Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bimodal powder size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5459 KiB  
Article
Effect of Heat Treatment on Polymorphism and Particle Size Distribution of Calcium Carbonate Nanoparticle Synthesized via Mechanochemical Process
by Md Nuruzzaman, Yanju Liu, Mohammad Mahmudur Rahman, Saifullah Omar Nasif and Ravi Naidu
Appl. Nano 2025, 6(2), 8; https://doi.org/10.3390/applnano6020008 - 6 May 2025
Viewed by 2375
Abstract
The synthesis of calcium carbonate (CaCO3) nanoparticles has gained an increasing interest due to their improved properties and diverse industrial applications. Among various synthesis techniques, the mechanochemical synthesis process has emerged as a promising route for nano-CaCO3 synthesis. A high-energy [...] Read more.
The synthesis of calcium carbonate (CaCO3) nanoparticles has gained an increasing interest due to their improved properties and diverse industrial applications. Among various synthesis techniques, the mechanochemical synthesis process has emerged as a promising route for nano-CaCO3 synthesis. A high-energy ball mill is required for synthesizing nano-CaCO3, whereas post-milling heat treatment facilitates completing the reaction that remains incomplete during milling. Post-milling heat treatment may also influence the properties of synthesized CaCO3, which has not yet been thoroughly investigated. This study investigated the influence of post-milling heat treatment on the polymorphs, micromorphology, and particle size distribution of CaCO3. The results indicated that the heat treatment of the as-milled powder enhanced the homogeneity of crystal polymorphs while maintaining the particle sizes within the nano-range (<100 nm). X-ray diffraction (XRD) analysis identified two polymorphs (vaterite and calcite) in samples obtained from different milling intensities. However, after heat treatment, all vaterite transformed into calcite. A bimodal particle size distribution was observed in CaCO3 nanoparticles and was influenced by both the milling and heating intensities. It was observed that 60 min heat applied to 30 min as-milled powder was enough to produce nano-CaCO3 (<50 nm) where the percentage of larger particles (<250 nm) became negligible (~1%). Micromorphology images confirmed the transformation of crystal polymorphs and the reduction in particle size. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

12 pages, 10766 KiB  
Article
Molecular Dynamics-Based Two-Dimensional Simulation of Powder Bed Additive Manufacturing Process for Unimodal and Bimodal Systems
by Yeasir Mohammad Akib, Ehsan Marzbanrad and Farid Ahmed
J. Manuf. Mater. Process. 2025, 9(1), 9; https://doi.org/10.3390/jmmp9010009 - 1 Jan 2025
Viewed by 1267
Abstract
The trend of adapting powder bed fusion (PBF) for product manufacturing continues to grow as this process is highly capable of producing functional 3D components with micro-scale precision. The powder bed’s properties (e.g., powder packing, material properties, flowability, etc.) and thermal energy deposition [...] Read more.
The trend of adapting powder bed fusion (PBF) for product manufacturing continues to grow as this process is highly capable of producing functional 3D components with micro-scale precision. The powder bed’s properties (e.g., powder packing, material properties, flowability, etc.) and thermal energy deposition heavily influence the build quality in the PBF process. The packing density in the powder bed dictates the bulk powder behavior and in-process performance and, therefore, significantly impacts the mechanical and physical properties of the printed components. Numerical modeling of the powder bed process helps to understand the powder spreading process and predict experimental outcomes. A two-dimensional powder bed was developed in this work using the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) package to better understand the effect of bimodal and unimodal particle size distribution on powder bed packing. A cloud-based pouring of powders with varying volume fractions and different initialization velocities was adopted, where a blade-type recoater was used to spread the powders. The packing fraction was investigated for both bimodal and unimodal systems. The simulation results showed that the average packing fraction for bimodal and unimodal systems was 76.53% and 71.56%, respectively. A particle-size distribution-based spatially varying powder agglomeration was observed in the simulated powder bed. Powder segregation was also studied in this work, and it appeared less likely in the unimodal system compared to the bimodal system with a higher percentage of bigger particles. Full article
Show Figures

