Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Water Collection and Analysis
2.2. Analytical Methods
2.3. Bio-Coagulant Preparation
2.4. FTIR Analysis
2.5. Design of Experiment
2.6. Experiments (Jar Test Assays)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.2. Optimization and Modeling of the Turbidity of Drinking Water
+ 2.089 X22 + 0.251X32 − 0.344X1X2 − 4.256 X1X3 + 0.334 X2X3.
+ 2.522 X22 + 1.852X32 + 2.007X1X2 + 1.337 X1X3 + 1.084 X2X3.
− 18.05 X22 − 1.24X32 + 0.75X1X2 − 1.84 X1X3 +2.68 X2X3.
X2 + 6.06X3 − 1.002X12 + 0.604 X22 + 0.292X32 + 1.121X1X2 + 2.617 X1X3 − 0.107 X2X3.
3.3. Analysis of Variance (ANOVA Test)
3.4. Evaluation Models
3.5. Effect of the Factors on Turbidity Reduction
3.6. Response Surface
3.6.1. Effect of PC-H2O Dosage, pH, and Settling Time
3.6.2. Effect of PC-NaCl Dosage, pH, and Settling Time
3.6.3. Effect of PC-NaOH Dosage, pH, and Settling Time
3.6.4. Effect of PC-HCl Dosage, pH, and Settling Time
3.7. Optimization of Experimental Conditions and Validation of Polynomial Models
3.8. Characterization of Treated Water Quality Under Optimal Conditions
3.9. Techno-Economic and Environmental Feasibility
3.10. Comparative Study of Natural Coagulants for Water Treatment Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Wu, J. Drinking Water Quality and Public Health. Expo. Health 2019, 11, 73–79. [Google Scholar] [CrossRef]
- Bora, A.J.; Dutta, R.K. Removal of Metals (Pb, Cd, Cu, Cr, Ni, and Co)from Drinking Water by Oxidation-Coagulation-Absorption at Optimized PH. J. Water Process Eng. 2019, 31, 100839. [Google Scholar] [CrossRef]
- Arnoldsson, E.; Bergman, M.; Matsinhe, N.; Persson, K.M. Assessment of Drinking Water Treatment Using Moringa oleifera Natural Coagulant. Vatten 2008, 64, 137–150. [Google Scholar]
- Sulaiman, M.; Zhigila, D.A.; Umar, D.M.; Babale, A.; Andrawus Zhigila, D.; Mohammed, K.; Mohammed Umar, D.; Aliyu, B.; Manan, F.A. Moringa oleifera Seed as Alternative Natural Coagulant for Potential Application in Water Treatment: A Review. J. Adv. Rev. Sci. Res. 2017, 30, 1–11. [Google Scholar]
- Bahrodin, M.B.; Zaidi, N.S.; Hussein, N.; Sillanpää, M.; Prasetyo, D.D.; Syafiuddin, A. Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant. Curr. Pollut. Rep. 2021, 7, 379–391. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Khalfaoui, A.; Pizzi, A. Optimization and Modeling of Bio-Coagulation Using Pine Cone as a Natural Coagulant: Jar Test and Pilot-Scale Applications. Water Air Soil Pollut. 2024, 235, 770. [Google Scholar] [CrossRef]
- El-taweel, R.M.; Mohamed, N.; Alrefaey, K.A.; Husien, S.; Abdel-Aziz, A.B.; Salim, A.I.; Mostafa, N.G.; Said, L.A.; Fahim, I.S.; Radwan, A.G. A Review of Coagulation Explaining Its Definition, Mechanism, Coagulant Types, and Optimization Models; RSM, and ANN. Curr. Res. Green Sustain. Chem. 2023, 6, 100358. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Lara, C.R.; Gómez Castaño, J.A.; Cifuentes, G.R. Evaluation of Turbidity and Color Removal in Water Treatment: A Comparative Study between Opuntia Ficus-Indica Fruit Peel Mucilage and FeCl3. Polymers 2023, 15, 217. [Google Scholar] [CrossRef]
- Chatsungnoen, T.; Chisti, Y. Flocculation and Electroflocculation for Algal Biomass Recovery, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; ISBN 9780444641922. [Google Scholar]
- Ndive, J.N.; Obiora-Okafo, I.A.; Onukwuli, O.D. Optimization Studies on the Coagulation–Flocculation Process for PWW Treatment Using Cactus Oputia Extract: Comparative Studies for Performance Evaluation. J. Basic Appl. Res. Int. 2023, 29, 16–31. [Google Scholar] [CrossRef]
