Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Bacterial Isolation from Tomato Plant
2.2.1. Sample Preparation
2.2.2. Bacteria Isolation
2.3. Selection and Storage of Isolated Bacterial Colonies
2.4. Antibacterial Activity Assay
2.4.1. Bacterial Inoculum Preparation
2.4.2. Antibacterial Assay
- -
- No inhibition (<1 mm).
- -
- Low inhibition (≤10 mm).
- -
- Moderate inhibition (11–21 mm).
- -
- High inhibition (>21 mm).
2.5. Antifungal Activity Assay
2.5.1. Fungal Inoculum Preparation
2.5.2. Antifungal Assay
2.6. Adaptation of Bacterial Isolates to Low pH
2.7. Antifungal Activity Assay on Tomato-Based Agar
2.8. Molecular Identification of Selected Bacterial Isolates
3. Results
3.1. Bacteria Isolation and Selection from Tomato Plant
3.2. Antibacterial Activity
3.3. Antifungal Activity
3.4. Antifungal Activity at Low pH
3.5. Antifungal Activity on Tomato-Based Agar
3.6. Molecular Identification of Selected Bacillus spp. Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EU | European Union | 
| spp. | Species | 
| HHP | High Hydrostatic Pressure | 
| LAB | Lactic Acid Bacteria | 
| OTUs | Operational Taxonomic Units | 
| MRS | Man, Rogosa, and Sharpe | 
| CFC | Cetrimide, Fucidin, and Cephalosporin | 
| NA | Nutrient Agar | 
| CECT | Spanish Type Culture Collection | 
| PDA | Potato Dextrose Agar | 
| PDB | Potato Dextrose Broth | 
| TSB | Tryptone Soy Broth | 
| TBA | Tomato-Based Agar | 
| BHI | Brain Hearth Infusion | 
| EFSA | European Food Safety Authority | 
| QPS | Qualified Presumption of Safety | 
| DNA | Deoxyribonucleic Acid | 
| VOCs | Volatile Organic Compounds | 
| ROS | Reactive Oxygen Species | 
| GRAS | Generally Recognized As Safe | 
| PGPR | Plant Growth Promoters | 
References
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 April 2025).
- Nicolau, M.; Esquivel, L.; Schmidt, I.; Fedato, C.; Leimann, L.; Samoggia, A.; Monticone, F.; Prete, D.M.; Ghelfi, R.; Saviolidis, M.N.; et al. Food Consumption Behaviours in Europe. Mapping Drivers, Trends and Pathways Towards Sustainability. VALUMICS Project. 2021. Available online: https://zenodo.org/records/5011691 (accessed on 20 September 2025).
- Gu, G.; Strawn, L.K.; Oryang, D.O.; Zheng, J.; Reed, E.A.; Ottesen, A.R.; Bell, R.L.; Chen, Y.; Duret, S.; Ingram, D.T.; et al. Agricultural practices influence Salmonella contamination and survival in pre-harvest tomato production. Front. Microbiol. 2018, 9, 295110. [Google Scholar] [CrossRef]
- Fekadu, A.; Andarege, B. Analysis of the pre-harvest factors that influence on the postharvest quality at-tributes of tomatoes (Lycopersicon Esculentum Mill.): A Systematic Review. Sci. Hortic. 2024, 337, 113460. [Google Scholar] [CrossRef]
- Bolívar, A.; Tarlak, F.; Costa, J.C.C.P.; Cejudo-Gómez, M.; Bover-Cid, S.; Zurera, G.; Pérez-Rodríguez, F. A New expanded modelling approach for investigating the bioprotective capacity of Latilactobacillus sakei CTC494 against Listeria monocytogenes in Ready-to-Eat fish products. Food Res. Int. 2021, 147, 110545. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. The application of protective cultures in cheese: A review. Fermentation 2024, 10, 117. [Google Scholar] [CrossRef]