Figure 1

20 pages, 4740 KiB  
Article
Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles
by Mikhail Sergeevich Lebedev, Vladimir Vasilevich Promakhov, Lyudmila Yurievna Ivanova, Natalya Valentinovna Svarovskaya, Marina Ivanovna Kozhukhova and Marat Izralievich Lerner
Metals 2024, 14(11), 1308; https://doi.org/10.3390/met14111308 - 20 Nov 2024
Cited by 2 | Viewed by 1064
Abstract
This article researches the effect of ultrafine (submicron) tungsten carbide powder addition on the microstructure and mechanical properties of WC-10Co cemented carbide produced by the extrusion of a highly filled polymer. This addition aims to develop a material with a good combination of [...] Read more.
This article researches the effect of ultrafine (submicron) tungsten carbide powder addition on the microstructure and mechanical properties of WC-10Co cemented carbide produced by the extrusion of a highly filled polymer. This addition aims to develop a material with a good combination of toughness, hardness, and yield strength. The results demonstrate that increasing the ratio between ultrafine and micron WC particles from 0/100 to 45/55 in the initial powder results in successive decreases in average grain size from 2.61 µm to 1.75 µm. When 45% of ultrafine powder is introduced into the mixture, a high number of fine tungsten carbide grains is produced. This promotes inter-grain contact and reduces the free path of the binder phase, which results in a more rigid structure and in the material becoming more brittle. The best mechanical characteristics are achieved in WC-10Co cemented carbide with 15% content of ultrafine powder in the total weight of WC. Here, a microstructure with a bimodal distribution of tungsten carbide grains in a virtually non-intermittent cobalt phase was formed. This allowed us to achieve a compressive strength of 2449 MPa at the deformation of 6.69%, while the modulus of elasticity was 38.8 GPa. The results indicate a good combination of strength and ductility properties in the developed cemented carbide. Full article
Show Figures

Figure 1

17 pages, 7624 KiB  
Article
Controlled Size Characterization Process for In-Situ TiB2 Particles from Al Matrix Composites Using Nanoparticle Size Analysis
by Mingliang Wang, Qian Wang, Zeyu Bian, Siyi Chen, Yue Gong, Cunjuan Xia, Dong Chen and Haowei Wang
Materials 2024, 17(9), 2052; https://doi.org/10.3390/ma17092052 - 27 Apr 2024
Cited by 2 | Viewed by 1188
Abstract
The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB [...] Read more.
The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB2 particles, a controlled size characterization process has been explored. First, the extraction and drying processes for TiB2 particles were optimized. In the extraction process, alternated applications of magnetic stirring and normal ultrasound treatments were proven to accelerate the dissolution of the Al matrix in HCl solution. Furthermore, freeze-drying was found to minimize the agglomeration tendency among TiB2 particles, facilitating the acquisition of pure powders. Such powders were quantitatively made into an initial TiB2 suspension. Second, the chemical and physical dispersion technologies involved in initial TiB2 suspension were put into focus. Chemically, adding PEI (M.W. 10000) at a ratio of mPEI/mTiB2 = 1/30 into the initial suspension can greatly improve the degree of TiB2 dispersion. Physically, the optimum duration for high-energy ultrasound application to achieve TiB2 dispersion was 10 min. Overall, the corresponding underlying dispersion mechanisms were discussed in detail. With the combination of these chemical and physical dispersion specifications for TiB2 suspension, the bimodal size distribution of TiB2 was able to be characterized by NSA for the first time, and its number-average diameter was 111 ± 6 nm, which was reduced by 59.8% over the initial suspension. Indeed, the small-sized and large-sized peaks of the TiB2 particles characterized by NSA mostly match the results obtained from transmission electron microscopy and scanning electron microscopy, respectively. Full article
(This article belongs to the Special Issue Advances in Light Alloys and Related Composites)
Show Figures