- Altaher, H.; Khalil, T.E.; Abubeah, R. An Agricultural Waste as a Novel Coagulant Aid to Treat High Turbid Water Containing Humic Acids. Glob. Nest J. 2016, 18, 279–290. [Google Scholar] [CrossRef]
- Elsergany, M. The Potential Use of Moringa Peregrina Seeds and Seed Extract as a Bio-Coagulant for Water Purification. Water 2023, 15, 2804. [Google Scholar] [CrossRef]
- Benalia, A.; Atime, L.; Baatache, O.; Khalfaoui, A.; Ghomrani, A.F.; Derbal, K.; Pizzi, A.; Panico, A.; Bouchareb, E.M.; Bouchareb, R.; et al. Removal of Lead in Water by Coagulation Flocculation Process Using Cactus-Based Natural Coagulant: Optimization and Modeling by Response Surface Methodology (RSM). Environ. Monit. Assess. 2024, 196, 244. [Google Scholar] [CrossRef] [PubMed]
- Diver, D.; Nhapi, I.; Ruziwa, W.R. The Potential and Constraints of Replacing Conventional Chemical Coagulants with Natural Plant Extracts in Water and Wastewater Treatment. Environ. Adv. 2023, 13, 100421. [Google Scholar] [CrossRef]
- Camacho, F.P.; Sousa, V.S.; Bergamasco, R.; Ribau Teixeira, M. The Use of Moringa oleifera as a Natural Coagulant in Surface Water Treatment. Chem. Eng. J. 2017, 313, 226–237. [Google Scholar] [CrossRef]
- Abderrezzaq, B.; Kerroum, D.; Amrouci, Z.; Baatache, O. Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review. J. Renew. Mater. 2024, 12, 667–698. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Gisonni, C.; Crispino, G.; Pirozzi, F.; Pizzi, A. Use of Aloe Vera as an Organic Coagulant for Improving Drinking Water Quality. Water 2021, 13, 2024. [Google Scholar] [CrossRef]
- Muthuraman, G.; Sasikala, S. Removal of Turbidity from Drinking Water Using Natural Coagulants. J. Ind. Eng. Chem. 2014, 20, 1727–1731. [Google Scholar] [CrossRef]
- Fabris, R.; Chow, C.W.K.; Drikas, M. Evaluation of Chitosan as a Natural Coagulant for Drinking Water Treatment. Water Sci. Technol. 2010, 61, 2119–2128. [Google Scholar] [CrossRef]
- Jadhav, M.V.; Mahajan, Y.S. Investigation of the Performance of Chitosan as a Coagulant for Flocculation of Local Clay Suspensions of Different Turbidities. KSCE J. Civ. Eng. 2013, 17, 328–334. [Google Scholar] [CrossRef]
- Antov, M.G.; Šćiban, M.B.; Prodanović, J.M.; Kukić, D.V.; Vasić, V.M.; Đorđević, T.R.; Milošević, M.M. Common Oak (Quercus robur) Acorn as a Source of Natural Coagulants for Water Turbidity Removal. Ind. Crops Prod. 2018, 117, 340–346. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Aberkan, I.; Guizah, Q.E.; Khalfaoui, A.; Pizzi, A. Valorization of Pine Cones (Pinus nigras) for Industrial Wastewater Treatment and Crystal Violet Removal: A Sustainable Approach Based on Bio-Coagulants and a Bio-Adsorbent. Water 2024, 16, 260. [Google Scholar] [CrossRef]
- Baatache, O.; Derbal, K.; Benalia, A.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Pizzi, A. Use of Pine Cone as Bio-Coagulant for Heavy Metal Removal from Industrial Wastewater: Use of Box—Behnken Design. Ind. Crops Prod. 2024, 210, 118185. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.C.; Bouzaza, A.; Amrane, A.; Tahraoui, H.; Mouni, L. Aleppo Pine Seeds (Pinus Halepensis Mill.) as a Promising Novel Green Coagulant for the Removal of Congo Red Dye: Optimization via Machine Learning Algorithm. J. Environ. Manag. 2023, 331, 117286. [Google Scholar] [CrossRef]
