Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,913)

Search Parameters:
Keywords = bio based

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 369 KB  
Article
Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing
by Dimitrios Moutousidis, Konstantina Karidi, Eleftheria Athanassiadou, Katiana Filippi, Nikos Giannakis, Apostolos Koutinas and Eleni Stylianou
Adhesives 2025, 1(4), 13; https://doi.org/10.3390/adhesives1040013 (registering DOI) - 1 Nov 2025
Abstract
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type [...] Read more.
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type resins. Plywood panels were produced bonded with the novel experimental resins, exhibiting satisfactory performance, comparable to the reference panels in terms of both shear strength and wood failure, based on the requirements of the European standards. The results demonstrate the potential of using biomass-derived compounds as substitutes for petrochemical phenol in the production of wood adhesives, thereby increasing the bio-based content of the wood panel composites produced with them and improving their sustainability. Full article
(This article belongs to the Special Issue Advances in Bio-Based Wood Adhesives)
Show Figures

Figure 1

24 pages, 4391 KB  
Review
Progress in Self-Repair Technology for Concrete Cracks via Biomineralization
by Meirong Zong, Wenhao Wang, Haozhe Ma, Nshuti Cedrick, Yuting Sun, Xiancui Yan, Hui Liu, Pinghua Zhu and Minqi Hua
Materials 2025, 18(21), 5004; https://doi.org/10.3390/ma18215004 (registering DOI) - 1 Nov 2025
Abstract
Biomineralized self-healing concrete is a type of concrete that, during its service life, induces the generation of calcium carbonate through the participation of microorganisms or active enzymes, thereby achieving self-repair of cracks at different times. Self-healing concrete based on biomineralization can achieve sustainable [...] Read more.
Biomineralized self-healing concrete is a type of concrete that, during its service life, induces the generation of calcium carbonate through the participation of microorganisms or active enzymes, thereby achieving self-repair of cracks at different times. Self-healing concrete based on biomineralization can achieve sustainable crack repair and could enhance the strength and extend the service life of buildings. This article comprehensively analyzes the latest progress in bio-self-healing concrete, including microbial-based self-healing, enzyme-induced calcium carbonate precipitation (EICP), microcapsule-loaded microbial in situ remediation, and bio-inorganic mineral synergist self-healing technology. The maximum repairable width of the crack is 2.0 mm, and concrete strength can be increased by 135%. These methods offer new insights and strategies for the repair of concrete cracks, providing fundamental knowledge for the later application of intelligent engineering of bio-self-healing concrete and the analysis of micro-interface mechanisms. At the same time, they clarify the practical possibility of microbial technology in building materials science and engineering and offer key theoretical support for the long-term development of China’s construction industry. Full article
(This article belongs to the Topic Advances in Biomaterials—2nd Edition)
18 pages, 1647 KB  
Article
Sustainable Plastics: Effect of Bio-Based Plasticizer on Crystallization Kinetics of PLA
by David Alberto D’Amico, Liliana Beatriz Manfredi, Norma Esther Marcovich, Mirna Alejandra Mosiewicki and Viviana Paola Cyras
Polymers 2025, 17(21), 2935; https://doi.org/10.3390/polym17212935 (registering DOI) - 1 Nov 2025
Abstract
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and [...] Read more.
This work investigates the effect of a bio-based plasticizer derived from used sunflower oil on the crystallization behavior of poly (lactic acid) (PLA), comparing it with that of the conventional plasticizer tributyrin. This study aims to explore biodegradable alternatives to petroleum-based materials and to evaluate their potential in modulating PLA crystallization kinetics without altering the crystalline structure of the resulting sustainable material solutions with tailored performance. PLA-based films containing 5%, 10%, and 15% plasticizer were prepared and characterized by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-Ray diffraction (XRD). DSC analysis showed a decrease in the glass transition temperatures upon plasticization, with tributyrin producing a more pronounced effect than the recycled sunflower oil plasticizer. XRD patterns confirmed that the crystalline form of PLA remained unchanged regardless of plasticizer type or content. POM revealed that both plasticizers influenced crystallization kinetics, with the bio-plasticizer promoting larger and more sparsely distributed spherulites than tributyrin, indicating differences in nucleation efficiency and crystal growth. Crystallization kinetics were further analyzed using the Avrami model, the Lauritzen-Hoffman theory, and the isoconversional method. Avrami analysis indicated that nucleation mechanisms were largely unaffected, although the overall crystallization rate increased upon plasticization. Lauritzen-Hoffman analysis confirmed crystallization in Regime III, controlled by nucleation, while isoconversional analysis showed reduced activation energy in plasticized PLA. These findings highlight the ability of bio-derived plasticizers to modulate PLA crystallization, promoting the valorization of a food industry residue as a sustainable plasticizer. This study hopes to contribute relevant knowledge to emerging areas of polymer processing, such as 3D printing, to develop sustainable and high-performance PLA-based materials. Full article
(This article belongs to the Special Issue Polymeric Materials in Food Science)
21 pages, 895 KB  
Review
Hybrid Biocatalysis with Photoelectrocatalysis for Renewable Furan Derivatives’ Valorization: A Review
by Shize Zheng, Xiangshi Liu, Bingqian Guo, Yanou Qi, Xifeng Lv, Bin Wang and Di Cai
Photochem 2025, 5(4), 35; https://doi.org/10.3390/photochem5040035 (registering DOI) - 1 Nov 2025
Abstract
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With [...] Read more.
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With the evolution of green chemistry and environmental concern, hybrid photoelectro-biocatalysis (HPEB) platforms are seen as a new approach to enhance biocatalysis. This strategy greatly expands the domain of natural biocatalysis, especially for bio-based components. The selective valorization of renewable furan derivatives, such as 5-hydroxymethylfurfural (HMF) and furfural, is central to advancing biomass-based chemical production. Biocatalysis offers high chemo-, regio-, and stereo-selectivity under mild conditions compared with traditional chemical catalysis, yet it is often constrained by the costly and inefficient regeneration of redox cofactors like NAD(P)H. Photoelectrocatalysis provides a sustainable means to supply reducing equivalents using solar or electrical energy. In recent years, hybrid systems that integrate biocatalysis with photoelectrocatalysis have emerged as a promising strategy to overcome this limitation. This review focuses on recent advances in such systems, where photoelectrochemical platforms enable in situ cofactor regeneration to drive enzymatic transformations of furan-based substrates. We critically analyze representative coupling strategies, materials and device configurations, and reaction engineering approaches. Finally, we outline future directions for developing efficient, robust, and industrially viable hybrid catalytic platforms for green biomass valorization. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

