bioactivity Elucidation of New Bacterial Species of Highly Toxic Marine Dinoflagellate Alexandrium minutum amtk4
by Xiaoling Zhang, Zekang Pan, Jinkai Zhang, Bingqian Liu and Qiao Yang
Microorganisms 2025, 13(6), 1198; https://doi.org/10.3390/microorganisms13061198 - 24 May 2025
Viewed by 611
Abstract
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and [...] Read more.
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and compared microbial community composition of the phycosphere microbiota from six harmful algal bloom-forming marine dinoflagellates, Alexandrium spp., and their bacterial associations. Furthermore, based on a combinational enhanced cultivation strategy (CECS) procedure for the selected isolation for cultivable phycobacteria, a new yellow-pigmented bioactive bacterium designated ABI-6-9 was successfully recovered from cultivable phycobacteria of the highly toxic A. minutum strain amtk4. An additional phylogenomic analysis fully identified this new isolate as a potential novel species of the genus Mameliella within the family Roseobacteraceae. The bioactivity evaluation observed that strain ABI-6-9 can significantly promote the cell growth of its algal host and altered the gonyautoxin accumulation profiles in the co-culture circumstance. Additionally, the bacterial production of active bioflocculanting exopolysaccharides (EPSs) by strain ABI-6-9 was also measured after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth- promoting phycobacterium. Full article
Show Figures

Figure 1

53 pages, 1226 KB  
Review
Global Occurrence of Cyanotoxins in Drinking Water Systems: Recent Advances, Human Health Risks, Mitigation, and Future Directions
by Jerikias Marumure, Willis Gwenzi, Zakio Makuvara, Tinoziva T. Simbanegavi, Richwell Alufasi, Marvelous Goredema, Claudious Gufe, Rangarirayi Karidzagundi, Piotr Rzymski and Dariusz Halabowski
Life 2025, 15(5), 825; https://doi.org/10.3390/life15050825 - 21 May 2025
Cited by 1 | Viewed by 1373
Abstract
This paper applies a semi-quantitative approach to review the diversity, environmental controls, detection methods, human health risks, and mitigation of cyanotoxins in drinking water systems (DWSs). It discusses the environmental factors controlling the occurrence of cyanotoxins, presents the merits and limitations of emerging [...] Read more.
This paper applies a semi-quantitative approach to review the diversity, environmental controls, detection methods, human health risks, and mitigation of cyanotoxins in drinking water systems (DWSs). It discusses the environmental factors controlling the occurrence of cyanotoxins, presents the merits and limitations of emerging methods of their detection (qPCR, liquid chromatography–mass spectrometry, and electrochemical biosensors), and outlines the human exposure pathways and health outcomes with identification of high-risk groups and settings. High-risk groups include (1) communities relying on untreated drinking water from unsafe, polluted water sources and (2) low-income countries where cyanotoxins are not routinely monitored in DWSs. The fate and behavior processes are discussed, including removing cyanotoxins in DWSs based on conventional and advanced treatment processes. The available methods for cyanotoxin removal presented in this paper include (1) polymer-based adsorbents, (2) coagulation/flocculation, (3) advanced oxidation processes, (4) ultra- and nanofiltration, and (5) multi-soil layer systems. Future research should address (1) detection and fate in storage and conveyance facilities and at the point of consumption, (2) degradation pathways and toxicity of by-products or metabolites, (3) interactive health effects of cyanotoxins with legacy and emerging contaminants, (4) removal by low-cost treatment techniques (e.g., solar disinfection, boiling, bio-sand filtration, and chlorination), (5) quantitative health risk profiling of high-risk groups, and (6) epidemiological studies to link the prevalence of human health outcomes (e.g., cancer) to cyanotoxins in DWSs. Full article
Show Figures