- Bahrodin, M.B.; Zaidi, N.S.; Kadier, A.; Hussein, N.; Syafiuddin, A.; Boopathy, R. A Novel Natural Active Coagulant Agent Extracted from the Sugarcane Bagasse for Wastewater Treatment. Appl. Sci. 2022, 12, 7972. [Google Scholar] [CrossRef]
- Boutteflika, A. Paramètres De Qualité De L’eau De Consommation Humaine. J. Off. De La Repub. Algériennes 2011, 18, 6–9. [Google Scholar]
- Reza, A.; Chen, L.; Mao, X. Response Surface Methodology for Process Optimization in Livestock Wastewater Treatment: A Review. Heliyon 2024, 10, e30326. [Google Scholar] [CrossRef]
- Mustapha, L.S.; Obayomi, K.S. Parametric Optimization of Aloe Vera Coagulant for Nitrate Removal from Textile Wastewater Using Response Surface Methodology (RSM). Results Chem. 2025, 14, 102111. [Google Scholar] [CrossRef]
- Benalia, A.; Baatache, O.; Derbal, K.; Khalfaoui, A. The Use of Central Composite Design ( CCD ) to Optimize and Model the Coagulation-Flocculation Process Using a Natural Coagulant: Application in Jar Test and Semi-Industrial Scale. J. Water Process Eng. 2024, 57, 104704. [Google Scholar] [CrossRef]
- Subramonian, W.; Wu, T.Y.; Chai, S.P. A Comprehensive Study on Coagulant Performance and Floc Characterization of Natural Cassia Obtusifolia Seed Gum in Treatment of Raw Pulp and Paper Mill Effluent. Ind. Crops Prod. 2014, 61, 317–324. [Google Scholar] [CrossRef]
- Chen, W.H.; Chiu, G.L.; Chyuan Ong, H.; Shiung Lam, S.; Lim, S.; Sik Ok, Y.; Kwon, E.E. Optimization and Analysis of Syngas Production from Methane and CO2 via Taguchi Approach, Response Surface Methodology (RSM) and Analysis of Variance (ANOVA). Fuel 2021, 296, 120642. [Google Scholar] [CrossRef]
- Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Model Prediction of Coagulation by Magnetised Rice Starch for Wastewater Treatment Using Response Surface Methodology (RSM) with Artificial Neural Network (ANN). Sci. Afr. 2022, 17, e01282. [Google Scholar] [CrossRef]
- Polo-Castellano, C.; Mateos, R.M.; Visiedo, F.; Palma, M.; Barbero, G.F.; Ferreiro-González, M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa (Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants 2023, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Alidokht, L.; Khataee, A.R.; Karaca, S. Optimization of Comparative Removal of Two Structurally Different Basic Dyes Using Coal as a Low-Cost and Available Adsorbent. J. Taiwan Inst. Chem. Eng. 2014, 45, 1597–1607. [Google Scholar] [CrossRef]
- Obiora-Okafo, I.A.; Onukwuli, O.D.; Eli-Chukwu, N.C. Evaluation of Bio-Coagulants for Colour Removal from Dye Synthetic Wastewater: Characterization, Adsorption Kinetics, and Modelling Approach. Water SA 2020, 46, 300–312. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Panico, A.; Pirozzi, F. Use of Acorn Leaves as a Natural Coagulant in a Drinking Water Treatment Plant. Water 2018, 11, 57. [Google Scholar] [CrossRef]
- Shakoor, S.; Nasar, A. Utilization of Punica Granatum Peel as an Eco-Friendly Biosorbent for the Removal of Methylene Blue Dye from Aqueous Solution. J. Appl. Biotechnol. Bioeng. 2018, 5, 242–249. [Google Scholar] [CrossRef]
- Bouaouine, O.; Bourven, I.; Khalil, F.; Baudu, M. Identification of Functional Groups of Opuntia Ficus-Indica Involved in Coagulation Process after Its Active Part Extraction. Environ. Sci. Pollut. Res. 2018, 25, 11111–11119. [Google Scholar] [CrossRef]