- Cifuentes Bachmann, D.E.; Leroy, F. Use of bioprotective cultures in fish products. Curr. Opin. Food Sci. 2015, 6, 19–23. [Google Scholar] [CrossRef]
- Cocolin, L. Microbial bioprotection: An opportunity to improve safety and quality of meat products in a sustainable way. Meat Sci. 2025, 219, 109576. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.L.; Thierry, A.; Lemaître, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Lê, S.; Mounier, J.; Valence, F.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 387901. [Google Scholar] [CrossRef] [PubMed]
- Muthuvelu, K.S.; Ethiraj, B.; Pramnik, S.; Raj, N.K.; Venkataraman, S.; Rajendran, D.S.; Bharathi, P.; Palanisamy, E.; Narayanan, A.S.; Vaidyanathan, V.K.; et al. Biopreservative technologies of food: An alternative to chemical preservation and recent developments. Food. Sci. Biotechnol. 2023, 32, 1337–1350. [Google Scholar] [CrossRef]
- Rabasco-Vílchez, L.; Bolívar, A.; Morcillo-Martín, R.; Pérez-Rodríguez, F. Exploring the microbiota of tomato and strawberry plants as sources of bio-protective cultures for fruits and vegetables preservation. Future Foods 2024, 9, 100344. [Google Scholar] [CrossRef]
- Bolívar, A.; Garrote Achou, C.; Tarlak, F.; Cantalejo, M.J.; Costa, J.C.C.P.; Pérez-Rodríguez, F. Modeling the growth of six Listeria monocytogenes strains in smoked salmon pâté. Foods 2023, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Han, X.; Tsuda, K. Microbiome-mediated plant disease resistance: Recent advances and future directions. J. Gen. Plant Pathol. 2025, 91, 1–17. [Google Scholar] [CrossRef]
- Wang, M.; Cernava, T. Soterobionts: Disease-preventing microorganisms and proposed strategies to facilitate their discovery. Curr. Opin. Microbiol. 2023, 75, 102349. [Google Scholar] [CrossRef]
- Wassermann, B.; Abdelfattah, A.; Cernava, T.; Wicaksono, W.; Berg, G. Microbiome-based biotechnology for reducing food loss post-harvest. Curr. Opin. Biotechnol. 2022, 78, 102808. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodriguez, M.M.; Piccoli, P.; Anzuay, M.S.; Baraldi, R.; Neri, L.; Taurian, T.; Lobato Ureche, M.A.; Segura, D.M.; Cohen, A.C. Native Bacteria Isolated from Roots and Rhizosphere of Solanum Lycopersicum L. Increase Tomato Seedling Growth under a Reduced Fertilization Regime. Sci. Rep. 2020, 10, 15642. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Q.; Zhao, Q.; Dhanasekaran, S.; Ahima, J.; Zhang, X.; Zhou, S.; Droby, S.; Zhang, H. Aureobasidium pullulans S-2 Reduced the Disease Incidence of Tomato by Influencing the Postharvest Microbiome during Storage. Postharvest Biol. Technol. 2022, 185, 111809. [Google Scholar] [CrossRef]
- Gorrasi, S.; Pasqualetti, M.; Muñoz-Palazon, B.; Novello, G.; Mazzucato, A.; Campiglia, E.; Fenice, M. Comparison of the Peel-Associated Epiphytic Bacteria of Anthocyanin-Rich “Sun Black” and Wild-Type Tomatoes under Organic and Conventional Farming. Microorganisms 2022, 10, 2240. [Google Scholar] [CrossRef]