Figure 1

20 pages, 12339 KiB  
Article
Influence of Various Heat Treatments on Microstructures and Mechanical Properties of GH4099 Superalloy Produced by Laser Powder Bed Fusion
by Jiahao Liu, Yonghui Wang, Wenqian Guo, Linshan Wang, Shaoming Zhang and Qiang Hu
Materials 2024, 17(5), 1084; https://doi.org/10.3390/ma17051084 - 27 Feb 2024
Cited by 3 | Viewed by 1955
Abstract
The microstructures and mechanical properties of a γ′-strengthened nickel-based superalloy, GH4099, produced by laser powder bed fusion, at room temperature and 900 °C are investigated, followed by three various heat treatments. The as-built (AB) alloy consists of cellular/dendrite substructures within columnar grains aligning [...] Read more.
The microstructures and mechanical properties of a γ′-strengthened nickel-based superalloy, GH4099, produced by laser powder bed fusion, at room temperature and 900 °C are investigated, followed by three various heat treatments. The as-built (AB) alloy consists of cellular/dendrite substructures within columnar grains aligning in <100> crystal orientation. No γ′ phase is observed in the AB sample due to the relatively low content of Al +Ti. Following the standard solid solution treatment, the molten pool boundaries and cellular/dendrite substructures disappear, whilst the columnar grains remain. The transformation of columnar grains to equiaxed grains occurs through the primary solid solution treatment due to the recovery and recrystallization process. After aging at 850 °C for 480 min, the carbides in the three samples distributed at grain boundaries and within grains and the spherical γ′ phase whose size is about 43 nm ± 16 nm develop in the standard solid solution + aging and primary solid solution + aging samples (SA and PA samples) while the bimodal size of cubic (181 nm ± 85 nm) and spherical (43 nm ± 16 nm) γ′ precipitates is presented in the primary solid solution + secondary solid solution + aging sample (PSA samples). The uniaxial tensile tests are carried out at room temperature (RT) and 900 °C. The AB sample has the best RT ductility (~51% of elongation and ~67% of area reduction). Following the three heat treatments, the samples all acquire excellent RT tensile properties (>750 MPa of yield strengths and >32% of elongations). However, clear ductility dips and intergranular fracture modes occur during the 900 °C tensile tests, which could be related to carbide distribution and a change in the deformation mechanism. Full article
Show Figures

Figure 1

16 pages, 6059 KiB  
Article
Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters
by Dorota Ogrodowska, Małgorzata Tańska, Paweł Banaszczyk, Grzegorz Dąbrowski, Sylwester Czaplicki, Marta Wachowicz and Iwona Zofia Konopka
Appl. Sci. 2024, 14(4), 1372; https://doi.org/10.3390/app14041372 - 7 Feb 2024
Cited by 1 | Viewed by 1857
Abstract
The aim of the study was to compare the encapsulation of linseed oil and its ethyl esters using two coating materials (maltodextrin with whey protein concentrate (WPC) vs. maltodextrin with gum arabic) and two drying methods (spray-drying vs. freeze-drying) to obtain powders with [...] Read more.
The aim of the study was to compare the encapsulation of linseed oil and its ethyl esters using two coating materials (maltodextrin with whey protein concentrate (WPC) vs. maltodextrin with gum arabic) and two drying methods (spray-drying vs. freeze-drying) to obtain powders with the highest oxidative stability. A comparison was made based on the properties of emulsions (morphology, particle size distribution, and stability) and powders (morphology, physicochemical properties, fatty acid composition, and oxidative stability). The powder’s oxidative stability was determined based on the Rancimat protocol. The most uniform distribution of oil droplets in prepared emulsions was stated for ethyl esters in a mixture of maltodextrin and gum arabic. Emulsions with WPC had a bimodal character, while those with gum arabic had a monomodal character. Gum arabic promoted emulsion stability, while in samples containing WPC, sedimentation and creaming processes were more visible. Powders obtained using spray-drying had a spherical shape, while those obtained by freeze-drying were similar to flakes. Although encapsulation efficiency was the highest for freeze-dried powders made of linseed ethyl esters with gum arabic, the highest oxidative stability was stated for powders made by spray-drying with WPC as wall material (independently of linseed sample form). These powders can be easily applied to various food matrices, increasing the share of valuable α-linolenic acid. Full article
Show Figures