- Choong Lek, B.L.; Peter, A.P.; Qi Chong, K.H.; Ragu, P.; Sethu, V.; Selvarajoo, A.; Arumugasamy, S.K. Treatment of Palm Oil Mill Effluent (POME) Using Chickpea (Cicer arietinum) as a Natural Coagulant and Flocculant: Evaluation, Process Optimization and Characterization of Chickpea Powder. J. Environ. Chem. Eng. 2018, 6, 6243–6255. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Huang, W.W.; Zhao, H.T.; Wang, J.; Xu, R.B.; Hu, X.L.; Shen, S.Y.; Qin, D. Characterization and Bioactivity of Polysaccharides Obtained from Pine Cones of Pinus Koraiensis by Graded Ethanol Precipitation. Molecules 2013, 18, 9933–9948. [Google Scholar] [CrossRef]
- Hamadi, Z.; Chaid, R.; Kebir, M.; Amirou, S.; Essawy, H.; Pizzi, A.; Séguin, P. Adsorption of Chromium Cr(VI) from Aqueous Solutions Using Algerian Pinus Halepensis Tannin Foam. Polymer 2020, 44, 425–435. [Google Scholar] [CrossRef]
- Fatombi, J.K.; Lartiges, B.; Aminou, T.; Barres, O.; Caillet, C. A Natural Coagulant Protein from Copra (Cocos nucifera): Isolation, Characterization, and Potential for Water Purification. Sep. Purif. Technol. 2013, 116, 35–40. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Y. Emerging Usage of Plant-Based Coagulants for Water and Wastewater Treatment. Process Biochem. 2010, 45, 1437–1444. [Google Scholar] [CrossRef]
- Beiramzadeh, Z.; Baqersad, M.; Aghababaei, M. Application of the Response Surface Methodology (RSM) in Heavy Metal Removal from Real Power Plant Wastewater Using Electrocoagulation. Eur. J. Environ. Civ. Eng. 2022, 26, 1–20. [Google Scholar] [CrossRef]
- Tomasi, I.T.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Microwave-Assisted Extraction of Polyphenols from Eucalyptus Bark—A First Step for a Green Production of Tannin-Based Coagulants. Water 2023, 15, 317. [Google Scholar] [CrossRef]
- Muniz, G.L.; da Silva, T.C.F.; Borges, A.C. Assessment and Optimization of the Use of a Novel Natural Coagulant (Guazuma ulmifolia) for Dairy Wastewater Treatment. Sci. Total Environ. 2020, 744, 140864. [Google Scholar] [CrossRef]
- Ahmed, M.; Tounsadi, H. Box-Behnken Experimental Design for the Optimization of Methylene Blue Adsorption onto Aleppo Pine Cones. J. Mater. Environ. Sci. 2017, 8, 2184. [Google Scholar]
- Sabeti, Z.; Alimohammadi, M.; Yousefzadeh, S.; Aslani, H.; Ghani, M.; Nabizadeh, R. Application of Response Surface Methodology for Modeling and Optimization of Bacillus Subtilis Spores Inactivation by the UV/Persulfate Process. Water Sci. Technol. Water Supply 2017, 17, 342–351. [Google Scholar] [CrossRef]
- Azimi, S.C.; Shirini, F.; Pendashteh, A. Evaluation of COD and Turbidity Removal from Woodchips Wastewater Using Biologically Sequenced Batch Reactor. Process Saf. Environ. Prot. 2019, 128, 211–227. [Google Scholar] [CrossRef]
- Drury, C.; Paquet, V.; Kelly, H. Experimental Design and Analysis. In Evaluation of Human Work, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 37–60. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z. Box-Behnken Response Surface Design for the Optimization of Electrochemical Detection of Cadmium by Square Wave Anodic Stripping Voltammetry on Bismuth Film/Glassy Carbon Electrode. Sens. Actuators B Chem. 2016, 235, 67–73. [Google Scholar] [CrossRef]
- Mdee, A.L.O.J.; Sadiki, J.W.N.N. Performance Analysis of Plant—Based Coagulants in Water Purification: A Review. Discov. Water 2024, 4, 108. [Google Scholar] [CrossRef]
- Hameed, Y.T.; Idris, A.; Hussain, S.A.; Abdullah, N. A Tannin-Based Agent for Coagulation and Flocculation of Municipal Wastewater: Chemical Composition, Performance Assessment Compared to Polyaluminum Chloride, and Application in a Pilot Plant. J. Environ. Manag. 2016, 184, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.C.; Assadi, A.A.; Amrane, A.; Mouni, L. Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water 2022, 14, 3324. [Google Scholar] [CrossRef]