Figure 1

28 pages, 1861 KB  
Review
Bio-Flocculation: A Green Tool in Biorefineries for Recovering High Added-Value Compounds from Microalgae
by Luis G. Heredia-Martínez, Alba María Gutiérrez-Diánez and Encarnación Díaz-Santos
Phycology 2025, 5(2), 19; https://doi.org/10.3390/phycology5020019 - 20 May 2025
Cited by 1 | Viewed by 2495
Abstract
The growing demand for the sustainable production of high-value compounds, such as biofuels, lipids, and pigments like carotenoids and phycobilin, has become the subject of numerous investigations. Furthermore, this has led to the exploration of renewable methods utilizing microalgae as feedstock to mitigate [...] Read more.
The growing demand for the sustainable production of high-value compounds, such as biofuels, lipids, and pigments like carotenoids and phycobilin, has become the subject of numerous investigations. Furthermore, this has led to the exploration of renewable methods utilizing microalgae as feedstock to mitigate the challenges associated with producing these valuable compounds. Nevertheless, despite the numerous advantages of microalgae, the development of a microalgal biorefinery that employs sustainable, environmentally friendly, and economically efficient technologies remains a necessity. To address this challenge, the bio-flocculation process, and more specifically self-flocculation, is presented as a cost-effective and energy-efficient solution. This method is as easy and effective as chemical flocculation, which is applied at an industrial scale; however, in contrast, it is sustainable and cost-effective as no costs are involved in the pre-treatment of the biomass for oil extraction or in the pre-treatment of the medium before it can be re-used. In addition, microalgae possess molecular tools that would allow the efficiency of these processes to be increased. In the present review, we summarize the microalgal harvesting technologies used, with a particular focus on bio- and self-flocculation processes, and identify the improvements that could be made to enhance the production of high-added-value compounds while simultaneously reducing costs in microalgae biorefineries. Full article
Show Figures

Graphical abstract

20 pages, 8412 KB  
Article
Wastewater Treatment Using a Combination of Pumpkin seed Waste After Extraction of Essential Oils (Bio-Coagulant) and Ferric Chloride (Chemical Coagulant): Optimization and Modeling Using a Box–Behnken Design
by Abderrezzaq Benalia, Ouiem Baatache, Katr Enada Zerguine, Amel Khediri, Kerroum Derbal, Nawal Ferroudj, Amel Khalfaoui and Antonio Pizzi
Appl. Sci. 2025, 15(10), 5439; https://doi.org/10.3390/app15105439 - 13 May 2025
Cited by 1 | Viewed by 602
Abstract
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, [...] Read more.
The wastewater treatment involves various techniques at different technological levels. Treatment takes place in several stages, of which coagulation and flocculation are the most important. Most suspended solids are indeed eliminated during this stage by the addition of a coagulant. In this research, bio-coagulant was extracted from pumpkin seed (PS) waste after extraction of the essential oils, and used with ferric chloride to treat wastewater from the plant of Chalghoum El Aid-Oued El Athmania Mila. In this study, the Box–Behnken design (BBD) with three factors was used to investigate the effect of pH, organic coagulant dosage Pumpkin seed extract (PSE), and chemical coagulant dosage (FeCl3) on coagulation–flocculation performance in relation to turbidity, chemical oxygen demand (COD), aromatic organic matter (UV 254), and phosphate. The main characteristics of the raw water were turbidity (250 NTU), COD (640 mg/L), UV 254 (0.893 cm−1), and phosphate (0.115 mg/L). The results obtained were very significant. All the statistical estimators (R2 ≥ 97% and p ≤ 0.05) reveal that the models developed are statistically validated for simulating the coagulation–flocculation process. It should be noted that the residual values of turbidity, COD, UV 254, and phosphate after treatment by this process were 0.754 NTU; 190.88 mg/L; 0.0028 cm−1; and 0.0149 mg/L, respectively. In this case, the pH, bio-coagulant dosage, and chemical coagulant dosage values were 4; 17.81 mL/L; and 10 mL/L, respectively. In this study, Fourier-transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) characterization of the bio-coagulant proved the presence of the active functional groups responsible for coagulation, namely carboxyl group. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

