Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review
Abstract
1. Introduction
2. PCMs Properties
2.1. Thermal Energy Storage
2.2. PCMs Classification
2.3. Thermal Conductivity and Leakage Control in PCM Systems
| PCM Type | Thermophysical Properties | References | ||||||
|---|---|---|---|---|---|---|---|---|
| Latent Heat Capacity | Thermal Conductivity | Melting Point | Thermal Stability | Phase Change Leakage | Cooling | Corrosion | ||
| Organic PCMs |
|
|
|
|
| - | - | [25,26,27,28] |
| Inorganic PCMs |
|
| - | - | - |
|
| [29,30,31] |
| Eutectic PCMs |
| - |
|
|
| - | - | [14,37,38,39] |
| Bio-based PCMs |
|
|
| - | - | - | - | [32,33,34,35,36] |
3. Bio-Based PCM Encapsulation Composite Materials
3.1. Bio-Based Composite Material
3.2. Natural Fibre-Reinforced Microcapsules
3.3. Wood-Derived Aerogels
3.4. Mycelium-Based Encapsulation
3.5. Bio-Based Adhesive
3.6. Biopolymer and Biodegradable Polymer
4. Enhancement Techniques for Encapsulation PCMS
4.1. Microencapsulation
4.2. Macroencapsulation
4.3. Composite-Encapsulation
5. Future Directions and Research Opportunities
5.1. Advancements in Bio-Based Materials for PCM Encapsulation
5.2. Bio-Based PCM Core Innovations
5.3. Advanced Encapsulation
6. Future Bio-Based PCM Applications
6.1. Natural Fibre-PCM for EV Battery Thermal Management
6.2. Wood–PCM Aerogel for Solar Window
6.3. Protein Adhesive PCM for Electronic Recycling
6.4. PHA Biopolymer–PCM for Adsorbable Stents
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assessments 2014, 8, 74–91. [Google Scholar] [CrossRef]
- El Majd, A.; Sair, S.; Ait Ousaleh, H.; Berardi, U.; Moulakhnif, K.; Belouaggadia, N.; Younsi, Z.; El Bouari, A. Advancing PCM research in building efficiency: A comprehensive investigation into PCM selection and critical integration strategies. J. Build. Eng. 2024, 96, 110485. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dhaidan, N.S.; Hussein, A.K.; Ali, B.; Ben Hamida, M.B.; Younis, O. Bio-based phase change materials for thermal energy storage and release: A review. J. Energy Storage 2023, 73, 109219. [Google Scholar] [CrossRef]
- Baylis, C.; Cruickshank, C.A. Review of bio-based phase change materials as passive thermal storage in buildings. Renew. Sustain. Energy Rev. 2023, 186, 113690. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, C.; Huang, H.; Li, B.; Huang, C.; Wang, S. Achieving efficient energy utilization by PCM in the food supply chain: Encapsulation technologies, current applications, and future prospects. J. Energy Storage 2024, 79, 110214. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Rathod, M.K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sustain. Energy Rev. 2013, 18, 246–258. [Google Scholar] [CrossRef]
- Bošnjak Hordov, J.; Nižetić, S.; Jurčević, M.; Čoko, D.; Ćosić, M.; Jakić, M.; Arıcı, M. Review of organic and inorganic waste-based phase change composites in latent thermal energy storage: Thermal properties and applications. Energy 2024, 306, 132421. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, R.K.; Ansu, A.K.; Goyal, R.; Sarı, A.; Tyagi, V.V. A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2021, 223, 110955. [Google Scholar] [CrossRef]
- Garivalis, A.I.; Rossi, D.; Seggiani, M.; Testi, D. Beyond water: Physical and heat transfer properties of phase change slurries for thermal energy storage. Cell Reports Phys. Sci. 2024, 5, 101905. [Google Scholar] [CrossRef]
- Jagadeeswara Reddy, V.; Fairusham Ghazali, M.; Kumarasamy, S. Innovations in phase change materials for diverse industrial applications: A comprehensive review. Results Chem. 2024, 8, 101552. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, R.; Li, J. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renew. Sustain. Energy Rev. 2022, 168, 112783. [Google Scholar] [CrossRef]
- Eanest Jebasingh, B.; Valan Arasu, A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020, 24, 52–74. [Google Scholar] [CrossRef]
- Reddy, K.S.; Mudgal, V.; Mallick, T.K. Review of latent heat thermal energy storage for improved material stability and effective load management. J. Energy Storage 2018, 15, 205–227. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020, 5–6, 100039. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid–Liquid Phase Change Materials: A Review. Adv. Eng. Mater. 2018, 20, 1700753. [Google Scholar] [CrossRef]
- Aftab, W.; Usman, A.; Shi, J.; Yuan, K.; Qin, M.; Zou, R. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Li, Z.-R.; Hu, N.; Fan, L.-W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Mater. 2023, 55, 727–753. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Haryoko, L.A.F.; Taufiqurrahman, I.; Chen, L.; Jiang, L.; Sasmito, A.P. Optimization of an innovative hybrid thermal energy storage with phase change material (PCM) wall insulator utilizing Taguchi method. J. Energy Storage 2022, 49, 104067. [Google Scholar] [CrossRef]
- Mika, Ł.; Radomska, E.; Sztekler, K.; Gołdasz, A.; Zima, W. Review of Selected PCMs and Their Applications in the Industry and Energy Sector. Energies 2025, 18, 1233. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Hua, W. Review of preparation technologies of organic composite phase change materials in energy storage. J. Mol. Liq. 2021, 336, 115923. [Google Scholar] [CrossRef]
- Irfan Lone, M.; Jilte, R. A review on phase change materials for different applications. Mater. Today Proc. 2021, 46, 10980–10986. [Google Scholar] [CrossRef]
- Yang, G.; Yim, Y.-J.; Lee, J.W.; Heo, Y.-J.; Park, S.-J. Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review. Molecules 2019, 24, 2055. [Google Scholar] [CrossRef]
- Mehta, P.; Patel, V.; Kumar, S.; Sharma, V.; Tejani, G.G.; Santhosh, A.J. Performance assessment of thermal energy storage system for solar thermal applications. Sci. Rep. 2025, 15, 13876. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Fang, G. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review. Sol. Energy Mater. Sol. Cells 2022, 241, 111747. [Google Scholar] [CrossRef]
- Rao, G.A.P.; Valaboju, S.K.; Babu, A.; Saurav, G.V. Comparison between organic and inorganic PCMs providing effective battery thermal management-A Machine Learning Approach. Futur. Batter. 2025, 6, 100072. [Google Scholar] [CrossRef]
- Naresh, R.; Parameshwaran, R.; Vinayaka Ram, V. Bio-based phase-change materials. In Bio-Based Materials and Biotechnologies for Eco-Efficient Construction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–242. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Karimi-Maleh, H.; Naddafi, M.; Karimi, F. Application of bio-based phase change materials for effective heat management. J. Energy Storage 2023, 61, 106859. [Google Scholar] [CrossRef]
