Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction of Crude Extracts from Spent Coffee Grounds
2.2. Analytical Methods
2.3. Materials for Resins Synthesis and Plywood Production
2.4. Synthesis of Reference and Bio-Based Resins
- Reference PF resin
- PPC-20% resin with 20% phenol substitution by commercial Soy Protein
- PP1-20% resin with 20% phenol substitution by Crude extract sample 1
- PP1-40% resin with 40% phenol substitution by Crude extract sample 1
- PP2-20% resin with 20% phenol substitution by Crude extract sample 2
- PP3-40% resin with 40% phenol substitution by Crude extract sample 3
2.5. Characterization of Resin Properties
2.6. Plywood Production
3. Results
3.1. Composition of Crude Extracts from Spent Coffee Grounds
3.2. PF and Protein-Based Resins Synthesis and Evaluation
3.3. Plywood Production and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EU | European Union |
| EN | European Norm |
| AUA | Agricultural University of Athens |
| SCG | Spent coffee grounds |
| CAE | Caffeic acid equivalents |
| FAN | Free alpha-amino nitrogen |
| DCW | Dry cell weight |
| FAMEs | Fatty Acid Methyl Esters |
| HPLC | High performance liquid chromatography |
| FID | Flame ionization detector |
| RI | Refractive Index |
| PF | Phenol formaldehyde resin |
| PP1-20% | Bio-based resin with 20% phenol substituted by Crude extract sample 1 |
| PPC-20% | Bio-based resin with 20% phenol substituted by commercial Soy Protein |
| PP1-40% | Bio-based resin with 40% phenol substituted by Crude extract sample 1 |
| PP3-40% | Bio-based resin with 40% phenol substituted by Crude extract sample 3 |
References
- Sarika, P.R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polymers 2020, 12, 2237. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, Y.; Kong, F.; Ren, H.; Zhai, H. Synthesis of Phenolic Resins by Substituting Phenol with Modified Spruce Kraft Lignin. Wood Sci. Technol. 2022, 56, 1527–1549. [Google Scholar] [CrossRef]
- Sandomierski, M.; Buchwald, T.; Strzemiecka, B.; Voelkel, A. Carbon Black Modified with 4-Hydroxymethylbenzenediazonium Salt as Filler for Phenol-Formaldehyde Resins and Abrasive Tools. J. Appl. Polym. Sci. 2020, 137, 48160. [Google Scholar] [CrossRef]
- Gong, X.; Meng, Y.; Lu, J.; Tao, Y.; Cheng, Y.; Wang, H. A Review on Lignin-Based Phenolic Resin Adhesive. Macromol. Chem. Phys. 2022, 223, 2100434. [Google Scholar] [CrossRef]
- Chen, S.; Shi, S.Q.; Zhou, W.; Li, J. Developments in Bio-Based Soy Protein Adhesives: A Review. Macromol. Mater. Eng. 2022, 307, 2200009. [Google Scholar] [CrossRef]
- Qiao, Z.; Gu, J.; Lv, S.; Cao, J.; Tan, H.; Zhang, Y. Preparation and Properties of Normal Temperature Cured Starch-Based Wood Adhesive. BioResources 2016, 11, 4839–4849. [Google Scholar] [CrossRef]
- Faris, A.H.; Ibrahim, M.N.M.; Rahim, A.A. Preparation and Characterization of Green Adhesives Using Modified Tannin and Hyperbranched Poly(amine-ester). Int. J. Adhes. Adhes. 2016, 71, 39–47. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, W.; Tang, Y.; Yang, F.; Gong, C.; Wang, C.; Li, X.; Li, C. Preparation and Characterization of Soybean Protein Adhesives Modified with an Environmentally Friendly Tannin-Based Resin. Polymers 2023, 15, 2289. [Google Scholar] [CrossRef] [PubMed]
- Frihart, C.R.; Birkeland, M.J. Soy Properties and Soy Wood Adhesives. ACS Symp. Ser. 2014, 1178, 167–180. [Google Scholar] [CrossRef]
- Hemmilä, V.; Adamopoulos, S.; Karlsson, O.; Kumar, A. Green Binders for Wood Adhesives: A Review. Rev. Adhes. Adhes. 2017, 5, 325–370. [Google Scholar] [CrossRef]
- Wu, Z.; Xi, X.; Lei, H.; Du, G. Soy-Based Adhesive Cross-Linked by Phenol–Formaldehyde–Glutaraldehyde. Polymers 2017, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Averina, E.; Konnerth, J.; van Herwijnen, H.W.G. Protein Adhesives: Investigation of Factors Affecting Wet Strength of Alkaline Treated Proteins Crosslinked with Glyoxal. Polymers 2022, 14, 4351. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, E.; Tu, Y.; Ye, M.; Chen, N. An Eco-Friendly Wood Adhesive Consisting of Soybean Protein and Cardanol-Based Epoxy for Wood Based Composites. Polymers 2022, 14, 2831. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Zhang, X.; Wu, H.; Wang, Y.; Zhou, N.; Zhao, Z.; Wang, C.; Zhang, X.; Wang, X.; et al. Synthesis and Characterization of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Waste Plant Protein. Polymers 2023, 15, 2975. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.; Kuo, M.; Myers, D.J. Bond Quality of Soy-Based Phenolic Adhesives in Southern Pine Plywood. J. Am. Oil Chem. Soc. 2006, 83, 231–237. [Google Scholar] [CrossRef]
- Lorenz, L.; Frihart, C.R.; Wescott, J.M. Chromatographic Analysis of the Reaction of Soy Flour with Formaldehyde and Phenol for Wood Adhesives. J. Am. Oil Chem. Soc. 2007, 84, 769–776. [Google Scholar] [CrossRef]
- Pilato, L. (Ed.) Phenolic Resins: A Century of Progress, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 140–143. [Google Scholar] [CrossRef]
- Giannakis, N.; Carmona-Cabello, M.; Makri, A.; Leiva-Candia, D.; Filippi, K.; Argeiti, C.; Pateraki, C.; Dorado, M.P.; Koutinas, A.; Stylianou, E. Spent Coffee Grounds and Orange Peel Residues Based Biorefinery for Microbial Oil and Biodiesel Conversion Estimation. Renew. Energy 2020, 145, 1230–1241. [Google Scholar] [CrossRef]
- Faustino, H.; Gil, N.; Baptista, C.; Duarte, A.P. Antioxidant Activity of Lignin Phenolic Compounds Extracted from Kraft and Sulphite Black Liquors. Molecules 2010, 15, 9308–9322. [Google Scholar] [CrossRef] [PubMed]
- EN 314-1:2004; Plywood—Bonding Quality—Part 1: Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN 314-2:1993; Plywood—Bonding Quality—Part 2: Requirements. European Committee for Standardization (CEN): Brussels, Belgium, 1993.
