Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Production Medium of Bioflocculant
2.2. Bioflocculant Extraction and Purification
2.3. Biosynthesis of Copper Nanoparticles
2.4. Characterization of the Bioflocculant–Copper Nanoparticles
2.5. Determination of the Concentration of the Biosynthesized Copper Nanoparticles
2.6. Evaluation of Antibacterial Performance Test of the Bioflocculant–Copper Nanoparticles
Revival of Microbial Strains
2.7. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
2.8. Evaluation of the Biosafety of the Bioflocculant–Copper Nanoparticles
2.9. Application of Bioflocculant–Copper Nanoparticles
Removal of Pollutants from Wastewater
2.10. Assessment of Flocculants in Color Elimination from Different-Colored Solutions
2.11. Statistical Analyses
3. Results and Discussion
3.1. Biosynthesis of Copper Nanoparticles (CuNPs) Through Visual Means
3.2. Characterization of Bioflocculant–Copper Nanoparticles
3.2.1. Fourier Transform Infrared Spectroscopy (FT-IR) Examination of the Bioflocculant and the Biosynthesized Copper Nanoparticles
3.2.2. Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX) Analysis of the Bioflocculant and Biosynthesized Copper Nanoparticles
3.2.3. Ultraviolet (UV) Spectra of the (a) Bioflocculant and (b) Biosynthesized Copper Nanoparticles
3.2.4. X-Ray Diffraction (XRD) of the Bioflocculant and Biosynthesized Copper Nanoparticles
3.2.5. Scanning Electron Microscopy (SEM) Characterization of the Bioflocculant and Biosynthesized Copper Nanoparticles
3.2.6. Transmission Electron Microscopy (TEM) Analysis of the Bioflocculant and Biosynthesized Copper Nanoparticles
3.3. Effect of Dosage Concentration on the Flocculating Activity of the Biosynthesized Copper Nanoparticles
3.4. List of Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) Values Obtained from Tests of the Bioflocculant–Copper Nanoparticles
3.5. Cytotoxicity Assay of Bioflocculant–Copper Nanoparticles on HEK 293 Cells
3.6. Application of As-Produced Bioflocculant–Copper Nanoparticles in Wastewater
3.6.1. List of Contaminants Removed from Tendele Coal Mine Using Bioflocculant–Copper Nanoparticles
3.6.2. List of Pollutants Removed from the Vulindlela Wastewater Treatment Plant Using Biosynthesized Copper Nanoparticles, in Comparison to the Microbial Bioflocculant and FeCl3
3.7. Staining Dye Removal Using Biosynthesized Copper Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CuNPs | Copper nanoparticles |
CuSO4 | Copper sulfate |
Cu | Copper |
FT-IR | Fourier Transform Infrared |
SEM-EDX | Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
XRD | X-ray Diffraction |
COD | Chemical oxygen demand |
BOD | Biological oxygen demand |
N | Nitrogen |
S | Sulfur |
NO3− | Nitrate |
PO42− | Phosphate |
FeCl3 | Iron chloride |
FA | Flocculating activity |
References
- Palermo, S.A.; Maiolo, M.; Brusco, A.C.; Turco, M.; Pirouz, B.; Greco, E.; Spezzano, G.; Piro, P. Smart technologies for water resource management: An overview. Sensors 2022, 22, 6225. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, Z.; Zhang, R.; Ma, J.; Zhang, H.; Li, S.; Li, J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep. Purif. Technol. 2021, 279, 119669. [Google Scholar] [CrossRef]
- Agunbiade, M.; Pohl, C.; Ashafa, O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz. J. Microbiol. 2018, 49, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Sivasankar, P.; Poongodi, S.; Lobo, A.O.; Pugazhendhi, A. Characterization of a novel polymeric bioflocculant from marine actinobacterium Streptomyces sp. and its application in recovery of microalgae. Int. Biodeterior. Biodegrad. 2020, 148, 104883. [Google Scholar] [CrossRef]
- Qi, Z.; Zhu, Y.; Guo, H.; Chen, Y.; Zhao, Y.; Zhou, Y.; Wang, X.; Yang, Y.; Qin, W.; Shao, Q. Production of glycoprotein bioflocculant from untreated rice straw by a CAZyme-rich bacterium, Pseudomonas sp. HP2. J. Biotechnol. 2019, 306, 185–192. [Google Scholar] [CrossRef]