- Boussaba, L.; Lefebvre, G.; Makhlouf, S.; Grados, A.; Royon, L. Investigation and properties of a novel composite bio-PCM to reduce summer energy consumptions in buildings of hot and dry climates. Sol. Energy 2021, 214, 119–130. [Google Scholar] [CrossRef]
- Pundienė, I.; Pranckevičienė, J.; Bumanis, G.; Šinka, M.; Bajare, D. Experimental investigation of novel bio-composite with integrated phase change materials (PCM) for enhanced energy saving in buildings. Ind. Crops Prod. 2025, 224, 120318. [Google Scholar] [CrossRef]
- Pielichowska, K.; Nowicka-Dunal, K.; Pielichowski, K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers 2024, 16, 328. [Google Scholar] [CrossRef]
- Sun, M.; Liu, T.; Sha, H.; Li, M.; Liu, T.; Wang, X.; Chen, G.; Wang, J.; Jiang, D. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications. J. Energy Storage 2023, 68, 107713. [Google Scholar] [CrossRef]
- Huang, J.; Lu, S.; Kong, X.; Liu, S.; Li, Y. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Materials 2013, 6, 4758–4775. [Google Scholar] [CrossRef]
- Parsamanesh, M.; Shekarriz, S.; Montazer, M. Enhanced thermal stability of eutectic PCMs via microencapsulation: Inverse emulsion polymerization with silica shells. Therm. Sci. Eng. Prog. 2025, 60, 103420. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Hussin, M.H.; Abd Latif, N.H.; Hamidon, T.S.; Idris, N.N.; Hashim, R.; Appaturi, J.N.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Fatriasari, W.; et al. Latest advancements in high-performance bio-based wood adhesives: A critical review. J. Mater. Res. Technol. 2022, 21, 3909–3946. [Google Scholar] [CrossRef]
- Avella, M.; Buzarovska, A.; Errico, M.E.; Gentile, G.; Grozdanov, A. Eco-Challenges of Bio-Based Polymer Composites. Materials 2009, 2, 911–925. [Google Scholar] [CrossRef]
- Raydan, N.D.V.; Leroyer, L.; Charrier, B.; Robles, E. Recent Advances on the Development of Protein-Based Adhesives for Wood Composite Materials—A Review. Molecules 2021, 26, 7617. [Google Scholar] [CrossRef]
- Maulana, M.I.; Lubis, M.A.R.; Febrianto, F.; Hua, L.S.; Iswanto, A.H.; Antov, P.; Kristak, L.; Mardawati, E.; Sari, R.K.; Zaini, L.H.; et al. Environmentally Friendly Starch-Based Adhesives for Bonding High-Performance Wood Composites: A Review. Forests 2022, 13, 1614. [Google Scholar] [CrossRef]
- Chang, B.P.; Mohanty, A.K.; Misra, M. Studies on durability of sustainable biobased composites: A review. RSC Adv. 2020, 10, 17955–17999. [Google Scholar] [CrossRef]
- Kong, Q.; Mu, H.; Han, Y.; Wu, W.; Tong, C.; Fang, X.; Liu, R.; Chen, H.; Gao, H. Biodegradable phase change materials with high latent heat: Preparation and application on Lentinus edodes storage. Food Chem. 2021, 364, 130391. [Google Scholar] [CrossRef]
- Öztürk, G.; Temiz, A.; Hekimoğlu, G.; Aslan, M.; Demirel, G.K.; Erdeyer, Ö.N.; Sarı, A.; Gencel, O.; Subaşı, S. Microencapsulated phase change material/wood fiber-starch composite as novel bio-based energy storage material for buildings. J. Energy Storage 2024, 84, 110911. [Google Scholar] [CrossRef]
- Gadhave, P.; Pathan, F.; Kore, S.; Prabhune, C. Comprehensive review of phase change material based latent heat thermal energy storage system. Int. J. Ambient Energy 2022, 43, 4181–4206. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, S.; Liu, S.; Li, J.; Xin, Y.; Lu, Q.; Chen, H.; Liang, C. Effect of porous carbon on thermal and physical properties of composite pure alkane/expanded vermiculite phase change energy storage materials. J. Energy Storage 2022, 54, 105220. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, X.; Qiao, J.; Wu, X.; Chen, G.; Leng, G.; Lin, F.; Min, X.; Huang, Z. Preparation and characterization of composite phase change materials based on paraffin and carbon foams derived from starch. Polymer 2021, 212, 123143. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, X.; Nian, H.; Wang, X.; Xue, C.; Zhao, Y.; Wang, Z.; Zhou, Y. CH3COONa·3H2O/flaky modified vermiculite composite phase change materials enhanced phase change behavior and thermal storage through curing lotus root starch modification. J. Energy Storage 2024, 80, 110349. [Google Scholar] [CrossRef]
- El Majd, A.; Sair, S.; Ousaleh, H.A.; Moulakhnif, K.; Younsi, Z.; Belouaggadia, N.; El Bouari, A. Advanced gypsum/PCM composites incorporating biopolymer-encapsulated phase change materials for enhanced thermal management in buildings. Constr. Build. Mater. 2024, 451, 138872. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Yang, S.; Yun, B.Y.; Kang, Y.; Kim, S. Use of biochar co-mediated chitosan mesopores to encapsulate alkane and improve thermal properties. Environ. Res. 2022, 212, 113539. [Google Scholar] [CrossRef]
- Xu, X.; Yin, S.; Zhai, X.; Wu, Z.; Wang, J.; Ma, J.; Peng, X.; Peng, H. Chitosan-based bilayer shell phase change nano-capsules with excellent anti-permeability for thermal regulation dressings. J. Energy Storage 2024, 99, 113496. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, M.; Song, Y.; Sun, C.; Tan, H.; Zheng, D.; Zhang, Y. Leak-proof wood-based phase change materials composites utilizing chitosan encapsulation technology. J. Energy Storage 2025, 113, 115624. [Google Scholar] [CrossRef]
- Yin, G.-Z.; Yang, X.-M.; López, A.M.; Wang, M.-T.; Ye, W.; Xu, B.; Wang, D.-Y. Sodium alginate and Chitosan aided design of form-stable Polyrotaxane based phase change materials with ultra-high latent heat. Int. J. Biol. Macromol. 2022, 222, 429–437. [Google Scholar] [CrossRef]
- Nazari, M.; Jebrane, M.; Terziev, N. Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review. Energies 2020, 13, 3065. [Google Scholar] [CrossRef]
- Sun, M.; Feng, Y.; Di, H.; Lin, L. Evaluation into the effect of lignocellulosic biochar on the thermal properties of shape stable composite phase change materials. Ind. Crops Prod. 2024, 222, 119961. [Google Scholar] [CrossRef]
- Can, A. Preparation, characterization, and thermal properties of microencapsulated palmitic acid with ethyl cellulose shell as phase change material impregnated wood. J. Energy Storage 2023, 66, 107382. [Google Scholar] [CrossRef]
- Hu, X.; Kankkunen, A.; Seppälä, A.; Yazdani McCord, M.R. Scaling up hybrid insulation: Integration of lignocellulose and phase change materials for sustainable thermal management. Mater. Today Commun. 2024, 41, 110281. [Google Scholar] [CrossRef]
- Nazari, M.; Jebrane, M.; Terziev, N. Solid wood impregnated with a bio-based phase change material for low temperature energy storage in building application. J. Therm. Anal. Calorim. 2022, 147, 10677–10692. [Google Scholar] [CrossRef]