Figure 1

17 pages, 4460 KiB  
Article
Particle Size Distributions and Extinction Coefficients of Aerosol Particles in Land Battlefield Environments
by Lijuan Gao, Huimin Chen, Guang Chen and Jiahao Deng
Remote Sens. 2023, 15(20), 5038; https://doi.org/10.3390/rs15205038 - 20 Oct 2023
Cited by 3 | Viewed by 2308
Abstract
In land battlefield environments, aerosol particles can cause laser beams to undergo attenuation, thus deteriorating the operational performance of military laser devices. The particle size distribution (PSD) and extinction coefficient are key optical properties for assessing the attenuation characteristics of laser beams caused [...] Read more.
In land battlefield environments, aerosol particles can cause laser beams to undergo attenuation, thus deteriorating the operational performance of military laser devices. The particle size distribution (PSD) and extinction coefficient are key optical properties for assessing the attenuation characteristics of laser beams caused by aerosol particles. In this study, we employed the laser diffraction method to measure the PSDs of graphite smoke screen, copper powder smoke screen, iron powder smoke screen, ground dust, and soil explosion dust. We evaluated the goodness of fit of six common unimodal PSD functions and a bimodal lognormal PSD function employed for fitting these aerosol particles using the root mean square error (RMSE) and adjusted R2, and selected the optimal PSD function to evaluate their extinction coefficients in the laser wavelength range of 0.249~12 μm. The results showed that smoke screens, ground dust, and soil explosion dust exhibited particle size ranges of 0.7~50 µm, 1~400 µm, and 1.7~800 μm, respectively. The lognormal distribution had the best goodness of fit for fitting the PSDs of these aerosol particles in the six unimodal PSD functions, followed by the gamma and Rosin–Rammler distributions. For the bimodal aerosol particles with a lower span, the bimodal lognormal PSD functions exhibited the best goodness of fit. The graphite smoke screen exhibited the highest extinction coefficient, followed by the copper and iron powder smoke screens. In contrast, the ground dust and soil explosion dust exhibited the lowest extinction coefficients, reaching their minimum values at a wavelength of approximately 8.2 μm. This study provides a basis for analyzing and improving the detection and recognition performance of lasers in land battlefield environments. Full article
Show Figures

Figure 1

16 pages, 3352 KiB  
Article
Characterization of South African Bentonite and Kaolin Clays
by Dipuo P. Kgabi and Abayneh A. Ambushe
Sustainability 2023, 15(17), 12679; https://doi.org/10.3390/su151712679 - 22 Aug 2023
Cited by 19 | Viewed by 4704
Abstract
The present study aimed to investigate the mineralogical and morphological properties of two South African clays, namely bentonite and kaolin. These clays are mined in specific regions of the country but have not been fully characterized in terms of their properties for potential [...] Read more.
The present study aimed to investigate the mineralogical and morphological properties of two South African clays, namely bentonite and kaolin. These clays are mined in specific regions of the country but have not been fully characterized in terms of their properties for potential application in a number of industries. Bentonite was found to have a larger specific surface area, pore size, and more interchangeable cations than kaolin. The bentonite was also identified as Na-bentonite due to the huge Na content present in the clay. The powder X-ray diffraction (PXRD) patterns revealed that both clays are crystalline, together with the Fourier-transform infrared (FTIR) spectrophotometer results; presumably, some impurities of quartz could be present in the clay materials. The most prevalent functional groups present include Al-OH, Si-O-Mg, Si-O, and Si-O-Al groups. The surface charge of bentonite was consistently negative across all pH values, indicating its potential for adsorption applications. On the other hand, kaolin exhibited a negative charge at pH values greater than 2.4. The scanning electron microscopy (SEM) images provided visual evidence of the presence of pores in the clay structures, which supported the Brunauer–Emmett–Teller (BET) results classifying both bentonite and kaolin as mesoporous and macroporous materials. The particle size analysis revealed a broad distribution for bentonite and a bimodal distribution for kaolin. Overall, the clays revealed interesting features that can be useful for application in several industries, for example, in the treatment of wastewater. Further research and development can explore their potential to address environmental challenges, particularly the application of bentonite and kaolin in water treatment processes to remove toxic metal ions. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