- Joshi, N.; Kumar, M.A.; Mody, K. Bioflocculated industrial wastewater for ameliorating bioflocculant production. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 91–114. [Google Scholar]
- Ray, A.; Banerjee, S.; Das, D. Microalgal bio-flocculation: Present scenario and prospects for commercialization. Environ. Sci. Pollut. Res. 2021, 28, 26294–26312. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, B.; Ansar, A.N.; Rasool, R.; Ullah, I.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Alzarea, S.I.; Nadeem, M.S.; Kazmi, I. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics 2021, 10, 1473. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, G.; Usha, N.; Nandhini, R.; Kaviya, P.; Vidhya, G.; Chaithanya, B. A review on properties, applications and toxicities of metal nanoparticles. Int. J. Appl. Pharm. 2020, 12, 58–63. [Google Scholar]
- Akintelu, S.A.; Oyebamiji, A.K.; Olugbeko, S.C.; Latona, D.F. Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Curr. Res. Green Sustain. Chem. 2021, 4, 100176. [Google Scholar] [CrossRef]
- Rojas, B.; Soto, N.; Villalba, M.; Bello-Toledo, H.; Meléndrez-Castro, M.; Sánchez-Sanhueza, G. Antibacterial activity of copper nanoparticles (Cunps) against a resistant calcium hydroxide multispecies endodontic biofilm. Nanomaterials 2021, 11, 2254. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Goyal, D.; Chudasama, B. Antibacterial activity of colloidal copper nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) bacteria. Lett. Appl. Microbiol. 2022, 74, 695–706. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Ahmed, S.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef] [PubMed]
- Korbekandi, H.; Iravani, S.; Abbasi, S. Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 2009, 29, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Afonso, I.S.; Cardoso, B.; Nobrega, G.; Minas, G.; Ribeiro, J.E.; Lima, R.A. Green synthesis of nanoparticles from olive oil waste for environmental and health applications: A review. J. Environ. Chem. Eng. 2024, 12, 114022. [Google Scholar] [CrossRef]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ.-Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.-V.N.; Jeevanantham, S.; Yaashikaa, P.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021, 264, 128580. [Google Scholar] [CrossRef]
- Patel, J.B. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 2001, 6, 313–321. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, Z.-L.; Fang, X.-L.; Li, Y.-H.; Cai, W.-M. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour. Technol. 2008, 99, 7686–7691. [Google Scholar] [CrossRef] [PubMed]
- Karthiga Devi, K.; Natarajan, K. Isolation and characterization of a bioflocculant from Bacillus megaterium for turbidity and arsenic removal. Min. Metall. Explor. 2015, 32, 222–229. [Google Scholar] [CrossRef]
- Rakshit, S.; Jana, P.C.; Kamilya, T. Green synthesis of copper nanoparticles by using plant extracts and their biomedical applications–an extensive review. Curr. Nanomater. 2023, 8, 110–125. [Google Scholar]
- Mohammed, J.N.; Dagang, W.R.Z.W. Role of cationization in bioflocculant efficiency: A review. Environ. Process. 2019, 6, 355–376. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Imron, M.F.; Sługocki, Ł.; Nowakowski, K.; Ahmad, A.; Najiya, D.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. Sci. Total Environ. 2022, 836, 155564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, H.; Zhou, J. Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. Bioresour. Technol. 2013, 137, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Akapo, C.S.O. Production and Characterisation of Bioflocculant Produced by Bacterial Isolates from Richards Bay Harbour. Master’s Thesis, Kwazulu Natal University of Zululand, Richards Bay, South Africa, 2019. [Google Scholar]