15 pages, 2832 KB  
Article
Halloysite@Polydopamine Nanoplatform for Ultrasmall Pd and Cu Nanoparticles: Suitable Catalysts for Hydrogenation and Reduction Reactions
by Marina Massaro, Chiara D’Acunzi, Stefano Paganelli, Maria Laura Alfieri, Leonarda F. Liotta, Alberto Lopez-Galindo, Raquel de Melo Barbosa, Oreste Piccolo, Rita Sánchez-Espejo, César Viseras and Serena Riela
Catalysts 2025, 15(11), 1029; https://doi.org/10.3390/catal15111029 (registering DOI) - 1 Nov 2025
Abstract
The design of sustainable nanomaterials for catalysis is a key challenge in green chemistry. Herein, we report the synthesis of halloysite nanotube (Hal)-based nanomaterials selectively functionalized with a bio-inspired polydopamine (PDA) coating, which enables the controlled anchoring of palladium and copper nanoparticles (PdNPs [...] Read more.
The design of sustainable nanomaterials for catalysis is a key challenge in green chemistry. Herein, we report the synthesis of halloysite nanotube (Hal)-based nanomaterials selectively functionalized with a bio-inspired polydopamine (PDA) coating, which enables the controlled anchoring of palladium and copper nanoparticles (PdNPs and CuNPs). This mild and ecofriendly strategy yields highly dispersed and ultrasmall (<5 nm) metal nanoparticles without the need for surfactants or harsh reagents. The resulting materials, Hal@PDA/PdNPs and Hal@PDA/CuNPs, were evaluated in two well-established model reactions commonly employed to probe catalytic performance: cinnamaldehyde hydrogenation and 4-nitrophenol reduction. Hal@PDA/PdNPs displayed complete conversion and >90% selectivity toward hydrocinnamaldehyde at low Pd loading (0.8 wt%) and maintained its efficiency over six catalytic cycles (TOF up to 0.1 s−1), while Hal@PDA/CuNPs retained high activity through eight consecutive runs in the reduction of 4-nitrophenol. Hal@PDA/CuNPs proved to be an excellent recyclable catalyst for the reduction of 4-nitrophenol, retaining high activity through eight consecutive runs. Overall, this study introduces a robust and modular approach to fabricating halloysite-based nanocatalysts, demonstrating their potential as green platforms for metal nanoparticle-mediated transformation. Full article
Show Figures