- ISO 12460-3:2023; Wood-Based Panels—Determination of Formaldehyde Release—Part 3: Gas Analysis Method. International Organization for Standardization (ISO): Switzerland, Geneva, 2023.


| Component | 70% Aqueous Ethanol | 96% Ethanol |
|---|---|---|
| Protein (%) | 5.5 ± 0.2 | 14.4 ± 0.3 |
| Total phenolics (mg CAE/g extract) | 87.0 ± 0.9 | 89.9 ± 0.2 |
| Resin Type | PF | PPC-20% | PP1-20% | PP1-40% | PP3-40% |
|---|---|---|---|---|---|
| Protein Sample | - | Commercial Soy Protein | Crude extract 1 | Crude extract 1 | Crude extract 3 |
| Phenol Substitution, % | - | 20 | 20 | 40 | 40 |
| Solids Content, % | 42.87 | 43.88 | 43.02 | 42.70 | 45.54 |
| pH @ 25 °C, [ ] | 12.85 | 12.06 | 12.00 | 11.23 | 11.63 |
| Viscosity @ 25 °C, mPa·s | 309 | 340 | 315 | 530 | 260 |
| Gel time @ 100 °C, min | 20 | 31 | 35 | 30 | 32 |
| Alkalinity, % | 8.0 | 7.5 | 7.2 | 6.2 | 7.4 |
| Free Formaldehyde, % | 0.20 | 0.31 | 0.33 | 0.70 | 0.53 |
| Resin Type | PF | PPC-20% | PP1-20% | PP1-40% | PP3-40% |
|---|---|---|---|---|---|
| Phenol Substitution, % | - | 20 | 20 | 40 | 40 |
| Samples Pre-treatment | Immersion for 24 h in water at (20 ± 3) °C (pre-treatment 5.1.1-EN314.01) | ||||
| Shear Strength, N/mm2 | 1.62 | 1.51 | 1.39 | 0.70 | 1.66 |
| Standard Deviation, N/mm2 | 0.18 | 0.31 | 0.24 | 0.25 | 0.34 |
| Wood failure, % | 100 | 67 | 82 | 10 | 10 |
| Standard Deviation, % | 4 | 13 | 17 | 8 | 5 |
| Samples Pre-treatment | Immersion for 4 h in boiling water, drying in oven for 16–20 h at (60 ± 3) °C, immersion for 4 h in boiling water, immersion for 1 h in water at (20 ± 3) °C (pre-treatment 5.1.3-EN314.01) | ||||
| Shear Strength, N/mm2 | 1.31 | 1.37 | 1.31 | 1.05 | 1.49 |
| Standard Deviation, N/mm2 | 0.30 | 0.19 | 0.28 | 0.39 | 0.25 |
| Wood failure, % | 100 | 59 | 79 | 4 | 35 |
| Standard Deviation, % | 6 | 16 | 22 | 5 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moutousidis, D.; Karidi, K.; Athanassiadou, E.; Filippi, K.; Giannakis, N.; Koutinas, A.; Stylianou, E. Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing. Adhesives 2025, 1, 13. https://doi.org/10.3390/adhesives1040013
Moutousidis D, Karidi K, Athanassiadou E, Filippi K, Giannakis N, Koutinas A, Stylianou E. Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing. Adhesives. 2025; 1(4):13. https://doi.org/10.3390/adhesives1040013
Chicago/Turabian StyleMoutousidis, Dimitrios, Konstantina Karidi, Eleftheria Athanassiadou, Katiana Filippi, Nikos Giannakis, Apostolos Koutinas, and Eleni Stylianou. 2025. "Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing" Adhesives 1, no. 4: 13. https://doi.org/10.3390/adhesives1040013
APA StyleMoutousidis, D., Karidi, K., Athanassiadou, E., Filippi, K., Giannakis, N., Koutinas, A., & Stylianou, E. (2025). Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing. Adhesives, 1(4), 13. https://doi.org/10.3390/adhesives1040013