- Na, I.; Kennedy, D.C. Size-specific copper nanoparticle cytotoxicity varies between human cell lines. Int. J. Mol. Sci. 2021, 22, 1548. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, A.; Fan, J.; Deng, C.; Zhang, Q. Biotreatment of p-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 2008, 99, 4529–4533. [Google Scholar] [CrossRef] [PubMed]
- Shende, A.P.; MITRA, N. Green synthesis of iron nanoparticles using bioflocculant extracted from okra (Abelmoschus esculentus (L) Moench) and its application towards elimination of toxic metals from wastewater: A statistical approach. J. Water Environ. Nanotechnol. 2021, 6, 338–355. [Google Scholar]
- Batra, D.; Seifert, S.; Varela, L.M.; Liu, A.C.; Firestone, M.A. Solvent-Mediated Plasmon Tuning in a Gold-Nanoparticle–Poly (Ionic Liquid) Composite. Adv. Funct. Mater. 2007, 17, 1279–1287. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.u.; Ao, Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Kadhi, N. The synthesis and effect of silver nanoparticles on the adsorption of Cu2+ from aqueous solutions. Appl. Sci. 2020, 10, 4840. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Rajasekhar Pullabhotla, V.S.R. Biosynthesis and Characterization of Copper Nanoparticles Using a Bioflocculant Extracted from Alcaligenis faecalis HCB2. Adv. Sci. Eng. Med. 2019, 11, 1064–1070. [Google Scholar] [CrossRef]
- Tsilo, P.H.; Basson, A.K.; Ntombela, Z.G.; Dlamini, N.G.; Pullabhotla, R.V. Biosynthesis and Characterization of Copper Nanoparticles Using a Bioflocculant Produced by a Yeast Pichia kudriavzevii Isolated from Kombucha Tea SCOBY. Appl. Nano 2023, 4, 226–239. [Google Scholar] [CrossRef]
- Badireddy, A.R.; Chellam, S.; Gassman, P.L.; Engelhard, M.H.; Lea, A.S.; Rosso, K.M. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res. 2010, 44, 4505–4516. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Nwodo, U.U.; Okoli, S.A.; Mabinya, L.V.; Okoh, A.I. Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. MicrobiologyOpen 2016, 5, 177–211. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018, 154, 593–600. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, G.; Kumar, A.; AlGarni, T.S.; Naushad, M.; ALOthman, Z.A.; Stadler, F.J. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J. Hazard. Mater. 2022, 421, 126729. [Google Scholar] [CrossRef] [PubMed]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Mohamed Hatta, N.S. Physicochemical Characterisation and Flocculation Analysis of a Novel Cationic Chitosan-Like Bioflocculant from Citrobacter Youngae GTC 01314 to Improve Sludge Dewatering. Master’s Thesis, Curtin University, Perth, Australia, 2021. [Google Scholar]
- Bhunia, B.; Uday, U.S.P.; Oinam, G.; Mondal, A.; Bandyopadhyay, T.K.; Tiwari, O.N. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr. Polym. 2018, 179, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Talebian, S.; Shahnavaz, B.; Nejabat, M.; Abolhassani, Y.; Rassouli, F.B. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Front. Bioeng. Biotechnol. 2023, 11, 1140010. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Momeni, S.S.; Sajadi, S.M. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe (CN) 6. J. Colloid Interface Sci. 2017, 506, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Nzilu, D.M.; Madivoli, E.S.; Makhanu, D.S.; Wanakai, S.I.; Kiprono, G.K.; Kareru, P.G. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci. Rep. 2023, 13, 14030. [Google Scholar] [CrossRef] [PubMed]
- Amaliyah, S.; Pangesti, D.P.; Masruri, M.; Sabarudin, A.; Sumitro, S.B. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon 2020, 6, e04636. [Google Scholar] [CrossRef] [PubMed]
- Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem. EJH 2018, 62, 2841. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Nwodo, U.U.; Okoli, A.S.; Leonard, L.V.L.; Okoh, A.I. Studies on bioflocculant production by Bacillus sp. AEMREG7. Pol. J. Environ. Stud. 2016, 25, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Kiranmayee, M.; Rajesh, N.; Vidya Vani, M.; Khadri, H.; Mohammed, A.; Chinni, S.V.; Ramachawolran, G.; Riazunnisa, K.; Moussa, A.Y. Green synthesis of Piper nigrum copper-based nanoparticles: In Silico study and ADMET analysis to assess their antioxidant, antibacterial, and cytotoxic effects. Front. Chem. 2023, 11, 1218588. [Google Scholar] [CrossRef] [PubMed]
- Oli, H.B.; Sharma, N.; Ekaraj, K.; Subedee, A.; Timilsina, R. Green synthesis of copper nanoparticles using Zingiber officinale extract and characterization. J. Nepal Chem. Soc. 2018, 39, 10–17. [Google Scholar] [CrossRef]
- Gondwal, M.; Joshi Nee Pant, G. Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles Using Cassia occidentalis. Int. J. Biomater. 2018, 2018, 6735426. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, S.; Geetha, A.; Guganathan, L.; Suthakaran, S.; Anbuvannan, M.; Pragadeswaran, S.; Santhamoorthy, M.; Kim, S.; Batoo, K.M.; Ijaz, M.F. Enhanced photocatalytic performance of CuO nanoparticles synthesized via surfactant assisted hydrothermal method. Appl. Phys. A 2024, 130, 661. [Google Scholar] [CrossRef]
- Lu, W.-Y.; Zhang, T.; Zhang, D.-Y.; Li, C.-H.; Wen, J.-P.; Du, L.-X. A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochem. Eng. J. 2005, 27, 1–7. [Google Scholar] [CrossRef]
- Ojaym, A.A. Harnessing the Synergy of Copper Nanoparticles and Ascorbic Acid for Wound Healing. Ph.D. Thesis, Kent State University, Kent, OH, USA, 2024. [Google Scholar]
- Sadia, B.O.; Cherutoi, J.K.; Achisa, C.M. Optimization, Characterization, and Antibacterial Activity of Copper Nanoparticles Synthesized Using Senna didymobotrya Root Extract. J. Nanotechnol. 2021, 2021, 5611434. [Google Scholar] [CrossRef]
- Moniri, S.; Ghoranneviss, M.; Hantehzadeh, M.R.; Asadabad, M.A. Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull. Mater. Sci. 2017, 40, 37–43. [Google Scholar] [CrossRef]
- Nagar, N.; Devra, V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 2018, 213, 44–51. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Fouda, M.M.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Elshaer, N. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Muniraj, S. Neem flower extract assisted green synthesis of copper nanoparticles–optimisation, characterisation and anti-bacterial study. Mater. Today Proc. 2021, 36, 832–836. [Google Scholar] [CrossRef]
- Khani, R.; Roostaei, B.; Bagherzade, G.; Moudi, M. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. J. Mol. Liq. 2018, 255, 541–549. [Google Scholar] [CrossRef]
- Tiwari, M.; Jain, P.; Hariharapura, R.C.; Narayanan, K.; Bhat, U.; Udupa, N.; Rao, J.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016, 51, 1348–1356. [Google Scholar] [CrossRef]
- Karimi, J.; Mohsenzadeh, S. Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 895–898. [Google Scholar] [CrossRef]
- Noman, M.; Ahmed, T.; Hussain, S.; Niazi, M.B.K.; Shahid, M.; Song, F. Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. J. Hazard. Mater. 2020, 398, 123175. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.; Bhadauria, S.; Gaur, M.S.; Pasricha, R. Characterization of copper nanoparticles synthesized by a novel microbiological method. Jom 2010, 62, 102–104. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. Int. J. Environ. Res. Public Health 2019, 16, 2185. [Google Scholar] [CrossRef] [PubMed]