19 pages, 3335 KB  
Article
Synergistic Effect of Bacillus and Chitosan: From Flocculation to Enhanced Antimicrobial Activity
by Selena Dmitrović, Nataša Lukić, Ivana Danilov, Vanja Vlajkov, Jovana Grahovac and Aleksandar Jokić
Antibiotics 2025, 14(4), 412; https://doi.org/10.3390/antibiotics14040412 - 17 Apr 2025
Viewed by 612
Abstract
Eco-friendly pest management solutions are acknowledged as a crucial element in shaping the future of agriculture through sustainable practices. Achieving the maximum viable cell concentration while being cost-effective is the main goal of the downstream processing for efficient biomass-based microbial biopesticide production. The [...] Read more.
Eco-friendly pest management solutions are acknowledged as a crucial element in shaping the future of agriculture through sustainable practices. Achieving the maximum viable cell concentration while being cost-effective is the main goal of the downstream processing for efficient biomass-based microbial biopesticide production. The purpose of this study was to determine the effectiveness of chitosan flocculation in recovering bacterial Bacillus sp. BioSol021 biomass from broth cultivated using fruit juice industrial effluent as a medium, with the hypothesis of the synergistic effect of microbial and biopolymer components in phytopathogen suppression. Second-order polynomial models were used to calculate the influence of chitosan concentration and mixing speed on flocculation efficiency, settling velocity, and antibacterial activity against Aspergillus flavus (i.e., the inhibition zone diameter). The response surface approach, followed by desirability function optimization and the genetic algorithm were applied. The optimal values achieved in this study were 97.18%, 0.0369 mm/s, and 74.00 mm for flocculation efficiency, settling velocity, and inhibition zone diameter, respectively. The obtained results suggest that chitosan can be used as a flocculation agent for effective downstream processing, but also has a positive effect on the final product antimicrobial activity. Full article
(This article belongs to the Special Issue Biotechnological Production of Novel Antimicrobials)
Show Figures

Figure 1

17 pages, 1890 KB  
Article
Development, Characterization, and Exploitation in Food Systems of Functional Ingredients Obtained from Artichoke By-Products Phenolic Extracts
by Francesco Iervese, Arianna Paluzzi, Michela Cannas, Giulia D’Alessio, Antonio Piga and Carla Di Mattia
Molecules 2025, 30(7), 1514; https://doi.org/10.3390/molecules30071514 - 28 Mar 2025
Viewed by 501
Abstract
The study aimed to assess the technological properties of six ethanolic phenolic-rich extracts derived from artichoke bracts, stems, and leaves using different extraction methods (maceration and ultrasonic-assisted extraction—UAE) for the formulation of oil-in-water emulsions in which pea protein concentrate served as an emulsifier. [...] Read more.
The study aimed to assess the technological properties of six ethanolic phenolic-rich extracts derived from artichoke bracts, stems, and leaves using different extraction methods (maceration and ultrasonic-assisted extraction—UAE) for the formulation of oil-in-water emulsions in which pea protein concentrate served as an emulsifier. To this aim, the extracts were tested for their surface properties and their effect on the colloidal and antioxidant properties in emulsions. The extracts reduced the surface tension at the water/air interface in a dose-dependent manner, with the leaf extract obtained by UAE displaying the highest surface activity. In emulsions, the extracts increased oil droplet size and induced flocculation while being able to delay oxidation, as indicated by the induction period significantly higher compared to the control. In the last part of the work, encapsulation by spray-drying was explored on a selected leaf extract, and its release behavior in an enriched vegan mayonnaise was tested by in vitro digestion. The encapsulation influenced the release of phenolic compounds during simulated gastrointestinal digestion of the enriched vegan mayonnaise, demonstrating promising protective effects in the gastric environment and promoting a predominant release during the intestinal phase, potentially enhancing the absorption and bio-accessibility of the phenolic compounds. Full article
(This article belongs to the Special Issue Advances in Functional Foods, 2nd Edition)
Show Figures