- Chaouachi, M.; Marzouk, T.; Jallouli, S.; Elkahoui, S.; Gentzbittel, L.; Ben, C.; Djébali, N. Activity Assessment of Tomato Endophytic Bacteria Bioactive Compounds for the Postharvest Biocontrol of Botrytis cinerea. Post-Harvest Biol. Technol. 2021, 172, 111389. [Google Scholar] [CrossRef]
- Fessard, A.; Remize, F. Genetic and Technological Characterization of Lactic Acid Bacteria Isolated from Tropically Grown Fruits and Vegetables. Int. J. Food Microbiol. 2019, 301, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.C.; Dias, G.S.; Filho, R.L.A.; García, H.D.M.; Okamoto, A.S. Standardization of the spot-on-the-lawn antagonism test in the inhibition of Salmonella heidelberg by Lactobacillus salivarius. Arq. Bras. Med. Vet. Zootec. 2024, 76, 367–373. [Google Scholar] [CrossRef]
- Kıvanc, M.; Kıvanc, A.; Pektas, S. Screening of lactic acid bacteria for antifungal activity against fungi. J. Food Process Technol. 2014, 5, 310. [Google Scholar] [CrossRef]
- Rouse, S.; Harnett, D.; Vaughan, A.; Sinderen, D. Van Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J. Appl. Microbiol. 2008, 104, 915–923. [Google Scholar] [CrossRef]
- Verheyen, D.; Bolívar, A.; Pérez-Rodríguez, F.; Baka, M.; Skåra, T.; Van Impe, J.F. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems. Int. J. Food Microbiol. 2018, 283, 7–13. [Google Scholar] [CrossRef]
- Verheyen, D.; Bolívar, A.; Pérez-Rodríguez, F.; Baka, M.; Skåra, T.; Van Impe, J.F. Isolating the effect of fat content on Listeria monocytogenes growth dynamics in fish-based emulsion and gelled emulsion systems. Food Control 2020, 108, 106874. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F.; Valero, A.; Rincón, F.; García-Gimeno, R.M. Mathematical approach for the Listeria monocytogenes inactivation during high hydrostatic pressure processing of a simulated meat medium. Innov. Food Sci. Emerg. Technol. 2018, 47, 271–278. [Google Scholar] [CrossRef]
- Garnier, L.; Salas, M.L.; Pinon, N.; Wiernasz, N.; Pawtowski, A.; Coton, E.; Mounier, J.; Valence, F. Technical Note: High-throughput method for antifungal activity screening in a cheese-mimicking model. J. Dairy Sci. 2018, 101, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Deivanayaki, M.; Antony, I.P. Alternative vegetable nutrient source for microbial growth. Int. J. Biosci. 2012, 2, 47–51. [Google Scholar]
- Nemr, R.A.; Khalil, M.; Sarhan, M.S.; Abbas, M.; Elsawey, H.; Youssef, H.H.; Hamza, M.A.; Morsi, A.T.; El-Tahan, M.; Fayez, M.; et al. “In Situ Similis” Culturing of plant microbiota: A novel simulated environmental method based on plant leaf blades as nutritional pads. Front. Microbiol. 2020, 11, 483641. [Google Scholar] [CrossRef]
- Youssef, H.H.; Hamza, M.A.; Fayez, M.; Mourad, E.F.; Saleh, M.Y.; Sarhan, M.S.; Suker, R.M.; Eltahlawy, A.A.; Nemr, R.A.; El-Tahan, M.; et al. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity. J. Adv. Res. 2016, 7, 305–316. [Google Scholar] [CrossRef]
- Alves, S.H.; De Loreto, É.S.; Linares, C.E.; Silveira, C.P.; Scheid, L.A.; Pereira, D.I.B.; Santurio, J.M. Comparison among tomato juice agar with other three media for differentiation of Candida dubliniensis from Candida albicans. Rev. Inst. Med. Trop. Sao Paulo 2006, 48, 119–121. [Google Scholar] [CrossRef]