- Mitran, R.-A.; Ioniţǎ, S.; Lincu, D.; Berger, D.; Matei, C. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications. Molecules 2021, 26, 241. [Google Scholar] [CrossRef]
- Ismail, A.; Zhou, J.; Aday, A.; Davidoff, I.; Odukomaiya, A.; Wang, J. Microencapsulation of bio-based phase change materials with silica coated inorganic shell for thermal energy storage. J. Build. Eng. 2023, 67, 105981. [Google Scholar] [CrossRef]
- Cao, F.; Li, Z.; Zhang, Y.; Wang, X.; Zhu, L.; Zhang, S.; Tang, B. Silica-based aerogels encapsulate organic/inorganic composite phase change materials for building thermal management. J. Energy Storage 2024, 97, 112858. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wu, D. Silica encapsulation of n-octadecane via sol–gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 2010, 343, 246–255. [Google Scholar] [CrossRef]
- Tan, N.; Ning, Y.-H.; Hu, P.; Feng, Y.; Li, Q.; Lin, C.-H.; Cao, Z.; Zhang, Y.-F.; Zeng, J.-L. Silica-confined composite form-stable phase change materials: A review. J. Therm. Anal. Calorim. 2022, 147, 7077–7097. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Altıntaş, A. Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl. Therm. Eng. 2014, 73, 1160–1168. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Kahraman Döğüşcü, D.; Biçer, A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 42–50. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Döğüşcü, D.K.; Kızıl, Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol. Energy 2015, 115, 195–203. [Google Scholar] [CrossRef]
- Sami, S.; Sadrameli, S.M.; Etesami, N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl. Therm. Eng. 2018, 130, 1416–1424. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Bilgin, C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Appl. Energy 2014, 136, 217–227. [Google Scholar] [CrossRef]
- Alkan, C.; Sari, A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol. Energy 2008, 82, 118–124. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Biçer, A.; Altuntaş, A.; Bilgin, C. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage. Energy Convers. Manag. 2014, 86, 614–621. [Google Scholar] [CrossRef]
- Liu, X.; Fleischer, A.; Feng, G. Nanoencapsulated Lauric Acid with a Poly(methyl methacrylate) Shell for Thermal Energy Storage with Optimum Capacity and Reliability. ACS Appl. Polym. Mater. 2021, 3, 2341–2351. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, X.; Luo, J.; Song, G.; Liu, Y.; Tang, G. Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride. Sol. Energy 2015, 115, 289–296. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, A.K.; Samykano, M.; Kalidasan, B.; Said, Z. A review of organic phase change materials and their adaptation for thermal energy storage. Int. Mater. Rev. 2024, 69, 380–446. [Google Scholar] [CrossRef]
- Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 2020, 12, 742. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Ma, Y.; Zhang, H.; Zeng, X.; Wu, F.; Liu, F.; Ryu, J.E.; Guo, Z. Recent Advances in Organic/Composite Phase Change Materials for Energy Storage. ES Energy Environ. 2020, 9, 28–40. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Tarazi, E.; Pereman, I.; Grobman, Y.J. Implementing bio-design tools to develop mycelium-based products. Des. J. 2019, 22, 1647–1657. [Google Scholar] [CrossRef]
- Das, D.; Bordoloi, U.; Muigai, H.H.; Kalita, P. A novel form stable PCM based bio composite material for solar thermal energy storage applications. J. Energy Storage 2020, 30, 101403. [Google Scholar] [CrossRef]
- Lee, W.; Lee, J.; Yang, W.; Kim, J. Fabrication of Biobased Advanced Phase Change Material and Multifunctional Composites for Efficient Thermal Management. ACS Sustain. Chem. Eng. 2023, 11, 1178–1189. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Zhang, J.; Lin, L.; Shi, J. A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers 2022, 14, 4089. [Google Scholar] [CrossRef]
- Ahmed, T.; Toki, G.F.I.; Mia, R.; Faridul Hasan, K.M.; Alpár, T. Mechanical and Thermal Properties of Plant/Plant Fiber Based Woven Fabric Hybrid Composites. In Innovations in Woven and Non-Woven Fabrics Based Laminated Composites. Composites Science and Technology; Springer: Singapore, 2024; pp. 77–113. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Romli, A.Z.; Md Akil, H. Recent advances on improving the mechanical and thermal properties of kenaf fibers/engineering thermoplastic composites using novel coating techniques: A review. Compos. Interfaces 2023, 30, 849–875. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Wei, K.; Zhang, W. Thermal stability and mechanical properties of epoxy resin/microcapsule composite phase change materials. Constr. Build. Mater. 2021, 312, 125392. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Hatem, W.A.; Almuhanna, R.R.A.; Abdul Redha, Z.A.; Al Maimuri, N.M.L.; Dulaimi, A. Assessing the Effect of Organic, Inorganic, and Hybrid Phase Change Materials on Thermal Regulation and Energy Efficiency in Asphalt Pavements—A Review. Processes 2025, 13, 597. [Google Scholar] [CrossRef]
- Zhao, F.; Yuan, W.; Chen, H.; Fu, H.; Li, Z.; Xiao, J.; Feng, Y. Advances in Organic Porous Polymeric-Supported Photothermal Phase Change Materials. Carbon Energy 2025, 7, e719. [Google Scholar] [CrossRef]
- Yang, M.; Zhong, H.; Li, T.; Wu, B.; Wang, Z.; Sun, D. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation. ACS Nano 2023, 17, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, Y.; Xie, K.; Medina, M.A. A parametric study on the thermal response of a building wall with a phase change material (PCM) layer for passive space cooling. J. Energy Storage 2022, 47, 103548. [Google Scholar] [CrossRef]
- Cuce, P.M. Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present. Sustainability 2025, 17, 5176. [Google Scholar] [CrossRef]
- Carlucci, F.; Campagna, L.M.; Fiorito, F. Responsive Envelope Technologies. In Responsive Envelopes and Climate Change. Digital Innovations in Architecture, Engineering and Construction; Springer: Cham, Switzerland, 2024; pp. 39–68. [Google Scholar] [CrossRef]
- Tao, P.; Mccafferty, D.J. Bioinspired Thermal Insulation and Storage Materials. In Bioinspired Engineering of Thermal Materials; Wiley: Hoboken, NJ, USA, 2018; pp. 201–223. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K. Next generation phase change materials: State-of-the-art towards sustainable future. Prog. Mater. Sci. 2025, 148, 101380. [Google Scholar] [CrossRef]
- McBane, J.E.; Vulesevic, B.; Padavan, D.T.; McEwan, K.A.; Korbutt, G.S.; Suuronen, E.J. Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-Angiogenic Site for Islet Transplantation. PLoS ONE 2013, 8, e77538. [Google Scholar] [CrossRef] [PubMed]