- Rashid, N.; Rehman, M.S.U.; Han, J.I. Use of Chitosan Acid Solutions to Improve Separation Efficiency for Harvesting of the Microalga Chlorella Vulgaris. Chem. Eng. J. 2013, 226, 238–242. [Google Scholar] [CrossRef]
- Hussain, S.; Sattar, A.; Ahmad, A. Pine Cone Extract as Natural Coagulant for Puri Fi Cation of Turbid Water. Heliyon 2019, 5, e01420. [Google Scholar] [CrossRef]
- Kleber, M.; Lehmann, J. Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter in Terrestrial and Aquatic Ecosystems. J. Environ. Qual. 2019, 48, 207–216. [Google Scholar] [CrossRef]
- Deshmukh, S.O.; Hedaoo, M.N. Wastewater Treatment Using Bio-Coagulant as Cactus Opuntia Ficus Indica—A Review. Int. J. Sci. Res. Dev. 2018, 6, 711–717. [Google Scholar] [CrossRef]
- Birhanu, Y.; Leta, S. Application of Response Surface Methodology to Optimize Removal Efficiency of Water Turbidity by Low-Cost Natural Coagulant (Odaracha Soil) from Saketa District, Ethiopia. Results Chem. 2021, 3, 100108. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Pizzi, A.; Medjahdi, G. The Use of Aloe Vera as Natural Coagulant in Algerian Drinking Water Treatment Plant. J. Renew. Mater. 2022, 10, 625–637. [Google Scholar] [CrossRef]
- Getahun, M.; Befekadu, A.; Alemayehu, E. Coagulation Process for the Removal of Color and Turbidity from Wet Coffee Processing Industry Wastewater Using Bio-Coagulant: Optimization through Central Composite Design. Heliyon 2024, 10, e27584. [Google Scholar] [CrossRef] [PubMed]
- Chik, C.E.N.C.E.; Kurniawan, S.B.; Shukri, Z.N.A.; Terkula, I.B.; Wahab, F.; Endut, A.; Lananan, F.; Hasan, H.A.; Abdullah, S.R.S.; Kasan, N.A. Chitosan Coagulant: Coagulation/Flocculation Studies on Turbidity Removal from Aquaculture Wastewater by Response Surface Methodology. Int. J. Environ. Sci. Technol. 2024, 21, 805–816. [Google Scholar] [CrossRef]
- Alnawajha, M.M.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Kurniawan, S.B. Effectiveness of Using Water-Extracted Leucaena Leucocephala Seeds as a Coagulant for Turbid Water Treatment: Effects of Dosage, PH, Mixing Speed, Mixing Time, and Settling Time; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2024; Volume 14, ISBN 1339902203233. [Google Scholar]
- Villabona-Ortiz, Á.; Tejada-Tovar, C.; Ortega-Toro, R. Development of a Natural Coagulant from Albizia Lebbeck Seeds for Application in Turbidity Removal from Water Intended for Human Consumption. S. Afr. J. Chem. Eng. 2025, 53, 331–341. [Google Scholar] [CrossRef]
- Shahzadi, F.; Haydar, S.; Tabraiz, S. Optimization of Coagulation to Remove Turbidity from Surface Water Using Novel Nature-Based Plant Coagulant and Response Surface Methodology. Sustainability. 2024, 16, 2941. [Google Scholar] [CrossRef]
- Maroneze, M.M.; Zepka, L.Q.; Vieira, J.G.; Queiroz, M.I.; Jacob-Lopes, E. A Tecnologia de Remoção de Fósforo: Gerenciamento Do Elemento Em Resíduos Industriais. Rev. Ambiente E Agua 2014, 9, 445–458. [Google Scholar] [CrossRef]
- Febrianti, N.; Permana, R.N.W.; Ariani, I.K. Utilization of Aloe Vera as a Biocoagulant for Turbidity, Total Dissolved Solid (TDS), and Iron (Fe) Removal in Well Water. IOP Conf. Ser. Earth Environ. Sci. 2024, 1312, 012007. [Google Scholar] [CrossRef]