11 pages, 3905 KiB  
Article
The Influence of Powder Particle Size Distributions on Mechanical Properties of Alloy 718 by Laser Powder Bed Fusion
by Benjamin Thomas Stegman, Jack Lopez, William Jarosinski, Haiyan Wang and Xinghang Zhang
Metals 2023, 13(8), 1384; https://doi.org/10.3390/met13081384 - 1 Aug 2023
Cited by 4 | Viewed by 3806
Abstract
Currently, metallic powders for laser powder bed fusion (LPBF) primarily come in two commercially available powder size distributions (PSDs): 15+/45− for non-reactive powders and 15+/63− for reactive powders. These powders are generally produced via gas atomization processes that create highly spherical particles with [...] Read more.
Currently, metallic powders for laser powder bed fusion (LPBF) primarily come in two commercially available powder size distributions (PSDs): 15+/45− for non-reactive powders and 15+/63− for reactive powders. These powders are generally produced via gas atomization processes that create highly spherical particles with a Gaussian PSD. Because of the standard deviation within a Gaussian distribution, only small portions of the total product are used for LPBF applications. This screening process makes the other particle sizes a waste product and, thus, increases processing costs. The non-reactive 718 powder was printed with both the typical PSD of 15+/45− and a wider bimodal experimental PSD. Compared to conventional 718, the 718 alloys with bimodal PSD shows less than a 0.2% difference in density, and insignificant change in mechanical behavior. Electron backscattered diffraction studies revealed that grain sizes and morphology were similar between the two sample sets, but bimodal 718 alloy has a slightly greater degree of large grains. The study suggests that particles with wide or bimodal size distributions show promise in producing equivalent high-quality products without sacrificing mechanical properties. Full article
Show Figures

Figure 1

19 pages, 10837 KiB  
Article
Towards Balanced Strength and Plasticity in Graphene-Nickel Composites: The Role of Graphene, Bimodal Metal Powder and Processing Conditions
by Olga Yu. Kurapova, Ivan V. Smirnov, Ivan Yu. Archakov, Chao Chen and Vladimir G. Konakov
Metals 2023, 13(6), 1037; https://doi.org/10.3390/met13061037 - 29 May 2023
Cited by 1 | Viewed by 2061
Abstract
Due to their higher strength and lighter weight compared to conventional metals, graphene-nickel (Gr-Ni) composites have recently gained growing interest for use in the automotive and aerospace industries. Homogeneous Gr dispersion, the metal powder dispersity and processing conditions play a key role in [...] Read more.
Due to their higher strength and lighter weight compared to conventional metals, graphene-nickel (Gr-Ni) composites have recently gained growing interest for use in the automotive and aerospace industries. Homogeneous Gr dispersion, the metal powder dispersity and processing conditions play a key role in obtaining the desired grain size distribution, an amount of high angle grain boundaries thus reaching the desired balance between strength and plasticity of the composite. Here, we report an approach to fabricating graphene-nickel composites with balanced strength and ductility through the microstructure optimization of the nickel matrix. A graphite platelets (GP) content of 0.1–1 wt.% was used for the optimization of the mechanical properties of the material. In situ, conversion GP-to-Gr was performed during the milling step. This paper discusses the effect of bimodal nano- and micro-sized Ni (nNi and mNi) on the mechanical properties and microstructure of Gr-Ni composites synthesized using a modified powder metallurgy approach. Specimens with varied nNi:mNi ratios were produced by two-step compaction and investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, electron back-scattered diffraction (EBSD) and nanoindentation. The best combination of ultimate tensile strength (UTS), yield limit (YL), elongation and hardness were obtained for 100nNi and 50nNi matrices, and the best composites were those with 0.1% graphene. The addition of more than 0.5 wt.% GP to the nickel matrix induces the fracture mechanism change from tensile to brittle fracture. Dedicated to the 300th anniversary of the St. Petersburg University Foundation. Full article
(This article belongs to the Special Issue Ultrafine-Grained Metals and Alloys)
Show Figures