- Keplinger, T.; Wang, X.; Burgert, I. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 2019, 7, 2981–2992. [Google Scholar] [CrossRef]
- Mohseni, A.; Vieira, F.R.; Pecchia, J.A.; Gürsoy, B. Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination. Biomimetics 2023, 8, 257. [Google Scholar] [CrossRef]
- Liu, Z.; Sheng, Z.; Bao, Y.; Cheng, Q.; Wang, P.-X.; Liu, Z.; Zhang, X. Ionic Liquid Directed Spinning of Cellulose Aerogel Fibers with Superb Toughness for Weaved Thermal Insulation and Transient Impact Protection. ACS Nano 2023, 17, 18411–18420. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, T.; Chen, C.; Wang, C.; Liu, Y.; Kong, W.; Liu, D.; Jiang, B.; He, S.; Kuang, Y.; et al. A Highly Conductive Cationic Wood Membrane. Adv. Funct. Mater. 2019, 29, 1902772. [Google Scholar] [CrossRef]
- Islam, M.N.; Rahman, F.; Das, A.K.; Hiziroglu, S. An overview of different types and potential of bio-based adhesives used for wood products. Int. J. Adhes. Adhes. 2022, 112, 102992. [Google Scholar] [CrossRef]
- Sayfutdinova, A.R.; Bardina, K.A.; Cherednichenko, K.A.; Vinokurov, V.A.; Voronin, D.V. Effect of Fungal Mycellium/Eicosane Composites on Thermal Energy Storage and Release in Gypsum Plaster. Chem. Technol. Fuels Oils 2023, 59, 990–997. [Google Scholar] [CrossRef]
- Sayfutdinova, A.R.; Zaytseva, N.E.; Karsukova, A.D.; Cherednichenko, K.A.; Stoporev, A.S.; Vinokurov, V.A.; Voronin, D.V. Case Study of Fungal Mycelium/Eicosane Composite as an Energy Storage Additive for Gypsum Plaster in a Model Experiment. Chem. Technol. Fuels Oils 2024, 60, 1163–1171. [Google Scholar] [CrossRef]
- Lv, S.; Liang, S.; Zuo, J.; Zhang, S.; Wang, J.; Wei, D. Lignin-based anti-UV functional materials: Recent advances in preparation and application. Iran. Polym. J. 2023, 32, 1477–1497. [Google Scholar] [CrossRef]
- Kaur, R.; Bhardwaj, S.K.; Chandna, S.; Kim, K.H.; Bhaumik, J. Lignin-based metal oxide nanocomposites for UV protection applications: A review. J. Clean. Prod. 2021, 317, 128300. [Google Scholar] [CrossRef]
- Wang, M.; Shao, C.; Zhou, S.; Yang, J.; Xu, F. Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Adv. 2017, 7, 38220–38230. [Google Scholar] [CrossRef]
- Le, W.T.; Kankkunen, A.; Rojas, O.J.; Yazdani, M.R. Leakage-free porous cellulose-based phase change cryogels for sound and thermal insulation. Sol. Energy Mater. Sol. Cells 2023, 256, 112337. [Google Scholar] [CrossRef]
- Wang, G.; Tang, Z.; Gao, Y.; Liu, P.; Li, Y.; Li, A.; Chen, X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem. Rev. 2023, 123, 6953–7024. [Google Scholar] [CrossRef] [PubMed]
- Kontturi, K.S.; Lee, K.-Y.; Jones, M.P.; Sampson, W.W.; Bismarck, A.; Kontturi, E. Influence of biological origin on the tensile properties of cellulose nanopapers. Cellulose 2021, 28, 6619–6628. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Li, X.; Zhang, J.; Nawaz, H.; Xu, Y.; Kong, F.; Xu, F. Anisotropic cellulose nanofibril aerogels fabricated by directional stabilization and ambient drying for efficient solar evaporation. Chem. Eng. J. 2023, 453, 139844. [Google Scholar] [CrossRef]
- Rossetti, A.; Paciaroni, A.; Rossi, B.; Bottari, C.; Comez, L.; Corezzi, S.; Melone, L.; Almásy, L.; Punta, C.; Fiorati, A. TEMPO-oxidized cellulose nanofibril/polyvalent cations hydrogels: A multifaceted view of network interactions and inner structure. Cellulose 2023, 30, 2951–2967. [Google Scholar] [CrossRef]
- Isogai, A.; Hänninen, T.; Fujisawa, S.; Saito, T. Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 2018, 86, 122–148. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Jia, X.; Zhang, L.; Liu, H.; Gao, E.; Chen, C. Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. Innov. Mater. 2024, 2, 100092. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Ajdary, R.; Kankkunen, A.; Rojas, O.J.; Seppälä, A. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Appl. Mater. Interfaces 2021, 13, 6188–6200. [Google Scholar] [CrossRef]
- Al-Shannaq, R.; Farid, M.M.; Ikutegbe, C.A. Methods for the Synthesis of Phase Change Material Microcapsules with Enhanced Thermophysical Properties—A State-of-the-Art Review. Micro 2022, 2, 426–474. [Google Scholar] [CrossRef]
- Liang, T.; Ma, Y.; Jiang, Z.; Remón, J.; Zhou, Y.; Shi, B. New insights into greener skin healthcare protection: Lignin nanoparticles as additives to develop natural-based sunscreens with high UV protection. Carbon Resour. Convers. 2024, 7, 100227. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.; Pan, H.; Jiang, Y.; Qi, J.; Xiao, H.; Zhang, S.; Lin, T.; Tu, L.; Xie, J. Preparation of flexible and UV-blocking films from lignin-containing cellulose incorporated with tea polyphenol/citric acid. Int. J. Biol. Macromol. 2022, 207, 917–926. [Google Scholar] [CrossRef]
- Ko, Y.; Kwon, G.; Choi, H.; Lee, K.; Jeon, Y.; Lee, S.; Kim, J.; You, J. Cutting Edge Use of Conductive Patterns in Nanocellulose-Based Green Electronics. Adv. Funct. Mater. 2023, 33, 2302785. [Google Scholar] [CrossRef]
- Haidari, H.; Kopecki, Z.; Sutton, A.T.; Garg, S.; Cowin, A.J.; Vasilev, K. pH-Responsive “Smart” Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds. Antibiotics 2021, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Yabuki, A.; Shiraiwa, T.; Fathona, I.W. pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor. Corros. Sci. 2016, 103, 117–123. [Google Scholar] [CrossRef]
- Mi, R.; Li, T.; Dalgo, D.; Chen, C.; Kuang, Y.; He, S.; Zhao, X.; Xie, W.; Gan, W.; Zhu, J.; et al. A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Adv. Funct. Mater. 2020, 30, 1907511. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, W.; Yang, Y.; Zhao, J.; Liu, Y.; Guo, H. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation. J. Clean. Prod. 2021, 296, 126598. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zha, L.; Koskela, S.; Berglund, L.A.; Zhou, Q. Wood xerogel for fabrication of high-performance transparent wood. Nat. Commun. 2023, 14, 2827. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, W. Phase-change thermal storage transparent wood based on optical reversibility. Ind. Crops Prod. 2025, 223, 120275. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Rojas, R.; Yan, M.; Lawoko, M.; Berglund, L. Lignin-Retaining Transparent Wood. ChemSusChem 2017, 10, 3445–3451. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916. [Google Scholar] [CrossRef]
- Matuszek, K.; Kar, M.; Pringle, J.M.; Macfarlane, D.R. Phase Change Materials for Renewable Energy Storage at Intermediate Temperatures. Chem. Rev. 2023, 123, 491–514. [Google Scholar] [CrossRef]