- Kouniba, S.; Benbiyi, A.; Zourif, A.; EL Guendouzi, M. Optimization Use of Watermelon Rind in the Coagulation-Flocculation Process by Box Behnken Design for Copper, Zinc, and Turbidity Removal. Heliyon 2024, 10, e30823. [Google Scholar] [CrossRef]
- Alnawajha, M.M.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R.; Jusoh, H.H.W.; Ismail, A.; Hasan, H.A. Water vs. Salt Extraction of Bio-Coagulant from Leucaena Leucocephala Pods for Removing Turbidity from Aquaculture Effluent. J. Indian Chem. Soc. 2025, 102, 101784. [Google Scholar] [CrossRef]
- Zourif, A.; Benbiyi, A.; Kouniba, S.; El Guendouzi, M. Avocado Seed as a Natural Coagulant for Removing Dyes and Turbidity from Wastewater: Behnken Box Design, Sustainable Reuse, and Economic Evaluation. Sustain. Chem. Pharm. 2024, 39, 101621. [Google Scholar] [CrossRef]
- Nouj, N.; Majbar, Z.; Abelouah, M.R.; Ben Hamou, A.; Chaoui, A.; Hafid, N.; Benafqir, M.; El Alem, N.; Jada, A.; Ouachtak, H.; et al. Eco-Friendly Wastewater Treatment Using a Crab Shell-Based Liquid Bio-Coagulant: Multi-Criteria Decision Analysis Related to Different Pollutants Separation. J. Environ. Chem. Eng. 2024, 12, 112318. [Google Scholar] [CrossRef]
- Kakoi, B.; Kaluli, J.W.; Ndiba, P.; Thiong’o, G. Optimization of Maerua Decumbent Bio-Coagulant in Paint Industry Wastewater Treatment with Response Surface Methodology. J. Clean. Prod. 2017, 164, 1124–1134. [Google Scholar] [CrossRef]
- Shahimi, N.S.W.; Zaidi, N.S.; Bahrodin, M.B.; Amran, A.H. Utilization of Fruit Wastes (Jackfruit and Mango Seeds and Banana Trunk) as Natural Coagulants in Treating Municipal Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1144, 012049. [Google Scholar] [CrossRef]
Parameters | Raw Water | Algerian Standard [27] | |
---|---|---|---|
Unit | Value | ||
Temperature | °C | 21 | 25 |
pH | / | 7.57 | 6.5–9 |
Turbidity | NTU | 32.5 | 5 |
TSS | mg. L−1 | 16.2 | / |
TA | meq. L−1 | 0 | / |
TAC | °F | 16.5 | 50 |
TH | °F | 18.4 | 20 |
Salinity | g. L−1 | 0.9 | / |
Conductivity | µs. cm−1 | 1724 | 2800 |
Solid content | mg. L−1 | 1924.1 | 1500 mg/L |
UV254 | Cm−1 | 0.714 | / |
Coded Values | Factor | Coded level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
X1 | Coagulant dosage (mL/L) | 10 | 55 | 100 |
X2 | pH | 6.5 | 7.5 | 8.5 |
X3 | Settling time (min) | 30 | 75 | 120 |
Factor | Turbidity Removal (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | PC-H2O | PC-NaCl | PC-NaOH | PC-HCl | |||||
Standard Run | Coagulant Dosage (mL/L) | pH | Settling Time (min) | Experimental | Predicted | Experimental | Predicted | Experimental | Predicted | Experimental | Predicted |
1 | 10 | 6.5 | 75 | 70.36 | 69.61 | 38.12 | 37.07 | 41.8 | 34.94 | 68.357 | 68.923 |
2 | 100 | 6.5 | 75 | 70.06 | 69.23 | 33.43 | 34.57 | 5.35 | 10.11 | 68.260 | 69.198 |
3 | 10 | 8.5 | 75 | 60.86 | 61.7 | 29.77 | 28.63 | 32.77 | 28.01 | 68.227 | 67.290 |
4 | 100 | 8.5 | 75 | 59.19 | 59.94 | 33.11 | 34.15 | −0.66 | 6.18 | 72.615 | 72.050 |
5 | 10 | 7.5 | 30 | 60.86 | 60.78 | 25.4 | 27.38 | 20.06 | 23.45 | 64.551 | 64.351 |
6 | 100 | 7.5 | 30 | 68.22 | 68.22 | 26.42 | 26.21 | 12.04 | 3.8 | 62.207 | 61.635 |
7 | 10 | 7.5 | 120 | 66.85 | 66.86 | 36.78 | 36.99 | 64.88 | 73.11 | 70.665 | 71.237 |
8 | 100 | 7.5 | 120 | 57.19 | 57.28 | 43.15 | 41.17 | 49.49 | 46.11 | 78.789 | 78.989 |
9 | 55 | 6.5 | 30 | 65.54 | 66.38 | 39.79 | 38.87 | 8.69 | 12.16 | 64.551 | 64.186 |
10 | 55 | 8.5 | 30 | 57.86 | 57.11 | 33.11 | 32.27 | 0.00 | 1.37 | 63.872 | 65.010 |
11 | 55 | 6.5 | 120 | 62.53 | 63.28 | 48.15 | 48.99 | 54.18 | 52.8 | 77.658 | 76.521 |