- Abdelbasir, S.M.; Rayan, D.A.; Ismail, M.M. Synthesis of Cu and CuO nanoparticles from e-waste and evaluation of their antibacterial and photocatalytic properties. Environ. Sci. Pollut. Res. 2023, 30, 89690–89704. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Kumar, S.; Sinha, I.; Singh, K.K. ZnO/CuO nanocomposites from recycled printed circuit board: Preparation and photocatalytic properties. Environ. Sci. Pollut. Res. 2019, 26, 16279–16288. [Google Scholar] [CrossRef]
- Suárez-Cerda, J.; Espinoza-Gómez, H.; Alonso-Núñez, G.; Rivero, I.A.; Gochi-Ponce, Y.; Flores-López, L.Z. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 2017, 21, 341–348. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, B.; An, Q.; Guo, Z.Q.; Huang, C. The characteristics and flocculation mechanisms of SMP and B-EPS from a bioflocculant-producing bacterium Pseudomonas sp. XD-3 and the application for sludge dewatering. Chem. Eng. J. 2024, 479, 147584. [Google Scholar] [CrossRef]
- Hassan, E.; Gahlan, A.A.; Gouda, G.A. Biosynthesis approach of copper nanoparticles, physicochemical characterization, cefixime wastewater treatment, and antibacterial activities. BMC Chem. 2023, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Al-Khafaji, M.A.A.; Al-Refai’a, R.A.K.; Al-Zamely, O.M.Y. Green synthesis of copper nanoparticles using artemisia plant extract. Mater. Today Proc. 2022, 49, 2831–2835. [Google Scholar] [CrossRef]
- Parvathalu, K.; Rajitha, K.; Chandrashekar, B.; Sathvik, K.; Pranay Bhasker, K.; Sreenivas, B.; Pritam, M.; Pushpalatha, P.; Moses, K.; Bala Bhaskar, P. Biomimetic synthesis of copper nanoparticles using Tinospora cordifolia plant leaf extract for photocatalytic activity applications. Plasmonics 2024, 19, 825–834. [Google Scholar] [CrossRef]
- Nazar, N.; Bibi, I.; Kamal, S.; Iqbal, M.; Nouren, S.; Jilani, K.; Umair, M.; Ata, S. Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Int. J. Biol. Macromol. 2018, 106, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Molahalli, V.; Sharma, A.; Bijapur, K.; Soman, G.; Shetty, A.; Sirichandana, B.; Patel, B.M.; Chattham, N.; Hegde, G. Properties, Synthesis, and Characterization of Cu-Based Nanomaterials, in Copper-Based Nanomaterials in Organic Transformations; ACS Publications: Washington, DC, USA, 2024; pp. 1–33. [Google Scholar]
- Chen, D.; Caruso, R.A. Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv. Funct. Mater. 2013, 23, 1356–1374. [Google Scholar] [CrossRef]
- Shende, S.; Rathod, D.; Gade, A.; Rai, M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol. 2017, 11, 773–781. [Google Scholar] [CrossRef]
- Deng, D.; Cheng, Y.; Jin, Y.; Qi, T.; Xiao, F. Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J. Mater. Chem. 2012, 22, 23989–23995. [Google Scholar] [CrossRef]
- Hulkoti, N.I.; Taranath, T. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014, 121, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Pérez, A.; Durán-Armenta, L.F.; Pérez-Loredo, M.G.; Torres-Huerta, A.L. Biosynthesis of copper nanoparticles with medicinal plants extracts: From extraction methods to applications. Micromachines 2023, 14, 1882. [Google Scholar] [CrossRef]
- Shantkriti, S.; Rani, P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 374–383. [Google Scholar]
- Nkosi, N.C.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, R.V.S.R. Isolation, identification and characterization of bioflocculant-producing bacteria from activated sludge of Vulindlela Wastewater Treatment Plant. Appl. Microbiol. 2021, 1, 586–606. [Google Scholar] [CrossRef]
- Fazal-ur-Rehman, M. Polluted water borne diseases: Symptoms, causes, treatment and prevention. J. Med. Chem. Sci. 2019, 2, 21–26. [Google Scholar]
- Naz, S.; Gul, A.; Zia, M.; Javed, R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023, 107, 1039–1061. [Google Scholar] [CrossRef] [PubMed]
- Todd, E. Food-borne disease prevention and risk assessment. Int. J. Environ. Res. Public Health 2020, 17, 5129. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, K.; Shiravand, S.; Mahmoudvand, H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharm. J. 2017, 21, 866–871. [Google Scholar] [CrossRef]