- Okoye, R.; Abba, O. Development of mycological medium using tomato juice extract as principal base. UMYU J. Microbiol. Res. 2024, 9, 227–233. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Bashandy, S.R.; Schnell, S.; Ratering, S. Isolation and characterization of Serratia rubidaea from dark brown spots of tomato fruits. Phytoparasitica 2011, 39, 175–183. [Google Scholar] [CrossRef]
- Sunera; Amna; Saqib, S.; Uddin, S.; Zaman, W.; Ullah, F.; Ayaz, A.; Asghar, M.; Rehman, S.U.; Munis, M.F.H.; et al. Characterization and phytostimulatory activity of bacteria isolated from tomato (Lycopersicon esculentum mill.) rhizosphere. Microb. Pathog. 2020, 140, 103966. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Shi, G.; Zhao, H.; Chen, L.; Tao, K.; Hou, T. Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability. Afr. J. Microbiol. Res. 2011, 5, 131–136. [Google Scholar]
- Kwinda, G.T.; Jacobs, A.; Lebelo, S.L.; Rong, I.H. Mucorales from Selected Spoilt Fruit Commodities in the Gauteng Province, South Africa. Afr. Plant Prot. 2015, 18, 1–5. [Google Scholar]
- Oliveira, M.; Rodrigues, C.M.; Teixeira, P. Microbiological Quality of Raw Berries and Their Products: A Focus on Foodborne Pathogens. Heliyon 2019, 5, e02992. [Google Scholar] [CrossRef] [PubMed]
- Viñas, I.; Valero, V.; López, L.; Aguiló-Aguayo, I.; Abadias, I.; Alegre, I.; Colás-Medà, P.; Bobo, G.; Lafarga, T.; Posada, G.D.; et al. Control de Patógenos de Transmisión Alimentaria En Fresas Congeladas y Listas Para El Consumo. Horticultura 2020. [Google Scholar]
- Denkova, R.; Goranov, B.; Teneva, D.; Denkova, Z.; Kostov, G. Antimicrobial activity of probiotic microorganisms: Mechanisms of interaction and methods of examination. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Research Center S.L.: Badajoz, Spain, 2017; pp. 201–212. [Google Scholar]
- del Valle, L.; Saguir de Zucal, F.M.; Rodríguez Vaquero, M.J. Selección de Bacterias Lácticas Autóctonas Para su Potencial Aplicación en la Conservación de Alimentos de Origen Vegetal Mínimamente Procesados. Ph.D. Thesis, Universidad Nacional de Tucaman, Tucaman, Argentina, 2019. [Google Scholar]
- Yen, Y.H.; Li, P.L.; Wang, C.L.; Wang, S.L. An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 2006, 39, 311–317. [Google Scholar] [CrossRef]
- Allard, S.M.; Walsh, C.S.; Wallis, A.E.; Ottesen, A.R.; Brown, E.W.; Micallef, S.A. Solanum lycopersicum (Tomato) Hosts Robust Phyllosphere and Rhizosphere Bacterial Communities When Grown in Soil Amended with Various Organic and Synthetic Fertilizers. Sci. Total Environ. 2016, 573, 555–563. [Google Scholar] [CrossRef]
- Kumar, A.; Droby, S.; Singh, V.K.; Singh, S.K.; White, J.F. Entry, Colonization, and Distribution of Endophytic Microorganisms in Plants. In Microbial Endophytes: Functional Biology and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–33. ISBN 9780128196540. [Google Scholar]
- Nithya, V.; Halami, P.M. Antibacterial peptides, probiotic properties and biopreservative efficacy of native Bacillus species isolated from different food sources. Probiotics Antimicrob. Proteins 2012, 4, 279–290. [Google Scholar] [CrossRef]