Graphical abstract

22 pages, 9260 KB  
Article
Bio-Membrane-Based Nanofiber Scaffolds: Targeted and Controlled Carriers for Drug Delivery—An Experimental In Vivo Study
by Manuel Toledano, Marta Vallecillo-Rivas, María-Angeles Serrera-Figallo, Aida Gutierrez-Corrales, Christopher D. Lynch, Daniel Torres-Lagares and Cristina Vallecillo
Biomimetics 2025, 10(11), 726; https://doi.org/10.3390/biomimetics10110726 (registering DOI) - 1 Nov 2025
Abstract
Cell population and vascular vessel distribution analysis in membrane-based scaffolds for tissue engineering is crucial. Biomimetic nanostructured membranes of methyl methacrylate/hydroxyethyl methacrylate and methyl acrylate/hydroxyethyl acrylate (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt SiO2-nanoparticles (Si-M) were doped with zinc (Zn-M) or doxycycline (Dox-M). Critical bone [...] Read more.
Cell population and vascular vessel distribution analysis in membrane-based scaffolds for tissue engineering is crucial. Biomimetic nanostructured membranes of methyl methacrylate/hydroxyethyl methacrylate and methyl acrylate/hydroxyethyl acrylate (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt SiO2-nanoparticles (Si-M) were doped with zinc (Zn-M) or doxycycline (Dox-M). Critical bone defects were effectuated on six New Zealand-bred rabbit skulls and then they were covered with the membrane-based scaffolds. After six weeks, bone cell population in terms of osteoblasts, osteoclasts, osteocytes, fibroblasts, and M1 and M2 macrophages and vasculature was determined. The areas of interest were the space above (over) and below (under) the membrane, apart from the interior (inner) compartment. All membranes showed that vasculature and most cell types were more abundant under the membrane than in the inner or above regions. Quantitatively, osteoblast density increased by approximately 35% in Zn-M and 25% in Si-M compared with Dox-M. Osteoclast counts decreased by about 78% in Dox-M, indicating strong inhibition of bone resorption. Vascular structures were nearly twofold more frequent under the membranes, particularly in Si-M, while fibroblast presence remained moderate and evenly distributed. The M1/M2 macrophage ratio was higher in Zn-M, reflecting a transient pro-inflammatory state, whereas Dox-M favored an anti-inflammatory, pro-regenerative profile. These results indicate that the biomimetic electrospun membranes functioned as architectural templates that provided favorable microenvironments for cell colonization, angiogenesis, and early bone regeneration in a preclinical in vivo model. Zn-M membranes appear suitable for early osteogenic stimulation, while Dox-M membranes may be advantageous in clinical contexts requiring modulation of inflammation and osteoclastic activity. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