Figure 1

18 pages, 2986 KB  
Article
An Investigation of the Impact of Flocculants on Process Optimization and Floc Properties in Chlorella vulgaris FACHB-15 Harvesting
by Yinting Li, Yingying Qi, Qun Wei and Xiangmeng Ma
Water 2025, 17(7), 932; https://doi.org/10.3390/w17070932 - 22 Mar 2025
Viewed by 441
Abstract
This study systematically compared the harvesting efficiency and flocculation mechanisms of a bioflocculant (chitosan) and a chemical flocculant (Al2(SO4)3) for Chlorella cells. For the first time, the divergent mechanisms underlying floc structure formation between the two flocculants [...] Read more.
This study systematically compared the harvesting efficiency and flocculation mechanisms of a bioflocculant (chitosan) and a chemical flocculant (Al2(SO4)3) for Chlorella cells. For the first time, the divergent mechanisms underlying floc structure formation between the two flocculants were elucidated by analyzing the EPS distribution and dynamic changes in microalgal surface functional groups. By optimizing critical operational parameters—including flocculant dosage, flocculation time, pH, and biomass concentration—the optimal dosages of chitosan and Al2(SO4)3 were determined as 0.5 mg/L and 90 mg/L, respectively. Under pH 6, both flocculants achieved over 99% flocculation efficiency within 30 min. Notably, at a dosage of 3 mg/L, chitosan-formed flocs exhibited denser structures, stronger adhesion, and a tendency to aggregate into spherical clusters compared to Al2(SO4)3-induced flocs. Beyond identifying ideal conditions for Chlorella flocculation, this work provides novel insights into the role of EPS and surface functional groups in flocculation mechanisms, offering both theoretical foundations and practical guidance for efficient microalgal harvesting. The findings hold significant implications for optimizing bioflocculant applications and advancing environmentally sustainable harvesting technologies. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

27 pages, 3578 KB  
Article
Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications
by Nkanyiso C. Nkosi, Albertus K. Basson, Zuzingcebo G. Ntombela, Nkosinathi G. Dlamini and Rajasekhar V. S. R. Pullabhotla
Appl. Nano 2025, 6(1), 5; https://doi.org/10.3390/applnano6010005 - 3 Mar 2025
Cited by 2 | Viewed by 2360
Abstract
Nanotechnology offers effective solutions for removing contaminants and harmful bacteria from polluted water. This study synthesized copper nanoparticles using a carbohydrate-based bioflocculant derived from Proteus mirabilis AB 932526.1. The bioflocculant is a natural polymer that facilitates the aggregation of particles, enhancing the efficiency [...] Read more.
Nanotechnology offers effective solutions for removing contaminants and harmful bacteria from polluted water. This study synthesized copper nanoparticles using a carbohydrate-based bioflocculant derived from Proteus mirabilis AB 932526.1. The bioflocculant is a natural polymer that facilitates the aggregation of particles, enhancing the efficiency of the nanoparticle synthesis process. Characterization of the bioflocculant and copper nanoparticles was conducted using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, Ultraviolet-Visible Spectroscopy, X-ray Diffraction, and Transmission Electron Microscopy techniques to assess their properties, flocculation efficiency, and antibacterial characteristics. The optimal flocculation efficiency of 80% was achieved at a copper nanoparticle concentration of 0.4 mg/mL, while a concentration of 1 mg/mL resulted in a lower efficiency of 60%. The effects of biosynthesized copper nanoparticles on human-derived embryonic renal cell cultures were also investigated, demonstrating that they are safe at lower concentrations. The copper nanoparticles effectively removed staining dyes such as safranin (90%), carbol fuchsine (88%), methylene blue (91%), methyl orange (93%), and Congo red (94%), compared to a blank showing only 39% removal. Furthermore, when compared to both chemical flocculants and bioflocculants, the biosynthesized copper nanoparticles exhibited significant nutrient removal efficiencies for nitrogen, sulfur, phosphate, and total nitrates in coal mine and Vulindlela domestic wastewater. Notably, these biosynthesized copper nanoparticles demonstrated exceptional antibacterial activity against both Gram-positive and Gram-negative bacteria. Full article
Show Figures