- Senbagam, D.; Gurusamy, R.; Senthilkumar, B. Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac. J. Trop. Med. 2013, 6, 934–941. [Google Scholar] [CrossRef]
- Vadakedath, N.; Halami, P.M. Characterization and mode of action of a potent bio-preservative from food-grade Bacillus licheniformis MCC 2016. Prep. Biochem. Biotechnol. 2019, 49, 334–343. [Google Scholar] [CrossRef]
- Rocha, F.Y.O.; Oliveira, C.M.d.; da Silva, P.R.A.; de Melo, L.H.V.; do Carmo, M.G.F.; Baldani, J.I. Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Appl. Soil Ecol. 2017, 120, 8–19. [Google Scholar] [CrossRef]
- Ajesh, B.R.; Renukadevi, P.; Saranya, N.; Vidhyashri, N.; Varanavasiappan, S.; Vellaikumar, S.; Ashraf, S.; Haripriya, S.; Raish, M.; Nakkeeran, S. Genome-wide exploration of beneficial Bacillus subtilis isolate from resistant banana cultivar Anaikomban towards the management of Fusarium wilt in banana. J. Agric. Food Res. 2025, 21, 101834. [Google Scholar] [CrossRef]
- Moussaid, F.Z.; Lahlali, R.; Ezrari, S.; Radouane, N.; Housseini, A.I. Isolation, characterization and antifungal activity of Bacillus antagonistic bacteria from decomposing solid organic waste against Alternaria alternata and Fusarium oxysporum. J. Nat. Pestic. Res. 2025, 12, 100124. [Google Scholar] [CrossRef]
- Govin-Sanjudo, A.; Rojas Badia, M.M.; Jacquard, C.; Esmaeel, Q. Exploring Fusarium biocontrol, drought tolerance, and plant growth promotion by Bacillus strains from cuban wheat varieties. Bio. Control 2025, 205, 105776. [Google Scholar] [CrossRef]
- Moreira, R.R.; Nesi, C.N.; May De Mio, L.L. Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Bio. Control 2014, 72, 30–37. [Google Scholar] [CrossRef]
- Russi, A.; Granada, C.E.; Schwambach, J. Suppression of Colletotrichum Spp. on Grape Berries, Vine Leaves, and Plants Using Bacillus velezensis S26 Endospores. Sci. Hortic. 2024, 326, 112696. [Google Scholar] [CrossRef]
- Kupper, K.C.; Corrêa, F.E.; de Azevedo, F.A.; da Silva, A.C. Bacillus subtilis to biological control of postbloom fruit drop caused by Colletotrichum acutatum under field conditions. Sci. Hortic. 2012, 134, 139–143. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Mounier, J.; Valence, F.; Coton, M.; Thierry, A.; Coton, E. Antifungal Microbial Agents for Food Biopreservation—A Review. Microorganisms 2017, 5, 37. [Google Scholar] [CrossRef]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological Control of Plant Pathogens by Bacillus Species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Grahovac, J.; Pajčin, I.; Vlajkov, V. Bacillus VOCs in the Context of Biological Control. Antibiotics 2023, 12, 581. [Google Scholar] [CrossRef]
- Ling, L.; Li, Y.; Jiang, K.; Wang, Y.; Luo, H.; Cheng, W.; Pang, M.; Feng, L.; Yue, R.; Zhou, Y. Volatile Organic Compounds of Bacillus spp. as an Emerging Antifungal Resource Play a Significant Role in Fruit Postharvest Disease Control. Food Biosci. 2023, 56, 103201. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Z.; Shi, Y.; Cai, F.; Zhao, J.; Wang, J.; Wang, Y. Bacillus amyloliquefaciens HG01 induces resistance in loquats against anthracnose rot caused by Colletotrichum acutatum. Postharvest Biol. Technol. 2020, 160, 111034. [Google Scholar] [CrossRef]