12 | 55 | 8.5 | 120 | 56.19 | 55.35 | 45.8 | 46.73 | 56.18 | 52.71 | 76.551 | 76.916 |
13 | 55 | 7.5 | 75 | 58.2 | 58.19 | 37.78 | 37.34 | 43.81 | 49.05 | 69.829 | 69.763 |
14 | 55 | 7.5 | 75 | 58.18 | 58.19 | 37.12 | 37.34 | 54.84 | 49.05 | 69.672 | 69.763 |
15 | 55 | 7.5 | 75 | 58.2 | 58.19 | 37.12 | 37.34 | 48.49 | 49.05 | 69.789 | 69.763 |
PC-H2O | PC-NaCl | PC-NaOH | PC-HCl | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | DF | MS | F-Value | p-Value | MS | F-Value | p-Value | MS | F-Value | p-Value | MS | F-Value | p-Value |
Model | 9 | 36.994 | 36.37 | 0.000 | 63.167 | 19.67 | 0.002 | 775.94 | 10.02 | 0.010 | 38.390 | 32.00 | 0.001 |
Linear | 3 | 53.975 | 53.06 | 0.000 | 115.263 | 35.90 | 0.001 | 1792.3 | 23.14 | 0.002 | 102.409 | 85.35 | 0.000 |
X1 | 1 | 2.284 | 2.25 | 0.194 | 4.535 | 1.41 | 0.288 | 1088.3 | 14.05 | 0.013 | 12.676 | 10.57 | 0.023 |
X2 | 1 | 147.81 | 145.32 | 0.000 | 39.201 | 12.21 | 0.017 | 59.07 | 0.76 | 0.422 | 0.743 | 0.62 | 0.467 |
X3 | 1 | 11.824 | 11.62 | 0.019 | 302.054 | 94.07 | 0.000 | 4229.5 | 54.60 | 0.001 | 293.808 | 244.88 | 0.000 |
Square | 3 | 32.551 | 32.00 | 0.001 | 64.917 | 20.22 | 0.003 | 520.67 | 6.72 | 0.033 | 1.936 | 1.61 | 0.298 |
X12 | 1 | 86.485 | 85.03 | 0.000 | 144.488 | 45.00 | 0.001 | 462.34 | 5.97 | 0.058 | 3.706 | 3.09 | 0.139 |
X22 | 1 | 16.112 | 15.84 | 0.011 | 23.485 | 7.31 | 0.043 | 1202.4 | 15.52 | 0.011 | 1.345 | 1.12 | 0.338 |
X23 | 1 | 0.233 | 0.23 | 0.653 | 12.668 | 3.95 | 0.104 | 5.68 | 0.07 | 0.797 | 0.314 | 0.26 | 0.631 |
Interaction | 3 | 24.457 | 24.04 | 0.002 | 9.320 | 2.90 | 0.141 | 14.81 | 0.19 | 0.898 | 10.823 | 9.02 | 0.018 |
X1 X2 | 1 | 0.475 | 0.47 | 0.525 | 116.107 | 5.02 | 0.075 | 2.27 | 0.03 | 0.871 | 5.029 | 4.19 | 0.096 |
X1 X3 | 1 | 72.449 | 71.23 | 0.000 | 7.150 | 2.23 | 0.196 | 13.53 | 0.17 | 0.693 | 27.396 | 22.83 | 0.005 |
X2X3 | 1 | 0.447 | 0.44 | 0.537 | 4.704 | 1.46 | 0.280 | 28.64 | 0.37 | 0.570 | 0.046 | 0.04 | 0.853 |
Error | 5 | 1.017 | 3.211 | 77.46 | 1.200 | ||||||||
Lack of fit | 3 | 1.695 | 18,186.28 | 0.000 | 5.256 | 36.70 | 0.027 | 108.64 | 3.54 | 0.228 | 1.995 | 299.12 | 0.003 |
Pure error | 2 | 0.000 | 0.143 | 0.757 | 30.69 | 0.007 | |||||||
Total | 14 | ||||||||||||
R2% | 98.50 | 97.25 | 94.75 | 98.29 | |||||||||
R2 adj% | 95.79 | 92.31 | 85.29 | 95.22 |
Results Obtained | PC-H2O | PC-NaCl | PC-NaOH | PC-HCl | ||||
---|---|---|---|---|---|---|---|---|
Tu (NTU) | Turbidity Removal (%) | Tu (NTU) | Turbidity Removal (%) | Tu (NTU) | Turbidity Removal (%) | Tu (NTU) | Turbidity Removal (%) | |
Observed | 8.8 | 73.25 | 16.88 | 48.69 | 9.58 | 70.88 | 7.05 | 78.57 |
Predicted | 75.28 | 48.99 | 74/88 | 80.66 | ||||
Relative error (%) | 2.6 | 0.61 | 5.3 | 2.59 |
Parameters | Unit | Raw Water | PC-H2O | PC-NaCl | PC-NaOH | PC-HCl | ||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Value | % | Value | % | Value | % | Value | % | ||
Turbidity | NTU | 32.5 | 8.8 | 73.25 | 16.88 | 48.69 | 9.58 | 70.88 | 7.05 | 78.57 |
Salinity | g L−1 | 0.9 | 0.7 | / | 1.2 | / | 0.7 | / | 0.6 | / |
Conductivity | µs cm−1 | 1724 | 722 | / | 2411 | / | 845 | / | 1128 | / |
UV254 | cm−1 | 0.714 | 0.262 | 63.30 | 0.547 | 23.38 | 0.309 | 56.72 | 0.237 | 66.80 |
Total alkalinity | F° | 16.5 | 8.6 | / | 8.8 | / | 19 | / | 0 | / |
Total hardness | F° | 18.4 | 8.6 | / | 8.8 | / | 34.4 | / | 31 | / |
TSS | mg L−1 | 16.2 | 6.1 | 62.34 | 14.4 | 11.11 | 9.3 | 42.59 | 2.3 | 85.8 |
dry residue | mg L−1 | 1924.1 | 950.7 | 50.58 | 1910.4 | 0.71 | 915 | 52.44 | 921 | 52.13 |