Figure 1

16 pages, 9821 KB  
Article
Removal and Recovery of AgNPs from Water by Sustainable Magnetic Nanoflocculants
by Mariana Ramirez, Eya Ben Khalifa, Giuliana Magnacca, Mario Sergio Moreno, María E. Parolo and Luciano Carlos
Polymers 2025, 17(5), 650; https://doi.org/10.3390/polym17050650 - 28 Feb 2025
Cited by 1 | Viewed by 912
Abstract
The presence of silver nanoparticles (AgNPs) in water bodies has emerged as a new environmental concern and the efficient separation of these nanoparticles remains a critical challenge. Here, we developed novel magnetic nanoflocculants for the recovery of AgNPs from water. Alternating layers of [...] Read more.
The presence of silver nanoparticles (AgNPs) in water bodies has emerged as a new environmental concern and the efficient separation of these nanoparticles remains a critical challenge. Here, we developed novel magnetic nanoflocculants for the recovery of AgNPs from water. Alternating layers of biopolymers, in particular, chitosan, alginate, and polymeric bio-based soluble substances (BBS) derived from urban waste, were coated on magnetic nanoparticles via the layer-by-layer technique to prepare reusable magnetic nanoflocculants (MNFs). The MNFs obtained were characterized with diverse physicochemical techniques. Surface response methodology, based on the Doehlert matrix, has shown to be a useful tool to determine the effect of pH (in the range 5–9), concentration of AgNPs (7–20 mg L−1), and MNFs (50–1000 mg L−1) on the performance of AgNPs removal. The model predicts a high AgNPs removal percentage at low pH values and high MNF concentration. In particular, for the most efficient MNFs, 90% of AgNPs removal was obtained at pH 5 and 600 mg L−1 MNF concentration. Additionally, the effects of AgNPs size, ionic strength, the presence of humic acids, and two types of surfactants (LAS anionic and TWEEN 20 nonionic) on the AgNPs removal were evaluated. Finally, recovery and reuse experiments showed that MNF made of Chitosan-BBS can be reused in ten cycles, losing only 30% of the initial removal capacity. Therefore, magnetic flocculation could represent a sustainable alternative for AgNPs separation with potential applications in water treatment and remediation of nanoparticle contamination. Full article
(This article belongs to the Special Issue Advanced Polymer Composites for Water Treatment)
Show Figures

Graphical abstract

23 pages, 3222 KB  
Article
Optimizing the Enzymatic Hydrolysis of Bioflocculated Microalgae for Bioethanol Production
by Viviane Simon, João Felipe Freitag, Júlia Lorenzato da Silva and Luciane Maria Colla
Processes 2025, 13(2), 364; https://doi.org/10.3390/pr13020364 - 28 Jan 2025
Viewed by 1415
Abstract
Spirulina platensis is a promising microalga, but biomass harvesting remains a challenge. Fungal bioflocculation offers a potential solution, facilitating the production of valuable bioproducts like bioethanol. Effective cell disruption methods, including physical-chemical and enzymatic treatments, can enhance biomass utilization. However, commercial enzymes are [...] Read more.
Spirulina platensis is a promising microalga, but biomass harvesting remains a challenge. Fungal bioflocculation offers a potential solution, facilitating the production of valuable bioproducts like bioethanol. Effective cell disruption methods, including physical-chemical and enzymatic treatments, can enhance biomass utilization. However, commercial enzymes are not optimized for microalgae, necessitating research on ideal operational conditions. This study evaluated physical and enzymatic processes to hydrolyze bioflocculated microalgae for bioethanol production. The microalga was harvested using a fungal bioflocculant produced via submerged fermentation. Biomass hydrolysis involved physical methods (autoclaving, ultrasound + autoclaving, ultrasound + gelatinization, and gelatinization) combined with enzymes (amylase, amyloglucosidase, cellulase, and xylanase), optimized for pH, temperature, and enzyme load. Hydrolysates were then used for bioethanol production. Results showed a microalgae harvest efficiency of 99.7% with a 1:8 fungus-to-microalgae ratio. Enzyme optimization identified ideal conditions (e.g., pH 4.5; 60 °C for amylase/amyloglucosidase, 70 °C for cellulase, and 50 °C for xylanase). Combined enzymatic treatments achieved approximately 70% hydrolysis efficiency, yielding 19.06 g/L glucose and 7.29 g/L ethanol (~79% conversion). Ethanol productivity was ~0.6 g per 1 g bioflocculated biomass L−1·hr. These findings highlight the potential of enzymatic hydrolysis for complex biomasses, although further studies are needed to refine enzyme applications for better biomass utilization. Full article
(This article belongs to the Special Issue Green Conversion Processes of Waste and Biomass Materials)
Show Figures

Figure 1

Back to TopTop