- Akocak, P.B.; Churey, J.J.; Worobo, R.W. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Biosci. 2015, 10, 48–58. [Google Scholar] [CrossRef]
- Ling, L.; Jiang, K.; Cheng, W.; Wang, Y.; Pang, M.; Luo, H.; Lu, L.; Gao, K.; Tu, Y. Biocontrol of volatile organic compounds obtained from Bacillus subtilis CL2 against Aspergillus flavus in peanuts during storage. Biol. Control 2022, 176, 105094. [Google Scholar] [CrossRef]
- Li, K.; Cheng, S.; Liu, Z.; Pan, Q.; Zuo, X.; Guo, A.; Lv, J. Characteristics of Aspergillus flavus growth and degradation of aflatoxin B1 by cell-Free fermentation supernatant of Bacillus velezensis 906. Food Biosci. 2024, 61, 104954. [Google Scholar] [CrossRef]
- Trinh, L.L.; Le Nguyen, A.M.; Nguyen, H.H. Root-associated bacteria Bacillus albus and Bacillus proteolyticus promote the growth of peanut seedlings and protect them from the aflatoxigenic Aspergillus flavus CDP2. Biocatal. Agric. Biotechnol. 2023, 47, 102582. [Google Scholar] [CrossRef]
- Wang, X.; Xu, F.; Wang, J.; Jin, P.; Zheng, Y. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem. 2013, 136, 400–406. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Jin, P.; Zheng, Y. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit. Int. J. Food Microbiol. 2013, 164, 141–147. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Zhang, X.; Bai, W.; Zhang, L.; Pei, H.; Zhang, Y. Control effects of Bacillus siamensis G-3 volatile compounds on raspberry postharvest diseases caused by Botrytis cinerea and Rhizopus stolonifer. Biol. Control 2020, 141, 104135. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef] [PubMed]
- Ketehouli, T.; Pasche, J.; Buttrós, V.H.; Goss, E.M.; Martins, S.J. The underground world of plant disease: Rhizosphere dysbiosis reduces above-ground plant resistance to bacterial leaf spot and alters plant transcriptome. Environ. Microbiol. 2024, 26, e16676. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Puig, A.S.; DuVal, A.E.; Pfeufer, E.E. Phyllosphere microbial diversity and specific taxa mediate within-cultivar resistance to Phytophthora palmivora in cacao. mSphere 2023, 8, e00013-23. [Google Scholar] [CrossRef]
- Aboelez, E.M.; Selim, M.A.E.; Yousef, S.A.; Hamza, S.; Shabana, Y.M.; Elsherbiny, E.A. Biocontrol efficacy of Botrytis cinerea on postharvest tomato fruit by the endophytic bacterium Bacillus velezensis BE1. Physiol. Mol. Plant Pathol. 2024, 134, 102427. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Q.; Xin, Y.; Ngea, G.L.N.; Dhanasekaran, S.; Luo, R.; Li, J.; Zhao, L.; Zhang, H. The Biocontrol potentiality of Bacillus amyloliquefaciens against postharvest soft rot of tomatoes and insights into the underlying mechanisms. Postharvest Biol. Technol. 2024, 214, 112983. [Google Scholar] [CrossRef]
- Chowdhury, N.; Hazarika, D.J.; Goswami, G.; Sarmah, U.; Borah, S.; Boro, R.C.; Barooah, M. Acid tolerant bacterium Bacillus amyloliquefaciens MBNC retains biocontrol efficiency against fungal phytopathogens in low pH. Arch. Microbiol. 2022, 204, 124. [Google Scholar] [CrossRef]