- Okolie, O.; Kumar, A.; Edwards, C.; Lawton, L.A.; Oke, A.; McDonald, S.; Thakur, V.K.; Njuguna, J. Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. J. Compos. Sci. 2023, 7, 213. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Sheng, X.; Chen, Y. Achieving heat storage coatings from ethylene vinyl acetate copolymers and phase change nano-capsules with excellent flame-retardant and thermal comfort performances. Prog. Org. Coatings 2024, 192, 108478. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustain. Energy Fuels 2019, 3, 1091–1149. [Google Scholar] [CrossRef]
- Fang, G.; Tang, F.; Cao, L. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renew. Sustain. Energy Rev. 2014, 40, 237–259. [Google Scholar] [CrossRef]
- Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Sol. Energy Mater. Sol. Cells 2015, 143, 78–98. [Google Scholar] [CrossRef]
- Huang, Y.; Stonehouse, A.; Abeykoon, C. Encapsulation methods for phase change materials—A critical review. Int. J. Heat Mass Transf. 2023, 200, 123458. [Google Scholar] [CrossRef]
- Liu, K.; Yuan, Z.F.; Zhao, H.; Shi, C.H.; Zhao, F. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review. Mater. Today Sustain. 2023, 21, 100336. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Liu, Z.; Wang, W. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177. [Google Scholar] [CrossRef]
- Hemath, M.; Mavinkere Rangappa, S.; Kushvaha, V.; Dhakal, H.N.; Siengchin, S. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. 2020, 41, 3940–3965. [Google Scholar] [CrossRef]
- Safarkhani, M.; Far, B.F.; Huh, Y.; Rabiee, N. Thermally Conductive MXene. ACS Biomater. Sci. Eng. 2023, 9, 6516–6530. [Google Scholar] [CrossRef]
- Awan, H.T.A.; Abdah, M.A.A.M.; Mehar, M.; Walvekar, R.; Chaudhary, V.; Khalid, M.; Khosla, A. MXene-polymer hybrid composites for advanced energy storage: Insights into supercapacitors and batteries. J. Energy Storage 2024, 95, 112449. [Google Scholar] [CrossRef]
- Li, D.; Zhuang, B.; Chen, Y.; Li, B.; Landry, V.; Kaboorani, A.; Wu, Z.; Wang, X.A. Incorporation technology of bio-based phase change materials for building envelope: A review. Energy Build. 2022, 260, 111920. [Google Scholar] [CrossRef]
- Reyez-Araiza, J.L.; Pineda-Piñón, J.; López-Romero, J.M.; Gasca-Tirado, J.R.; Arroyo Contreras, M.; Jáuregui Correa, J.C.; Apátiga-Castro, L.M.; Rivera-Muñoz, E.M.; Velazquez-Castillo, R.R.; Pérez Bueno, J.d.J.; et al. Thermal Energy Storage by the Encapsulation of Phase Change Materials in Building Elements—A Review. Materials 2021, 14, 1420. [Google Scholar] [CrossRef] [PubMed]
- Abdullatif Alshuhail, L.; Shaik, F.; Syam Sundar, L. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications—A review. Alexandria Eng. J. 2023, 68, 365–404. [Google Scholar] [CrossRef]
- Ali, H.M.; Rehman, T.; Arıcı, M.; Said, Z.; Duraković, B.; Mohammed, H.I.; Kumar, R.; Rathod, M.K.; Buyukdagli, O.; Teggar, M. Advances in thermal energy storage: Fundamentals and applications. Prog. Energy Combust. Sci. 2024, 100, 101109. [Google Scholar] [CrossRef]
- Patel, D.; Wei, W.; Singh, H.; Xu, K.; Beck, C.; Wildy, M.; Schossig, J.; Hu, X.; Hyun, D.C.; Chen, W.; et al. Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage. ACS Sustain. Chem. Eng. 2023, 11, 11570–11579. [Google Scholar] [CrossRef]
- Ko, H.; Kang, D.-G.; Rim, M.; Koo, J.; Lim, S.-I.; Jang, E.; Yu, D.; Yoo, M.-J.; Kim, N.; Jeong, K.-U. Heat managing organic materials: Phase change materials with high thermal conductivity and shape stability. Polym. Chem. 2022, 13, 1152–1157. [Google Scholar] [CrossRef]
- Wijanarko, N.P.; Daniarta, S.; Kolasiński, P. A Systematic Review of Biopolymer Phase Change Materials for Thermal Energy Storage: Challenges, Opportunities, and Future Direction. Energies 2025, 18, 4262. [Google Scholar] [CrossRef]
- Sivanathan, A.; Dou, Q.; Wang, Y.; Li, Y.; Corker, J.; Zhou, Y.; Fan, M. Phase change materials for building construction: An overview of nano-/micro-encapsulation. Nanotechnol. Rev. 2020, 9, 896–921. [Google Scholar] [CrossRef]
- Liao, S.; Zhou, X.; Chen, X.; Li, Z.; Yamashita, S.; Zhang, C.; Kita, H. Development of Macro-Encapsulated Phase-Change Material Using Composite of NaCl-Al2O3 with Characteristics of Self-Standing. Processes 2024, 12, 1123. [Google Scholar] [CrossRef]
- Shah, K.W. A review on enhancement of phase change materials—A nanomaterials perspective. Energy Build. 2018, 175, 57–68. [Google Scholar] [CrossRef]
- Dmitruk, A.; Raźny, N.; Wu, T.; Serdechnova, M.; Naplocha, K.; Blawert, C. PEO-coated aluminum alloys with good thermal conductivity for TES applications. Adv. Ceram. Coatings Energy Appl. 2024, 213–247. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, Y.; Li, G.; Geng, L.; Zhang, X.; Zhao, J.; Liu, C. Using Industrial Mining Solid Waste through Conversion to Phase-Change Materials for Thermal Energy Storage. Chempluschem 2025, 90, e202400519. [Google Scholar] [CrossRef] [PubMed]
- Ait Laasri, I.; Es-sakali, N.; Charai, M.; Mghazli, M.O.; Outzourhit, A. Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications. Renew. Sustain. Energy Rev. 2024, 199, 114481. [Google Scholar] [CrossRef]
- Shen, Z.; Qin, M.; Xiong, F.; Zou, R.; Zhang, J. Nanocellulose-based composite phase change materials for thermal energy storage: Status and challenges. Energy Environ. Sci. 2023, 16, 830–861. [Google Scholar] [CrossRef]
- Alam, T.E.; Dhau, J.S.; Goswami, D.Y.; Stefanakos, E. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Appl. Energy 2015, 154, 92–101. [Google Scholar] [CrossRef]
- Ajdary, R.; Tardy, B.L.; Mattos, B.D.; Bai, L.; Rojas, O.J. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Adv. Mater. 2021, 33, 2001085. [Google Scholar] [CrossRef]
- Jyothibasu, J.P.; Wang, R.-H.; Tien, Y.-C.; Kuo, C.-C.; Lee, R.-H. Lignin-Derived Quinone Redox Moieties for Bio-Based Supercapacitors. Polymers 2022, 14, 3106. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Wi, S.; Yun, B.Y.; Kim, S. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy 2021, 216, 119294. [Google Scholar] [CrossRef]
- Suchorowiec, K.; Paprota, N.; Pielichowska, K. Aerogels for Phase-Change Materials in Functional and Multifunctional Composites: A Review. Materials 2024, 17, 4405. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Al Shannaq, R.; Farid, M.M. Microencapsulation of phase change materials (PCMs) for thermal energy storage systems. In Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 247–284. [Google Scholar]
- Feizatidou, A.; Binas, V.; Kartsonakis, I.A. Green Synthesis of Core/Shell Phase Change Materials: Applications in Industry and Energy Sectors. Energies 2025, 18, 2127. [Google Scholar] [CrossRef]
- ASTM E793-06 (Reapproved 2016); Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2016.
- ISO 11357-1:2016; Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2016.