4 pages, 332 KB  
Editorial
Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials
by Emanuela Calcio Gaudino and Silvia Tabasso
Appl. Sci. 2025, 15(21), 11692; https://doi.org/10.3390/app152111692 (registering DOI) - 31 Oct 2025
Abstract
The Special Issue “Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials” brings together recent advances and emerging strategies for the valorization of agri-food residues. This Editorial provides an overview of the contributions included in the Special Issue, highlighting innovative [...] Read more.
The Special Issue “Unlocking the Potential of Agri-Food Waste for Innovative Applications and Bio-Based Materials” brings together recent advances and emerging strategies for the valorization of agri-food residues. This Editorial provides an overview of the contributions included in the Special Issue, highlighting innovative approaches that convert waste streams into valuable bio-based materials, chemicals, and products. The collected works demonstrate how hydrodynamic, chemical, biological, and catalytic processes can be integrated to achieve sustainable waste management and circular resource recovery. By summarizing the main findings and perspectives, this Editorial emphasizes the growing relevance of agri-food waste valorization within the framework of the circular bioeconomy and encourages further interdisciplinary collaboration to accelerate the transition toward sustainable production systems. Full article
37 pages, 9322 KB  
Review
Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review
by Gunasilan Manar, Mohamed Shalaby, Mohd Supian Abu Bakar, Bisma Parveez, Muhammad Imran Najeeb, Mohd Khair Hassan, Sulaiman Al-Sowayan and Mohamad A. Alawad
Polymers 2025, 17(21), 2925; https://doi.org/10.3390/polym17212925 (registering DOI) - 31 Oct 2025
Abstract
Thermal energy storage (TES) plays a vital role in advancing energy efficiency and sustainability, with phase change materials (PCMs) receiving significant attention due to their high latent heat storage capacity. Nevertheless, conventional PCMs face critical challenges such as leakage, phase separation, and low [...] Read more.
Thermal energy storage (TES) plays a vital role in advancing energy efficiency and sustainability, with phase change materials (PCMs) receiving significant attention due to their high latent heat storage capacity. Nevertheless, conventional PCMs face critical challenges such as leakage, phase separation, and low thermal conductivity, which hinder large-scale applications. Encapsulation strategies have been developed to address these issues, and bio-based composite materials are increasingly recognised as sustainable alternatives. Materials such as lignin, nanocellulose, and biochar, as well as hybrid formulations with graphene and aerogels, show promise in improving thermal conductivity, mechanical integrity, and environmental performance. This review evaluates bio-based encapsulation approaches for PCMs, examining their effectiveness in enhancing heat transfer, durability under thermal cycling, and scalability. Applications in solar energy systems, building insulation, and electronic thermal regulation are highlighted, as are emerging AI-driven modelling tools for optimising encapsulation performance. Although bio-based PCM composites outperform conventional systems in terms of thermal stability and multifunctionality, they still face persistent challenges in terms of cost-effectiveness, scalability, and long-term reliability. Future research on smart, multifunctional PCMs and advanced bio-nanocomposites is essential for realising next-generation TES solutions that combine sustainability, efficiency, and durability. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

12 pages, 1613 KB  
Article
The Exploitation of Single-Chambered Microbial Fuel Cells for PET Removal in Water
by Andre Hadji-Thomas, Shuyao Wang, Yvan Gariepy and Vijaya Raghavan
Microorganisms 2025, 13(11), 2500; https://doi.org/10.3390/microorganisms13112500 (registering DOI) - 31 Oct 2025
Abstract
This work investigated the use of microbial fuel cells (MFCs) for the degradation of polyethylene terephthalate (PET) and the simultaneous generation of electricity. The study implemented two separate single-chamber MFCs, one with a co-culture of Ideonella sakaiensis and Geobacter sulfurreducens (I.S-G.S) and the [...] Read more.
This work investigated the use of microbial fuel cells (MFCs) for the degradation of polyethylene terephthalate (PET) and the simultaneous generation of electricity. The study implemented two separate single-chamber MFCs, one with a co-culture of Ideonella sakaiensis and Geobacter sulfurreducens (I.S-G.S) and the other with Ideonella sakaiensis and activated sludge (I.S-AS). The effectiveness of microplastic (MP) degradation was assessed based on the electroactivity of the anodic biofilm, the reduction in particle size, and the decrease in PET mass. Both systems achieved a significant reduction in MP size and mass, with the I.S-AS system notably surpassing the I.S-G.S in terms of efficiency and electricity generation. The I.S-AS system achieved a 30% mass reduction and 80% size reduction, along with a peak voltage of 222 mV. The study concludes that MFCs, particularly with the activated sludge co-culture, offer a viable and more environmentally friendly alternative for MP degradation and energy recovery. These findings suggest a promising direction for improving waste management practices and advancing the capabilities of bio-electrochemical systems in addressing plastic pollution. Further research is recommended to optimize the operational conditions and to test a broader range of MP sizes for enhanced degradation efficacy. Full article
(This article belongs to the Special Issue Microbial Electrolysis Cells and Microbial Fuel Cells)
Show Figures