Figure 1

12 pages, 4461 KiB  
Article
Effect of Solution Treatment on Microstructure Evolution of a Powder Metallurgy Nickel Based Superalloy with Incomplete Dynamic Recrystallization Microstructure
by Yanhui Liu, Miao Wang, Pengwei Sun, Guang Yang, Wenjie Song and Xiaofeng Wang
Metals 2023, 13(2), 239; https://doi.org/10.3390/met13020239 - 27 Jan 2023
Cited by 5 | Viewed by 2956
Abstract
In this paper, the powder metallurgy (P/M) Ni-based superalloy FGH4096 with an incomplete dynamic recrystallization structure was treated by a solution treatment at different temperatures, cooling methods, and holding times. The size, morphology, and distribution of grains and γ′ precipitates were characterized by [...] Read more.
In this paper, the powder metallurgy (P/M) Ni-based superalloy FGH4096 with an incomplete dynamic recrystallization structure was treated by a solution treatment at different temperatures, cooling methods, and holding times. The size, morphology, and distribution of grains and γ′ precipitates were characterized by an optical microscope (OM) and a scanning electron microscope (SEM). Research results showed that with the increase of solution temperature from 1060 °C to 1100 °C, the degree of recrystallization increased continuously, the distribution of grain became uniform, and a large number of annealing twins were found. At the same time, the degree of redissolution of the primary γ′ precipitates at the grain boundary increased, and the size of secondary γ′ phase reprecipitated within the grain decreased. The morphology of the secondary γ′ precipitates is mainly spherical with a single distribution under air cooling (AC), while the morphology is near-spherical, cuboids, octets, petaloid, and dendrites with a bimodal distribution under furnace cooling (FC). The size of the γ′ precipitates decreased and the volume fraction increased with the extension of holding time at a higher solution temperature (1100 °C). Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

13 pages, 3489 KiB  
Article
Effect of Emulsion Particle Size on the Encapsulation Behavior and Oxidative Stability of Spray Microencapsulated Sweet Orange Oil (Citrus aurantium var. dulcis)
by Qun Peng, Ziyi Meng, Ziyang Luo, Hanying Duan, Hosahalli S. Ramaswamy and Chao Wang
Foods 2023, 12(1), 116; https://doi.org/10.3390/foods12010116 - 26 Dec 2022
Cited by 13 | Viewed by 3637
Abstract
Three different feed emulsions of different particle sizes were mixed with a modified starch and maltodextrin and spray dried to make a large (LP), small (SP), and nano-size encapsulated powder (NP), respectively. Emulsion size, oil content, loading capacity (LC), encapsulation efficiency (EE), water [...] Read more.
Three different feed emulsions of different particle sizes were mixed with a modified starch and maltodextrin and spray dried to make a large (LP), small (SP), and nano-size encapsulated powder (NP), respectively. Emulsion size, oil content, loading capacity (LC), encapsulation efficiency (EE), water content, aw, scanning electron microscopy (SEM), glass transition temperature (Tg), as well as d-limonene release characteristic and limonene oxide formation rate during 37 °C and various aw storage were determined. With the increase of the feed emulsion size, the reconstituted emulsion size of the LP tended to increase and change to a bimodal distribution. The surface oil content increased with the increasing size of the reconstituted emulsion, and the opposite was true for EE. The smaller the reconstituted emulsion size, the higher Tg during a low aw condition. The Tg of the LP, SP and NP were 62, 88, and 100 °C, respectively, and NP > SP > LP. The release and the oxidative rate of d-limonene was the lowest for the NP and then increased for the SP and LP. The release and oxidative rates increased with the elevation of aw and peaked at 0.33. The powder surface morphological structure was intact, the spray-dried powder was more stable, and microstructure changed from a glass state to a rubbery state during storage. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