Bio-Coagulant | Optimal Dosage | pH | Settling Time (min) | Rapid Mixing Speed and Time (rpm/min) | Slow Mixing Speed and Time (rpm/min) | Turbidity Removal Efficiency (%) | References |
---|---|---|---|---|---|---|---|
Moringa peregrina seed | 100 mg/L extract with 0.5 NaCl | 200 rpm/1 min | 35 rpm/30 min | 88 | [12] | ||
Acanthus sennii C. | 0.98 g L−1 extract prepared in distilled water | 8.76 | 76.67 | 21.69 | 97.52 | [63] | |
Moringa stenopetala B | 0.82 g L−1 extract prepared in distilled water | 8.6 | 73.68 | 28.00 | 98.37 | [63] | |
Aloe vera L | 1.65 g L−1 extract prepared in distilled water | 8.94 | 70.96 | 32.64 | 96.74 | [63] | |
Rice starch | 4 g L−1 extract prepared in distilled water | 15 | 50 rpm/2 min | 30 rpm/15 min | 72 | [33] | |
Chitosan | 18.25 mg L−1 | 7 | 18.1 | 94 ± 0.61 | [64] | ||
L. leucocephala seeds | 120 mg L−1 extract prepared in distilled water | 6.5 | 30 | 260 rpm/11 min | 30 rpm/15 min | 93.05 | [65] |
Albizia lebbeck | 8.5 mL L−1, prepared with 10 g of 0.5 mm seeds at 4% NaCl | 200 rpm/3 min | 60 rpm/30 min | [66] | |||
Sorghum | 40 mg L−1 extract prepared in distilled water | 2 | 200 rpm/2 min | 30 rpm/25 min | 87.73 | [67] | |
Cassia fistula | 160 mgL−1 extract prepared in distilled water | 60 | 100 rpm/1 min | 40 rpm/30 min | 62.18 | [68] | |
Aloe vera | 0.5 mL L−1 extract prepared in HCl (0.05) | 8 | 30 | 120 rpm/1 min | 30 rpm/10 min | 96.99 | [69] |
0.5 mL L−1 extract prepared in distilled water | 8 | 30 | 91.76 | [69] | |||
Watermelon rinds | 200 mg L−1 powder, 100 μm granulation | 7 | 60 | 300 rpm/2 min | 60 rpm/20 min | 99.21 | [70] |
Leucaena leucocephala | Distilled water With KCl (2 M) With KNO3 (1 M) | 60 | 150 rpm/5 min | 30 rpm/30 min | 3.78 86.52 86 | [71] | |
Avocado seed | 300 mg L−1 powder, 63 μm granulation | 8 | / | / | / | 99.64 | [72] |
Crab shell | 17.5 mL L−1 extract prepared in distilled water | 11.3 | / | / | / | 98.91 | [73] |
Maerua Decumbent | 1 kg m−3 Powder with 0.4 mm granulation | 5.56 | 52.31 min | 180 rpm/3 min | 30 rpm/20 min | 99.2 | [74] |
Banana trunk peduncles | 50 mg L−1 extract with 2.5M of sodium hydroxide (NaOH) | 7 | 30 | 200 rpm/2 min | 40 rpm/20 min | 90.2 | [75] |
Guazuma ulmifolia | 775.8 mg L−1 powder with 0.3 mm granulation | 5 | 200 rpm/1 min | 30 rpm/15 min | 95.8 | [48] | |
Pine cone | 100 mL L−1 extract prepared in distilled water 55.45 mL L−1 extract prepared in NaCl (0.5M) 28.18 mL L−1 extract prepared in NaOH (0.05M) 100 mL L−1 extract prepared in HCl (0.5M) | 6.5 6.5 7.48 8.5 | 30 120 120 120 | 160 rpm/3 min | 30 rpm/20 min | 73.25 48.69 70.88 78.57 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baatache, O.; Benalia, A.; Derbal, K.; Khalfaoui, A.; Pizzi, A. Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts. Water 2025, 17, 1793. https://doi.org/10.3390/w17121793
Baatache O, Benalia A, Derbal K, Khalfaoui A, Pizzi A. Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts. Water. 2025; 17(12):1793. https://doi.org/10.3390/w17121793
Chicago/Turabian StyleBaatache, Ouiem, Abderrezzaq Benalia, Kerroum Derbal, Amel Khalfaoui, and Antonio Pizzi. 2025. "Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts" Water 17, no. 12: 1793. https://doi.org/10.3390/w17121793
APA StyleBaatache, O., Benalia, A., Derbal, K., Khalfaoui, A., & Pizzi, A. (2025). Optimized Coagulation Flocculation of Drinking Water Using Pine cone-Based Bio-Coagulants: A Comparative Study of Different Extracts. Water, 17(12), 1793. https://doi.org/10.3390/w17121793