Figure 1

19 pages, 2441 KB  
Article
Effects of Organic Fertilizer Type and Application Rate on Soil–Microbe Interactions, Yield, and Quality of Greenhouse Tomato
by Jingshi Lu, Xiaoming Zhang, Yingtong Mu, Jiahui Gao, Fengyan Yi, Ping Wang, Doudou Jin, Fang Tang and Wenqiang Fan
Plants 2025, 14(21), 3333; https://doi.org/10.3390/plants14213333 (registering DOI) - 31 Oct 2025
Abstract
Soil nutrient imbalance and the decline of microbial diversity threaten the long-term sustainability of crop production in intensive agriculture. Organic fertilizers provide a promising means to improve soil–microbe–plant interactions, yet the combined effects of fertilizer type and application rate on soil function and [...] Read more.
Soil nutrient imbalance and the decline of microbial diversity threaten the long-term sustainability of crop production in intensive agriculture. Organic fertilizers provide a promising means to improve soil–microbe–plant interactions, yet the combined effects of fertilizer type and application rate on soil function and crop productivity remain insufficiently understood. In this study, we investigated the agronomic and ecological responses of greenhouse tomato (Solanum lycopersicum L.) to three organic fertilizers—bone calcium fertilizer (BCF), bone mud fertilizer (BMF), and bio-organic fertilizer (BOF)—each applied at four rates (7500, 15,000, 30,000, and 45,000 kg·ha−1). The highest tested BOF rate (45,000 kg·ha−1) significantly increased net photosynthesis by 29.5%, stomatal conductance by 50.0%, and fruit yield by 40.8% compared with the unfertilized control. It also enhanced soil organic matter by 42.6% and total nitrogen by 82.0%, while increasing the relative abundance of Proteobacteria, a phylum closely associated with nutrient cycling and plant growth promotion. Network and path modeling revealed that changes in microbial diversity were positively associated with improved soil properties, which were subsequently linked to higher photosynthetic efficiency and yield formation, suggesting a potential microbiome-mediated pathway from fertilization to productivity. These effects were statistically consistent across measured endpoints. Our findings highlight that optimizing both the type and rate of organic fertilizer—particularly bio-organic fertilizer under greenhouse conditions—can enhance soil fertility, microbial function, and crop yield simultaneously. This study provides an evidence-based framework for precision fertilization strategies aimed at improving agroecosystem resilience and advancing sustainable tomato production. Full article
Show Figures

Figure 1

17 pages, 4669 KB  
Article
Compact Bio-Inspired Terahertz Ultrawideband Antenna: A Viburnum tinus-Based Approach for 6G and Beyond Applications
by Jeremiah O. Abolade, Dominic B. O. Konditi, Pradeep Kumar and Grace Olaleru
J. Sens. Actuator Netw. 2025, 14(6), 107; https://doi.org/10.3390/jsan14060107 - 30 Oct 2025
Abstract
A compact bio-inspired terahertz wideband antenna is presented in this work. The proposed antenna is based on Viburnum tinus leaf shape, a defective ground plane, a folded-ring slot, and parasitic elements. The footprint of the proposed antenna is [...] Read more.
A compact bio-inspired terahertz wideband antenna is presented in this work. The proposed antenna is based on Viburnum tinus leaf shape, a defective ground plane, a folded-ring slot, and parasitic elements. The footprint of the proposed antenna is 0.46 × 0.18 λg2 at 0.18 THz. A bandwidth of 0.536 THz (0.18–0.72 THz) is achieved with a band notch at 0.35 THz (0.3–0.36 THz). The proposed antenna has a peak gain of 5 dBi and the stable radiation patterns. The proposed antenna is validated through a finite difference time domain simulator and the equivalent circuit analysis. The results from show a good correlation. Also, an extensive parametric analysis is performed, and the comparative analysis of the proposed antenna with the existing antennas shows that the proposed antenna is compact with competitive performance metrics such as gain, efficiency, and notch-band characteristics. Therefore, the proposed antenna (hereafter referred to as VTB-A) is a promising candidate for future terahertz wireless communications (5G, 6G, and beyond) and terahertz imaging. Full article
Show Figures