- ASTM E1225-13; Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded Compara-tive-Longitudinal Heat Flow Technique. ASTM International: West Conshohocken, PA, USA, 2013.
- ISO 15927-3:2009; Hygrothermal Performance of Buildings—Calculation and Presentation of Climatic Data—Part 3: Calculation of a Driving Rain Index for Vertical Surfaces. International Organization for Standardization: Geneva, Switzerland, 2009.
- ASTM E1461-13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2013.
- ISO 22007-2:2015; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (TPS) Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- Liu, P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z.; Lv, J.; Aftab, W.; Wang, G. Aerogels Meet Phase Change Materials: Fundamentals, Advances, and beyond. ACS Nano 2022, 16, 15586–15626. [Google Scholar] [CrossRef]
- Yang, D.; Tu, S.; Chen, J.; Zhang, H.; Chen, W.; Hu, D.; Lin, J. Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications. Polymers 2023, 15, 1562. [Google Scholar] [CrossRef]
- An, X.; Hu, J.; Wang, S.; Hou, Y.; Zou, W. Characterization and optimization of desulfurized construction gypsum modified with functionalized nanocellulose. Alexandria Eng. J. 2024, 107, 851–859. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K.; Saidur, R.; Samykano, M.; Tyagi, V.V. Nano additive enhanced salt hydrate phase change materials for thermal energy storage. Int. Mater. Rev. 2023, 68, 140–183. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Lee, J.-H.; Seo, J.; Kim, S. Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving. Int. J. Heat Mass Transf. 2014, 71, 245–250. [Google Scholar] [CrossRef]
- Kumar, K.R.; Raghutu, R.K.; Venkata Padma, D.; Sastry, S.V.A.R.; Hemalatha, R. Data-driven approaches to sustainable phase change material selection in latent heat storage systems. Int. J. Energy Water Resour. 2025, 9, 1485–1498. [Google Scholar] [CrossRef]
- Coskun, B.; Temel, U.N. Investigation of biochar performance for phase change material integration in building applications: Effects of raw material type and pyrolysis parameters. Eur. Phys. J. Plus 2025, 140, 692. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Arunachalam, S.; Arslanoğlu, H.; Gencel, O. Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity. Powder Technol. 2021, 394, 1017–1025. [Google Scholar] [CrossRef]
- Yadav, A.; Samykano, M.; Pandey, A.K.; Natarajan, S.K.; Vasudevan, G.; Muthuvairavan, G.; Suraparaju, S.K. Sustainable phase change material developments for thermally comfortable smart buildings: A critical review. Process Saf. Environ. Prot. 2024, 191, 1918–1955. [Google Scholar] [CrossRef]
- Islam, A.; Pandey, A.K.; Sharma, K.; Bhutto, Y.A.; Saidur, R.; Buddhi, D. Enhancing thermo-physical properties of hybrid nanoparticle-infused medium temperature organic phase change materials using graphene nanoplatelets and multiwall carbon nanotubes. Discov. Mater. 2024, 4. [Google Scholar] [CrossRef]
- Kumar, R.; Thakur, A.K.; Gupta, L.R.; Gehlot, A.; Sikarwar, V.S. Advances in phase change materials and nanomaterials for applications in thermal energy storage. Environ. Sci. Pollut. Res. 2024, 31, 6649–6677. [Google Scholar] [CrossRef] [PubMed]
- Abdolahimoghadam, M.; Rahimi, M. New hybrid nano- and bio-based phase change material containing graphene-copper particles hosting beeswax-coconut oil for solar thermal energy storage: Predictive modeling and evaluation using machine learning. Energy 2024, 307, 132604. [Google Scholar] [CrossRef]
- Brzęczek-Szafran, A.; Gwóźdź, M.; Brun, N.; Wysokowski, M.; Matuszek, K. A Roadmap for Biomass-Driven Development of Sustainable Phase Change Materials. ChemSusChem 2025, 18, 2500288. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A. Recent innovations and developments concerning the beeswax as phase change material for thermal energy storage: A review. J. Therm. Anal. Calorim. 2023, 148, 12859–12876. [Google Scholar] [CrossRef]
- Khalifelu, S.S.; Hamid, N.; Rahimi-Ahar, Z.; Seyedjabedar, N.; Oroujzadeh, A.; Babapoor, A.; Seyfaee, A. Application of microencapsulated phase change materials for controlling exothermic reactions. Rev. Chem. Eng. 2024, 40, 951–971. [Google Scholar] [CrossRef]
- Liang, C.; Wang, X.; Hao, Y.; Zhang, Y.; Jiang, L.; Tang, B.; Song, Y. A comprehensive review of form-stable phase change materials in cold chain logistics: Encapsulation strategies, thermal conductivity enhancement, and applications. J. Mater. Chem. A 2025, 13, 24387–24415. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Xu, W.; Yang, J.; Liu, Z.; Bai, L.; Yang, W.; Yang, M. Leakage-Proof Flexible Phase Change Gels with Salient Thermal Conductivity for Efficient Thermal Management. ACS Appl. Mater. Interfaces 2022, 14, 52411–52421. [Google Scholar] [CrossRef]
- Zhang, H.; Mai, J.; Li, S.; Althakafy, J.T.; Liu, H.; Alanazi, A.K.; El-Bahy, S.M.; Li, X.; Wu, X.; Wang, R.; et al. Multi-functional phase change materials with anti-liquid leakage, shape memory, switchable optical transparency and thermal energy storage. Adv. Compos. Hybrid Mater. 2022, 5, 2042–2050. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.; Liu, J.; Sun, W.; Xu, H.; Liu, C. Self-healed inorganic phase change materials for thermal energy harvesting and management. Appl. Therm. Eng. 2023, 219, 119423. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Li, X.; Li, H.; Yao, C.; Chen, S.; Xu, F. Leak-free, high latent heat and self-cleaning phase change materials supported by layered cellulose/Fe3O4 skeleton for light-to-thermal energy conversion. Energy Convers. Manag. 2022, 256, 115357. [Google Scholar] [CrossRef]
- Ahankari, S.; Paliwal, P.; Subhedar, A.; Kargarzadeh, H. Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano 2021, 15, 3849–3874. [Google Scholar] [CrossRef]
- Pang, Y.; Sun, J.; Zhang, W.; Lai, C.; Liu, Y.; Guo, H.; Zhang, D. Green, recyclable and high latent heat form-stable phase change composites supported by cellulose nanofibers for thermal energy management. Int. J. Biol. Macromol. 2024, 264, 130633. [Google Scholar] [CrossRef]
- Xing, Y.; Li, W.; Zhao, Y.; Yuan, W.; Ni, C.; Ye, G.; Yong, Q.; Zhang, X.; Sun, Q.; Bi, H. Fabrication of multistage phase change nanocellulose composites with robust mechanical property and high thermal storage capacity. J. Energy Storage 2025, 108, 115130. [Google Scholar] [CrossRef]