- Kouhkan, M.; Ahangar, P.; Babaganjeh, L.A.; Allahyari-Devin, M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr. Nanosci. 2020, 16, 101–111. [Google Scholar] [CrossRef]
- Pathak, M.; Devi, A.; Bhattacharyya, K.; Sarma, H.; Subudhi, S.; Lal, B. Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv. 2015, 5, 66037–66046. [Google Scholar] [CrossRef]
- Azizi, M.; Ghourchian, H.; Yazdian, F.; Dashtestani, F.; AlizadehZeinabad, H. Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS ONE 2017, 12, e0188639. [Google Scholar] [CrossRef]
- Kannan, V.D.; Jaisankar, A.; Rajendran, V.; Ahmed, M.Z.; Alqahtani, A.S.; Kazmi, S.; Madav, E.; Sampath, S.; Asaithambi, P. Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: In vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line. Mater. Technol. 2024, 39, 2286818. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Zhou, S.; Shah, K.J. Current advances in coal chemical wastewater treatment technology. In Integrated and Hybrid Process Technology for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–271. [Google Scholar]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Madeła, M. Effect of copper nanoparticles on biological wastewater treatment. Desalin. Water Treat 2020, 199, 493–498. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Zhu, J.; Li, C.; Chen, G. A comprehensive review on wastewater nitrogen removal and its recovery processes. Int. J. Environ. Res. Public Health 2023, 20, 3429. [Google Scholar] [CrossRef]
- Dhandayuthapani, K.; Sarumathi, V.; Prasad, R.; Pancha, I.; Gupta, S.K.; Nema, A.K. An overview of industrial wastewater management using integrated algal technologies. In Algae and Sustainable Technologies; CRC Press: Boca Raton, FL, USA, 2020; pp. 141–172. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.K.; Agrawal, K.; Verma, P. Phycoremediation of nitrogen and phosphate from wastewater using Picochlorum sp.: A tenable approach. J. Basic Microbiol. 2022, 62, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.H.; Lock, S.S.M.; Wong, M.K.; Yiin, C.L.; Loy, A.C.M.; Cheah, K.W.; Chai, S.Y.W.; Li, C.; How, B.S.; Chin, B.L.F. A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook. Environ. Pollut. 2022, 314, 120219. [Google Scholar] [CrossRef]
- Bhagat, M.; Anand, R.; Sharma, P.; Rajput, P.; Sharma, N.; Singh, K. Multifunctional copper nanoparticles: Synthesis and applications. ECS J. Solid State Sci. Technol. 2021, 10, 063011. [Google Scholar] [CrossRef]
- Batool, F.; Shahid, M.; Mahmood, F.; Shahzad, T.; Azeem, F.; Hussain, S.; Algarni, T.S.; Elshikh, M.S.; Onazi, W.A.A.; Mustafa, S. Biosynthesis of copper nanoparticles using Bacillus flexus and estimation of their potential for decolorization of azo dyes and textile wastewater treatment. J. King Saud Univ.-Sci. 2024, 36, 103309. [Google Scholar] [CrossRef]
- Patel, V.R.; Bhatt, N. Application of stress induces ascorbate peroxidases of S. polyrhiza for green-synthesis Cu nanoparticles. Arab. J. Chem. 2020, 13, 8783–8792. [Google Scholar] [CrossRef]
- Din, M.I.; Rehan, R. Synthesis, characterization, and applications of copper nanoparticles. Anal. Lett. 2017, 50, 50–62. [Google Scholar] [CrossRef]
- Almisbah, S.R.; Mohammed, A.M.; Elgamouz, A.; Bihi, A.; Kawde, A. Green synthesis of CuO nanoparticles using Hibiscus sabdariffa L. extract to treat wastewater in Soba Sewage Treatment Plant, Sudan. Water Sci. Technol. 2023, 87, 3059–3071. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Meza, A.; Garzón-Zúñiga, M.; Barragán-Huerta, B.; Estrada-Arriaga, E.; Almaraz-Abarca, N.; García-Olivares, J. Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Rev. Mex. De Ing. Química 2020, 19, 29–44. [Google Scholar] [CrossRef]