Figure 1

38 pages, 2694 KB  
Article
Smart Sustainability in Construction: An Integrated LCA-MCDM Framework for Climate-Adaptive Material Selection in Educational Buildings
by Ehab A. Mlybari
Sustainability 2025, 17(21), 9650; https://doi.org/10.3390/su17219650 - 30 Oct 2025
Viewed by 44
Abstract
The heavy environmental impact of the construction industry—responsible for 39% of world CO2 emissions and consuming over 40% of natural resources—supports the need for evidence-based decision-making tools for sustainable material selection balancing environmental, economic, and social considerations. This research develops and evaluates [...] Read more.
The heavy environmental impact of the construction industry—responsible for 39% of world CO2 emissions and consuming over 40% of natural resources—supports the need for evidence-based decision-making tools for sustainable material selection balancing environmental, economic, and social considerations. This research develops and evaluates an integrated decision support system that couples cradle-to-grave lifecycle assessment (LCA) with various multi-criteria decision-making (MCDM) methods to optimize climate-resilient material selection for schools. The methodology is an integration of hybrid Analytic Hierarchy Process–Technique for Order of Preference by Similarity to Ideal Solution (AHP-TOPSIS) and VIKOR techniques validated with eight case studies in hot-arid, hot-humid, and temperate climates. Environmental, economic, social, and technical performance indices were evaluated from primary experimental data and with the input from 22 international experts with climate change assessment expertise. Ten material options were examined, from traditional, recycled, and bio-based to advanced composite systems throughout full building lifecycles. The results indicate geopolymer–biofiber composite systems achieve 42% reduced lifecycle carbon emissions, 28% lower cost of ownership, and 35% improved overall sustainability performance compared to traditional equivalents. Three MCDM techniques’ cross-validation demonstrated a satisfactory ranking correlation (Kendall’s τ = 0.87), while Monte Carlo uncertainty analysis ensured framework stability across 95% confidence ranges. Climate-adaptive weighting detected dramatic regional optimization contrasts: thermal performance maximization in tropical climates and embodied impact emphasis in temperate climates. Three case studies on educational building projects demonstrated 95.8% accuracy in validation of environmental performance and economic payback periods between 4.2 and 6.8 years in real-world practice. Full article
Show Figures

Figure 1

19 pages, 1607 KB  
Article
Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application
by Laura Rabasco-Vílchez, Araceli Bolívar, María Julia Ruiz, Narjes Harrazi, Jérôme Mounier, Emmanuel Coton, Luis M. Medina and Fernando Pérez-Rodríguez
Foods 2025, 14(21), 3713; https://doi.org/10.3390/foods14213713 - 30 Oct 2025
Viewed by 39
Abstract
This study explores tomato agri-food residues as sources of bacteria with bioprotective potential to enhance product shelf-life and safety. A total of 245 bacterial strains were isolated, comprising predominantly Pseudomonas (52%) and Bacillus (44%) spp., with lactic acid bacteria (LAB) present at lower [...] Read more.
This study explores tomato agri-food residues as sources of bacteria with bioprotective potential to enhance product shelf-life and safety. A total of 245 bacterial strains were isolated, comprising predominantly Pseudomonas (52%) and Bacillus (44%) spp., with lactic acid bacteria (LAB) present at lower levels (4%). The antimicrobial activity of these isolates was assessed against pathogenic and spoilage bacteria and phytopathogenic molds. Notably, the Bacillus isolate TRB1-7 exhibited moderate activity against L. monocytogenes (inhibition halo diameter: 10.64 mm), while Pseudomonas and LAB isolates showed limited or no inhibition. Antifungal assays highlighted significant antifungal potential for Bacillus isolates. Results showed that 16% and 15% of the 245 isolates inhibited F. oxysporum and C. acutatum growth, respectively. Nine of these isolates underwent acid-adaptation and were evaluated against the selected molds using Potato Dextrose Agar (PDA) at pH 4.0 to simulate tomato conditions. Only isolate BRZ3-2, identified as B. aerius, was adapted to acidic conditions and inhibited F. oxysporum by 25%. Experiments on tomato-based agar at the same pH showed no inhibition by Bacillus isolates. These results suggest that tomato microbiota harbors acid-tolerant Bacillus strains with potential for post-harvest bio-preservation. Further studies on strains TRB1-7 and BRZ3-2 are required to develop effective bioprotective applications. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 2165 KB  
Article
Comparison of Two Risk Calculators Based on Clinical Variables (MAGGIC and BCN Bio-HF) in Prediction of All-Cause Mortality After Acute Heart Failure Episode
by Alejandro Gallego-Cuenca, Esperanza Bueno-Juana, Amelia Campos-Sáenz de Santamaría, Vanesa Garcés-Horna, Marta Sánchez-Marteles, Juan I. Pérez-Calvo, Ignacio Giménez-López and Jorge Rubio-Gracia
Hearts 2025, 6(4), 26; https://doi.org/10.3390/hearts6040026 - 30 Oct 2025
Viewed by 52
Abstract
Background: Heart failure (HF) is common and deadly, affecting over 60 million people worldwide, and it remains a leading cause of hospitalization and post-discharge death. One-year mortality after an acute decompensated HF (ADHF) admission often approaches 40%. Prognostic models are critical for [...] Read more.
Background: Heart failure (HF) is common and deadly, affecting over 60 million people worldwide, and it remains a leading cause of hospitalization and post-discharge death. One-year mortality after an acute decompensated HF (ADHF) admission often approaches 40%. Prognostic models are critical for stratifying mortality risk in heart failure (HF) patients. This study compared the performance of the MAGGIC and BCN Bio-HF models in predicting 1-year and 3-year all-cause mortality (ACM) in patients discharged after acute decompensated HF (ADHF). Methods: A retrospective analysis was conducted on 229 patients hospitalized for ADHF at the Clinical University Hospital of Zaragoza. The required variables were extracted from medical records, and ACM risks were calculated using web-based tools. Calibration, discrimination (AUC), and Kaplan–Meier survival analysis and calibration curves assessed risk stratification and alignment with observed outcomes. Reclassification metrics (Net Reclassification Index [NRI], Integrated Discrimination Improvement [IDI]) were used to compare the models’ predictive performances. Results: Both of the models demonstrated robust discrimination for 1-year ACM (AUC: MAGGIC = 0.738, BCN Bio-HF = 0.769) but showed lower performance for 3-year predictions. Calibration was poor, with both models exhibiting significant risk underestimation at the individual level. MAGGIC achieved higher sensitivity (1-year: 0.911; 3-year: 0.685), favoring high-risk patient identification, whereas BCN Bio-HF offered superior specificity (1-year: 0.679; 3-year: 0.746) and a positive prediction value, reducing false positives. BCN Bio-HF showed a significant 12.7% reclassification improvement for 1-year mortality prediction. Conclusions: BCN Bio-HF did not outperform MAGGIC in our cohort. MAGGIC is preferable for the initial high-risk patient identification, requiring more intense short-term follow-up, while BCN Bio-HF’s higher specificity is best-suited to avoid overtreatment. Altogether, the clinical utility of both models was limited in our cohort by severe miscalibration, which may render adequate risk stratification difficult. Full article
Show Figures