- Huang, J.; Su, J.; Weng, M.; Xiong, L.; Wang, P.; Liu, Y.; Lin, X.; Min, Y. An innovative phase change composite with high thermal conductivity and sensitive light response rate for thermal energy storage. Sol. Energy Mater. Sol. Cells 2022, 245, 111872. [Google Scholar] [CrossRef]
- Niu, L.; Li, X.; Zhang, Y.; Yang, H.; Feng, J.; Liu, Z. Electrospun Lignin-Based Phase-Change Nanofiber Films for Solar Energy Storage. ACS Sustain. Chem. Eng. 2022, 10, 13081–13090. [Google Scholar] [CrossRef]
- Heng, Y.; Feng, N.; Liang, Y.; Hu, D. Lignin-retaining porous bamboo-based reversible thermochromic phase change energy storage composite material. Int. J. Energy Res. 2020, 44, 5441–5454. [Google Scholar] [CrossRef]
- Lee, J.J.C.; Sugiarto, S.; Ong, P.J.; Soo, X.Y.D.; Ni, X.; Luo, P.; Hnin, Y.Y.K.; See, J.S.Y.; Wei, F.; Zheng, R.; et al. Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application. J. Energy Storage 2022, 56, 106118. [Google Scholar] [CrossRef]
- Liang, Q.; Pan, D.; Zhang, X. Construction and application of biochar-based composite phase change materials. Chem. Eng. J. 2023, 453, 139441. [Google Scholar] [CrossRef]
- Lv, L.; Huang, S.; Zhou, H. Performance investigation of biochar/paraffin composite phase change materials in latent heat storage systems: Feasibility of biochar as a thermal conductivity enhancer. J. Energy Storage 2024, 91, 112106. [Google Scholar] [CrossRef]
- Yadav, A.; Samykano, M.; Pandey, A.K.; Kareri, T.; Kalidasan, B. Optimizing thermal properties and heat transfer in 3D biochar-embedded organic phase change materials for thermal energy storage. Mater. Today Commun. 2024, 38, 108114. [Google Scholar] [CrossRef]
- Bordoloi, U.; Das, D.; Kashyap, D.; Patwa, D.; Bora, P.; Muigai, H.H.; Kalita, P. Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings. J. Energy Storage 2022, 55, 105801. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, X.; Yin, X.; Zhang, X.; Hu, S.; Zhang, Y.; Yang, H. Thermally driven memory flexible phase change hydrogel for solar energy efficient building thermal management. Sol. Energy Mater. Sol. Cells 2025, 279, 113248. [Google Scholar] [CrossRef]
- Tan, J.; Luo, S.; Ji, W.; Li, Y.; Li, L.; Cheng, X. Phase-changing hydrogels incorporated with copper sulfide-carbon nanotubes for smart thermal management and solar energy storage. J. Energy Storage 2022, 50, 104653. [Google Scholar] [CrossRef]
- Song, M.; Wang, L.; Shao, F.; Xie, H.; Xu, H.; Yu, W. Thermally induced flexible phase change hydrogels for solar thermal storage and human thermal management. Chem. Eng. J. 2023, 464, 142682. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Y.; Zhang, J.; Xie, Y.; Guo, H.; He, M.; Shi, X.; Mei, Y.; Sheng, X.; Xie, D. Leakage Proof, Flame-Retardant, and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting. Nano-Micro Lett. 2024, 16, 196. [Google Scholar] [CrossRef]
- Hanif, F.; Imran, M.; Zhang, Y.; Jia, Z.; Lu, X.; Lu, R.; Tang, B. Form-Stable Phase Change Material with Wood-Based Materials as Support. Polymers 2023, 15, 942. [Google Scholar] [CrossRef]
- Li, C.; Tang, H. Phase change material window for dynamic energy flow regulation: Review. Renew. Sustain. Energy Rev. 2024, 189, 113937. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Fabrication of Graphene/TiO2/Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage. ACS Sustain. Chem. Eng. 2017, 5, 4906–4915. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, Y.; Ma, Y.; Wen, B.; Zhao, L.; Han, B.; Li, Z.; Deng, Q.; Zhang, K. Thermal conductive enhanced phase change composites with high latent-heat for constant temperature thermal management. J. Energy Storage 2024, 96, 112604. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, X.; Dong, X.; Ye, G.; Zhang, G.; Yang, X. Ultrareliable Composite Phase Change Material for Battery Thermal Management Derived from a Rationally Designed Phase Changeable and Hydrophobic Polymer Skeleton. ACS Appl. Energy Mater. 2021, 4, 3832–3841. [Google Scholar] [CrossRef]
- Fu, T.; Wang, W.; Fang, G. Thermal properties and applications of form-stable phase change materials for thermal energy storage and thermal management: A review. Energy Storage 2024, 6, e533. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, X.; Xie, N.; Fang, Y.; Zhang, Z.; Gao, X. Form-stable flexible composite multi-phase change material with high latent heat and enhanced thermal conductivity for thermal management. J. Energy Storage 2023, 58, 106364. [Google Scholar] [CrossRef]
- Su, Y.; Shen, J.; Chen, X.; Xu, X.; Shi, S.; Wang, X.; Zhou, F.; Huang, X. Bio-based eutectic composite phase change materials with enhanced thermal conductivity and excellent shape stabilization for battery thermal management. J. Energy Storage 2024, 100, 113712. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Y.; Li, D.; Li, K.; Yan, Y. Towards the sustainable production of biomass-derived materials with smart functionality: A tutorial review. Green Chem. 2024, 26, 9075–9103. [Google Scholar] [CrossRef]
- Chalivendula, S.R.; Tarigonda, H. Recent Advances in Organic Phase Change Materials for Thermal Energy Storage: A Review on Sustainable Development Applications. Int. J. Thermophys. 2025, 46, 88. [Google Scholar] [CrossRef]
- Srivastav, D.; Patil, N.D.; Shukla, P.C. Bio-based phase change materials for battery thermal management: A numerical investigation for a single Li-ion cell. Appl. Therm. Eng. 2025, 278, 127346. [Google Scholar] [CrossRef]
- Guo, J.; Ding, H.; Xie, J.; Wang, S.; Huang, Q.; Liu, C.; Nie, B. Bio-based, flexible, and electrically insulating phase change materials for advanced battery thermal management. J. Energy Storage 2025, 111, 115405. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, Y.; Huang, J.; Wang, S. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network. Appl. Energy 2018, 218, 184–191. [Google Scholar] [CrossRef]
- Aiswarya, V.; Das, S.; James, A.; Saha, S.K.; Saha, B.B. An experimental investigation on the solar thermal energy storage potential of form stabilized paraffin microcapsules. J. Environ. Chem. Eng. 2025, 13, 116825. [Google Scholar] [CrossRef]
- Um, J.H.; Ahn, C.-Y.; Kim, J.; Jeong, M.; Sung, Y.-E.; Cho, Y.-H.; Kim, S.-S.; Yoon, W.-S. From grass to battery anode: Agricultural biomass hemp-derived carbon for lithium storage. RSC Adv. 2018, 8, 32231–32240. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, Y.-T.; Liu, C.; Mu, K.; Li, K.H.; Wang, S.; Yang, Y.; Wang, L.; Su, C.-H.; Feng, S.-P. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 2019, 10, 4151. [Google Scholar] [CrossRef] [PubMed]
- Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers 2022, 14, 2141. [Google Scholar] [CrossRef] [PubMed]
- Giubilini, A.; Bondioli, F.; Messori, M.; Nyström, G.; Siqueira, G. Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates. Bioengineering 2021, 8, 29. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Zhang, X.-D.; Wang, Y.-H.; Yang, C.; Liu, X.; Wang, W.-P.; Zhang, Y.; Li, X.-T.; Li, G.; et al. A smart risk-responding polymer membrane for safer batteries. Sci. Adv. 2023, 9, eade5802. [Google Scholar] [CrossRef]
- He, L.; Wang, M.; Zhang, X.; Liu, X.; Luo, Y.; Chen, Y.; Fan, Y. The confinement effect on phase change materials by physicochemical structure of wood-based materials. Ind. Crops Prod. 2024, 212, 118299. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Zhang, W.; Zhao, J.; Fang, X.; Sun, J.; Xia, R.; Guo, H.; Liu, Y. Processing wood into a phase change material with high solar-thermal conversion efficiency by introducing stable polyethylene glycol-based energy storage polymer. Energy 2022, 254, 124206. [Google Scholar] [CrossRef]
- Lam, E.; Hemraz, U.D. Preparation and Surface Functionalization of Carboxylated Cellulose Nanocrystals. Nanomaterials 2021, 11, 1641. [Google Scholar] [CrossRef]
- Paksoy, H.; Şahan, N.; Konuklu, Y. Encapsulation of Phase Change Materials. In Encyclopedia of Energy Storage; Elsevier: Amsterdam, The Netherlands, 2022; pp. 498–525. [Google Scholar]
- Zhou, W.; Wang, W.; Shi, H.; Zeng, X.; Li, J.; Pang, Y.; Chang, Y.C.; Sun, R.; Ren, L. Multiway Softness Polyurethane Elastomeric Composite with Enhanced Thermal Conductivity and Application as Thermal Interface Materials. Adv. Mater. Technol. 2023, 8, 2201701. [Google Scholar] [CrossRef]
- Wei, Y.; Jiang, S.; Li, X.; Li, J.; Dong, Y.; Shi, S.Q.; Li, J.; Fang, Z. “green” Flexible Electronics: Biodegradable and Mechanically Strong Soy Protein-Based Nanocomposite Films for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 37617–37627. [Google Scholar] [CrossRef]
- Song, Y.; Li, B.; Chen, H.; Yu, Z. Research progress of absorbable stents. Int. J. Med. Sci. 2024, 21, 404–412. [Google Scholar] [CrossRef]
- Lu, W.; Yu, A.; Dong, H.; He, Z.; Liang, Y.; Liu, W.; Sun, Y.; Song, S. High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation. Energy 2023, 274, 127336. [Google Scholar] [CrossRef]
- Szymanski, P.; Paluch, R. Experimental investigation on heat pipes supported by soy wax and lauric acid for electronics cooling. J. Energy Storage 2024, 83, 110813. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, Q.; Qin, M.; Gao, S.; Wang, Q.; Gao, S.; Xiong, F.; Lv, Y.; Zou, R. Micro/Nano Encapsulated Phase Change Materials: Preparation, Principle, and Emerging Advances in Medical Field. Adv. Funct. Mater. 2024, 34, 2314487. [Google Scholar] [CrossRef]
- Wu, H.; Yang, S.; Li, J.; Ma, T.; Yang, K.; Liao, T.; Feng, W.; Zhou, B.; Yong, X.; Zhou, K.; et al. Current status and challenges of shape memory scaffolds in biomedical applications. MedComm—Biomater. Appl. 2024, 3, e95. [Google Scholar] [CrossRef]











| Encapsulation Material | Thermal Conductivity (W/m·K) | Latent Heat Storage Capacity (J/g) | Advantages | Disadvantages | References |
|---|---|---|---|---|---|
| Starch (Bio-Based) | 0.16–0.25 | 100–160 |
|
| [46,47,48,49,50,51] |
| Chitosan (Bio-Based) | 0.20–0.30 | 120–180 |
|
| [52,53,54,55,56] |
| Lignocellulosic (Bio-Based) | 0.20–0.42 | 150–210 |
|
| [57,58,59,60,61] |
| Silica (inorganic) | 1.4–1.6 | 200–250 |
|
| [62,63,64,65,66] |
| Polystyrene (inorganic) | 0.1–0.13 | 180–240 |
|
| [67,68,69,70] |
| Polymethyl methacrylate (PMMA) (inorganic) | 0.18–0.25 | 170–230 |
|
| [71,72,73,74,75] |
| Encapsulation Technique | Structural Characteristics | Advantages | Disadvantages | Applications | ASTM/ISO Standard | References |
|---|---|---|---|---|---|---|
| Microencapsulation | PCM particles (1–1000 µm) coated with polymer or bio-based shells (e.g., chitosan, lignin). |
|
|
|
| [132,136,140,143,144,145,146] |
| Macroencapsulation | PCM sealed in large modules (tubes, panels, or spheres). |
|
|
|
| [147,148,149,150] |
| Composite encapsulation | PCM mixed with porous or conductive frameworks (graphite, silica, metal foam). |
|
|
|
| [151,152,153,154,155] |
| Composite Type | Nano-Additive | PCM Leakage Prevention | Application Scope | References |
|---|---|---|---|---|
| Nanocellulose–PCM |
|
|
| [154,166,167,168] |
| Biochar–PCM |
|
|
| [169,170,171,172] |
| Graphene–PCM |
|
|
| [168,173,174,175] |
| Material | Properties | Thermal Conductivity (W/m·K) | Latent Heat Capacity (J/g) | Cycle Stability (Cycles) | Future Applications | References |
|---|---|---|---|---|---|---|
| Nanocellulose (hydrogels) |
| 0.12–0.25 | 160–180 | 3000–5000 |
| [150,152,185,186,187] |
| Lignin-based polymers |
| 0.18–0.30 | 140–170 | 8000–12,000 |
| [153,188,189,190,191] |
| Biochar composites |
| 0.30–1.50 | 120–150 | 20,000+ |
| [154,192,193,194,195] |
| Nanocellulose–lignin |
| 0.025–0.045 | 60–190 | 15,000–18,000 |
| [143,150,152,153,186] |
| Wood-based hydrogels |
| 0.18–0.90 | 100–180 | 5000–7000 |
| [152,196,197,198,199,200] |
| Conventional polymer PCM |
| 0.30–2.90 | 120–210 | 10,000–15,000 |
| [21,201,202,203,204,205,206] |
| Paraffin in microcapsules |
| 0.60–4.00 | 80–200 | 50,000+ |
| [178,207,208,209] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manar, G.; Shalaby, M.; Bakar, M.S.A.; Parveez, B.; Najeeb, M.I.; Hassan, M.K.; Al-Sowayan, S.; Alawad, M.A. Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review. Polymers 2025, 17, 2925. https://doi.org/10.3390/polym17212925
Manar G, Shalaby M, Bakar MSA, Parveez B, Najeeb MI, Hassan MK, Al-Sowayan S, Alawad MA. Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review. Polymers. 2025; 17(21):2925. https://doi.org/10.3390/polym17212925
Chicago/Turabian StyleManar, Gunasilan, Mohamed Shalaby, Mohd Supian Abu Bakar, Bisma Parveez, Muhammad Imran Najeeb, Mohd Khair Hassan, Sulaiman Al-Sowayan, and Mohamad A. Alawad. 2025. "Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review" Polymers 17, no. 21: 2925. https://doi.org/10.3390/polym17212925
APA StyleManar, G., Shalaby, M., Bakar, M. S. A., Parveez, B., Najeeb, M. I., Hassan, M. K., Al-Sowayan, S., & Alawad, M. A. (2025). Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review. Polymers, 17(21), 2925. https://doi.org/10.3390/polym17212925