- Rafique, M.; Shaikh, A.J.; Rasheed, R.; Tahir, M.B.; Gillani, S.S.A.; Usman, A.; Imran, M.; Zakir, A.; Khan, Z.U.H.; Rabbani, F. Aquatic biodegradation of methylene blue by copper oxide nanoparticles synthesized from Azadirachta indica leaves extract. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2455–2462. [Google Scholar] [CrossRef]
- Fathima, J.B.; Pugazhendhi, A.; Oves, M.; Venis, R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J. Mol. Liq. 2018, 260, 1–8. [Google Scholar] [CrossRef]
- Soomro, R.A.; Nafady, A. Catalytic reductive degradation of methyl orange using air resilient copper nanostructures. J. Nanomater. 2015, 2015, 136164. [Google Scholar] [CrossRef]
Bacterial Strain | Cu Nanoparticles | Ciprofloxacin | Bioflocculant | |||
---|---|---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
S. pneumonia | 25.0 | - | 6.25 | 12.5 | - | - |
S. aureus | 3.125 | 6.25 | 1.56 | 3.125 | - | - |
K. pneumonia | 12.5 | 25.0 | 3.125 | 6.25 | - | - |
P. aeruginosa | 6.25 | 12.5 | 6.25 | 6.25 | - | - |
Flocculants | Water Quality | BOD (mg/L) | COD (mg/L) | N (mg/L) | SO42− (mg/L) | PO42− (mg/L) | NO3− (mg/L) | Flocculating Activity (%) |
---|---|---|---|---|---|---|---|---|
Microbial | Before | 168.3 ± 0.0 | 154 ± 0.1 | 9.0 ± 0.0 | 35 ± 0.0 | 4.0 ± 0.0 | 9.0 ± 0.0 | 2.781 |
After | 27.3 ± 0.0 | 35.1 ± 0.3 | 3.2 ± 1.0 | 10 ± 1.0 | 0.58 ± 0.0 | 2.5 ± 0.0 | 0.264 | |
Removal rate (%) | 84 | 83 | 64 | 71 | 86 | 72 | 90 | |
CuNPs | Before | 168.3 ± 3.0 | 154 ± 0.0 | 9.0 ± 0.0 | 35 ± 0.0 | 4.0 ± 1.0 | 9.0 ± 0.0 | 2.781 |
After | 17.4 ± 0.0 | 27.2 ± 0.0 | 3.3 ± 0.0 | 13 ± 2.0 | 0.50 ± 0.0 | 1.8 ± 0.0 | 0.123 | |
Removal rate (%) | 90 | 87 | 63 | 63 | 88 | 80 | 97 | |
FeCl3 | Before | 168.2 ± 2.0 | 154 ± 2.0 | 9.0 ± 0.0 | 35 ± 2.0 | 4.0 ± 0.0 | 9.0 ± 1.0 | 2.781 |
After | 37.2 ± 0.3 | 41.3 ± 0.3 | 2.8 ± 0.0 | 9.9 ± 3.0 | 0.58 ± 1.0 | 2.0 ± 0.1 | 0.296 | |
Removal rate (%) | 78 | 82 | 69 | 64 | 86 | 78 | 89 |
Flocculants | Water Quality | BOD (mg/L) | COD (mg/L) | N (mg/L) | SO42− (mg/L) | PO42− (mg/L) | NO3− (mg/L) | Flocculating Activity (%) |
---|---|---|---|---|---|---|---|---|
Microbial | Before | 187.3 ± 0.0 | 437 ± 0.0 | 1.76 ± 1.0 | 5.0 ± 0.0 | 3.0 ± 0.0 | 4.0 ± 0.0 | 2.781 |
After | 47.3 ± 0.0 | 90.1 ± 0.0 | 0.12 ± 0.0 | 1.0 ± 0.0 | 0.58 ± 0.2 | 1.0 ± 0.2 | 0.227 | |
Removal rate (%) | 75 | 79 | 93 | 80 | 81 | 75 | 91 | |
CuNPs | Before | 187.1 ± 1.0 | 437 ± 0.4 | 9.0 ± 0.0 | 4 ± 0.0 | 3.0 ± 0.0 | 4.0 ± 0.0 | 2.781 |
After | 17.4 ± 0.3 | 27.2 ± 2.0 | 0.2 ± 1.0 | 0.3 ± 0.0 | 0.50 ± 1.0 | 0.7 ± 0.0 | 0.123 | |
Removal rate (%) | 91 | 94 | 97 | 93 | 83 | 82 | 95 | |
FeCl3 | Before | 183.2 ± 0.0 | 407 ± 0.0 | 3.0 ± 0.0 | 4 ± 0.0 | 3.0 ± 0.0 | 4.0 ± 0.0 | 2.781 |
After | 37.2 ± 1.0 | 44.3 ± 0.0 | 1.1 ± 0.0 | 1.2 ± 0.0 | 0.58 ± 0.0 | 1.2 ± 0.0 | 0. 296 | |
Removal rate (%) | 78 | 87 | 63 | 70 | 81 | 70 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkosi, N.C.; Basson, A.K.; Ntombela, Z.G.; Dlamini, N.G.; Pullabhotla, R.V.S.R. Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications. Appl. Nano 2025, 6, 5. https://doi.org/10.3390/applnano6010005
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications. Applied Nano. 2025; 6(1):5. https://doi.org/10.3390/applnano6010005
Chicago/Turabian StyleNkosi, Nkanyiso C., Albertus K. Basson, Zuzingcebo G. Ntombela, Nkosinathi G. Dlamini, and Rajasekhar V. S. R. Pullabhotla. 2025. "Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications" Applied Nano 6, no. 1: 5. https://doi.org/10.3390/applnano6010005
APA StyleNkosi, N. C., Basson, A. K., Ntombela, Z. G., Dlamini, N. G., & Pullabhotla, R. V. S. R. (2025). Green Synthesis of Copper Nanoparticles Using a Bioflocculant from Proteus mirabilis AB 932526.1 for Wastewater Treatment and Antimicrobial Applications. Applied Nano, 6(1), 5. https://doi.org/10.3390/applnano6010005