- Meng, X.J.; Wang, L.Q.; Ma, B.G.; Wei, X.H.; Zhou, Y.; Sun, Z.X.; Li, Y.Y. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. Front. Plant. Sci. 2024, 15, 1360173. [Google Scholar] [CrossRef] [PubMed]
- Ananthanarayanan, L.; Dubhashia, A. Study of probiotic attributes of two isolates Bacillus aerius and Bacillus cereus. Int. J. Res. Stud. Biosci. 2016, 4, 34–39. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Keebler, R.; Lovelace, A.; Chen, H.-C.; Kvitko, B.; Swingle, B. Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae Pv. Tomato DC3000. J. Bacteriol. 2024, 206, e00086-24. [Google Scholar] [CrossRef] [PubMed]
- Wilks, J.C.; Kitko, R.D.; Cleeton, S.H.; Lee, G.E.; Ugwu, C.S.; Jones, B.D.; BonDurant, S.S.; Slonczewski, J.L. Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl. Environ. Microbiol. 2009, 75, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Liu, R.; Ouyang, Z.; He, T.; Zhang, W.; Chen, X. Identification of a new antifungal peptide W1 from a marine Bacillus amyloliquefaciens reveals its potential in controlling fungal plant diseases. Front. Microbiol. 2022, 13, 922454. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, R.; Poyil, M.M.; Kalaimurugan, D.; Sivasankar, P.; Ponmurugan, K.; Venkatesan, S. Optimization, characterization and quantification of indole acetic acid produced by a potential plant growth promoting rhizobacterium Bacillus safensis YKS2 from Yercaud Hills, Eastern Ghats. J. Pure Appl. Microbiol. 2022, 16, 1998–2009. [Google Scholar] [CrossRef]
- Hmidet, N.; Ben Ayed, H.; Jacques, P.; Nasri, M. Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: Application for diesel biodegradation. Biomed. Res. Int. 2017, 2017, 5893123. [Google Scholar] [CrossRef]
- Palleroni, N.J. Pseudomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; p. 1. [Google Scholar]
- El-Mougy, N.S.; El-Gamal, N.G.; Abdalla, M.A. The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. J. Plant Prot. Res. 2008, 48, 385–396. [Google Scholar] [CrossRef]
- Wallace, R.L.; Hirkala, D.L.; Nelson, L.M. Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biol. Control 2018, 117, 13–20. [Google Scholar] [CrossRef]


| Anatomical part | Total | |||
|---|---|---|---|---|
| Fruit | Green Parts | Rhizosphere | ||
| Bacillus spp. | 7% | 28% | 8% | 44% | 
| Pseudomonas spp. | 3% | 42% | 8% | 52% | 
| LAB | 2% | 2% | - | 4% | 
| Total | 12% | 72% | 16% | 100% | 
| Isolate Code | Genus | Isolation Origin | Target Bacteria | Halo Diameter (mm) | Inhibition | 
|---|---|---|---|---|---|
| TRB1-1 | Bacillus | Rhizosphere | L. monocytogenes | 6.88 ± 1.01 * | Low | 
| TRB1-2 | Bacillus | Rhizosphere | L. monocytogenes | 5.64 ± 1.40 | Low | 
| TRB1-7 | Bacillus | Rhizosphere | L. monocytogenes | 10.64 ± 0.78 | Moderate | 
| THP4-9 | Pseudomonas | Leaves | L. monocytogenes | 4.22 ± 0.76 | Low | 
| THB4-1 | Bacillus | Leaves | L. monocytogenes | 6.52 ± 0.85 | Low | 
| THB5-3 | Bacillus | Leaves | L. monocytogenes | 6.42 ± 0.45 | Low | 
| TTP4-1 | Pseudomonas | Leaves | L. monocytogenes | 8.63 ± 2.38 | Low | 
| TTP4-2 | Pseudomonas | Leaves | L. monocytogenes | 9.38 ± 1.10 | Low | 
| TTP4-6 | Pseudomonas | Leaves | P. carotovorum | 7.58 ± 1.42 | Low | 