Figure 1

24 pages, 6402 KB  
Review
Probiotics, Prebiotics and Synbiotics for Combating Antimicrobial Resistance in the Food Chain
by Slavica Vesković Moračanin, Bojana Danilović, Milan Milijašević, Jelena Babić Milijašević, Zoran Tambur and Milica Moračanin
Processes 2025, 13(11), 3483; https://doi.org/10.3390/pr13113483 - 30 Oct 2025
Viewed by 82
Abstract
The increasing prevalence of antimicrobial resistance (AMR) among foodborne pathogens has emerged as a critical global health concern, undermining the efficacy of conventional antimicrobial agents and threatening the safety and integrity of the food supply chain. In response, probiotics, prebiotics, and their combinations [...] Read more.
The increasing prevalence of antimicrobial resistance (AMR) among foodborne pathogens has emerged as a critical global health concern, undermining the efficacy of conventional antimicrobial agents and threatening the safety and integrity of the food supply chain. In response, probiotics, prebiotics, and their combinations as synbiotics are increasingly recognised as sustainable, health-oriented strategies to mitigate AMR across the food chain. Probiotics—live microorganisms that, when administered in adequate amounts, confer health benefits to the host—contribute to AMR mitigation through multiple mechanisms, including competitive exclusion of resistant pathogens, production of antimicrobial metabolites (e.g., bacteriocins and organic acids), modulation of host immunity, and restoration of gut microbial balance. Prebiotics, defined as non-digestible food ingredients, selectively stimulate the growth and/or metabolic activity of beneficial bacteria such as Lactobacillus and Bifidobacterium spp., thereby reinforcing colonisation resistance. When combined as synbiotics, these agents may exert synergistic effects, enhancing microbial resilience, promoting gut health, and reducing the colonisation and persistence of AMR-related pathogens. The integration of these bio-based approaches into food systems—particularly in the development of fermented and functional foods—supports broader One Health objectives by reducing the need for antibiotics and contributing to global AMR containment efforts. This review summarises current scientific insights, explores practical applications, and outlines future perspectives on the role of probiotics, prebiotics, and synbiotics in combating AMR throughout the food chain. Full article
Show Figures

Figure 1

Back to TopTop