| THB7-3 | Bacillus | Leaves | P. carotovorum | 8.27 ± 0.98 | Low | 
| THB7-9 | Bacillus | Leaves | P. carotovorum | 5.00 ± 1.03 | Low | 
| THB7-10 | Bacillus | Leaves | P. carotovorum | 6.93 ± 2.31 | Low | 
| Isolate Code | Isolation Origin | Antifungal Activity | E-Value | Identity | Name | Access Number | |||
|---|---|---|---|---|---|---|---|---|---|
| F. oxysporum | C. acutatum | ||||||||
| pH 4.0 | pH 6.0 | pH 4.0 | pH 6.0 | ||||||
| TFB2-2 | Fruit | ** | 38 | ** | 41 | 0.0 | 100.00% | Bacillus amyloliquefaciens | ON722567.1 | 
| TFB3-1 | Fruit | ** | 39 | ** | 35 | 0.0 | 99.88% | Bacillus sp. * | MN508564.1 | 
| BT1-2 | Fruit | ** | 40 | ** | 35 | 0.0 | 100.00% | Bacillus amyloliquefaciens | CP113418.1 | 
| BT1-4 | Fruit | ** | ** | ** | 33 | 0.0 | 100.00% | Bacillus velezensis | OQ244490.1 | 
| BT2-1 | Fruit | ** | 39 | ** | 32 | 0.0 | 99.86% | Bacillus velezensis | OQ244490.1 | 
| BRZ3-2 | Rhizosphere | 25 | 38 | ** | 32 | 0.0 | 100.00% | Bacillus aerius | OM283596.1 | 
| TP1G | Fruit | ** | 38 | ** | 24 | 0.0 | 99.89% | Bacillus velezensis | MN190156.1 | 
| TP2G | Fruit | ** | 34 | ** | 33 | 0.0 | 100.00% | Bacillus velezensis | MN190156.1 | 
| TE2 | Fruit | ** | ** | ** | 38 | 0.0 | 100.00% | Bacillus amyloliquefaciens | CP113418.1 | 
| Isolate | Control Mold Diameter (mm) | Mold Diameter (mm) | Inhibition (%) | 
|---|---|---|---|
| TFB3-1 | 6.56 ± 0.44 * | 4.06 ± 0.17 | 38.11 ± 2.59 | 
| BT1-2 | 6.56 ± 0.44 | 4.30 ± 0.37 | 34.53 ± 5.71 | 
| BT1-4 | 6.56 ± 0.44 | 4.09 ± 0.13 | 37.73 ± 2.05 | 
| Isolate | Control Mold Diameter (mm) | Mold Diameter (mm) | Inhibition (%) | 
|---|---|---|---|
| TFB3-1 | 2.25 ± 0.07 * | ** | 100 | 
| BT1-2 | 2.25 ± 0.07 | ** | 100 | 
| BT1-4 | 2.25 ± 0.07 | 1.73 ± 0.15 | 23.11 ± 0.76 | 
| BT2-1 | 2.25 ± 0.07 | ** | 100 | 
| BRZ3-2 | 2.25 ± 0.07 | ** | 100 | 
| TP1G | 2.25 ± 0.07 | ** | 100 | 
| TP2G | 2.25 ± 0.07 | ** | 100 | 
| TE2 | 2.25 ± 0.07 | ** | 100 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabasco-Vílchez, L.; Bolívar, A.; Ruiz, M.J.; Harrazi, N.; Mounier, J.; Coton, E.; Medina, L.M.; Pérez-Rodríguez, F. Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application. Foods 2025, 14, 3713. https://doi.org/10.3390/foods14213713
Rabasco-Vílchez L, Bolívar A, Ruiz MJ, Harrazi N, Mounier J, Coton E, Medina LM, Pérez-Rodríguez F. Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application. Foods. 2025; 14(21):3713. https://doi.org/10.3390/foods14213713
Chicago/Turabian StyleRabasco-Vílchez, Laura, Araceli Bolívar, María Julia Ruiz, Narjes Harrazi, Jérôme Mounier, Emmanuel Coton, Luis M. Medina, and Fernando Pérez-Rodríguez. 2025. "Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application" Foods 14, no. 21: 3713. https://doi.org/10.3390/foods14213713
APA StyleRabasco-Vílchez, L., Bolívar, A., Ruiz, M. J., Harrazi, N., Mounier, J., Coton, E., Medina, L. M., & Pérez-Rodríguez, F. (2025). Screening of Microbial Isolates from Tomato Plants (Solanum lycopersicum L.) for Bioprotective Potential: From Isolation to Food Model System Application. Foods, 14(21), 3713. https://doi.org/10.3390/foods14213713
 
        






 
       