12 pages, 4604 KiB  
Article
Effects of Scanning Strategy on the Microstructure and Mechanical Properties of Sc-Zr-Modified Al–Mg Alloy Manufactured by Laser Powder Bed Fusion
by Yusufu Ekubaru, Ozkan Gokcekaya and Takayoshi Nakano
Crystals 2022, 12(10), 1348; https://doi.org/10.3390/cryst12101348 - 24 Sep 2022
Cited by 7 | Viewed by 2854
Abstract
Laser powder bed fusion (LPBF)-manufactured Sc-Zr-modified Al–Mg alloy (Scalmalloy) has a bimodal microstructure comprising coarse grains (CGs) in the hot melt pool area and ultrafine grains (UFGs) along the melt pool boundaries (MPBs). Owing to these microstructural features, an increase in the MPBs [...] Read more.
Laser powder bed fusion (LPBF)-manufactured Sc-Zr-modified Al–Mg alloy (Scalmalloy) has a bimodal microstructure comprising coarse grains (CGs) in the hot melt pool area and ultrafine grains (UFGs) along the melt pool boundaries (MPBs). Owing to these microstructural features, an increase in the MPBs can increase the UFGs, leading to enhanced mechanical properties. However, the effects of the LPBF process parameters, especially the laser scan strategy, on the microstructure and mechanical properties of Scalmalloy are still unclear. Here, a comparative study was conducted between X- and XY-mode laser scan strategies, with the same volumetric energy, based on the melt pool configuration, grain size distribution, and precipitation behaviors. The X-scan exhibited mechanical properties superior to those exhibited by the XY-scan, attributed to the higher volume fraction (VF) of UFGs. An increase in the VF of UFGs was observed, from 46% for the XY-scan to 56% for the X-scan, owing to an increase in MPBs. Consequently, the tensile strength of the X-scan was higher than that of the XY-scan. The maximum yield strength (271.5 ± 2.7 MPa) was obtained for the X-scan strategy, which was approximately twice that obtained for casting. The results of this study demonstrate that the microstructure and mechanical properties of Scalmalloy can be successfully tuned by a laser scanning strategy. Full article
Show Figures

Figure 1

13 pages, 3012 KiB  
Article
Bimodal-Structured 0.9KNbO3-0.1BaTiO3 Solid Solutions with Highly Enhanced Electrocaloric Effect at Room Temperature
by Hongfang Zhang, Liqiang Liu, Ju Gao, K. W. Kwok, Sheng-Guo Lu, Ling-Bing Kong, Biaolin Peng and Fang Hou
Nanomaterials 2022, 12(15), 2674; https://doi.org/10.3390/nano12152674 - 4 Aug 2022
Viewed by 1867
Abstract
0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, [...] Read more.
0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, the extra-large grains (~10–50 μm) were evolved from the micron-sized filler powders, and the fine grains (~0.05–0.35 μm) were derived from the sol precursor matrix. The 0.9KNbO3-0.1BaTiO3 ceramics exhibit relaxor-like behavior with a diffused phase transition near room temperature, as confirmed by the presence of the polar nanodomain regions revealed through high resolution transmission electron microscope analyses. A large room-temperature electrocaloric effect (ECE) was observed, with an adiabatic temperature drop (ΔT) of 1.5 K, an isothermal entropy change (ΔS) of 2.48 J·kg−1·K−1, and high ECE strengths of |ΔT/ΔE| = 1.50 × 10−6 K·m·V−1 and ΔS/ΔE = 2.48 × 10−6 J·m·kg−1·K−1·V−1 (directly measured at E = 1.0 MV·m−1). These greatly enhanced ECEs demonstrate that our simple IAGG method is highly appreciated for synthesizing high-performance electrocaloric materials for efficient cooling devices. Full article
Show Figures

Graphical abstract

15 pages, 48227 KiB  
Article
Synthesis of Ti–Al Bimodal Powder for High Flowability Feedstock by Electrical Explosion of Wires
by Marat Lerner, Alexander Pervikov, Elena Glazkova, Nikolay Rodkevich, Konstantin Suliz, Sergey Kazantsev, Nikita Toropkov and Olga Bakina
Metals 2022, 12(3), 478; https://doi.org/10.3390/met12030478 - 11 Mar 2022
Cited by 4 | Viewed by 2152
Abstract
In this research, Ti–Al bimodal powders were produced by simultaneous electrical explosion of titanium and aluminum wires. The resulting powders were used to prepare powder–polymer feedstocks. Material characterization involving X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy [...] Read more.
In this research, Ti–Al bimodal powders were produced by simultaneous electrical explosion of titanium and aluminum wires. The resulting powders were used to prepare powder–polymer feedstocks. Material characterization involving X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and melt flow index (MFI) determination were carried out to characterize bimodal powders obtained and evaluate the influence of the powder composition on the feedstock flowability. The bimodal distribution of particles in powders has been found to be achieved at a current density of 1.2 × 107 A/cm2 (the rate of energy input is 56.5 J/μs). An increase in the current density to 1.6 × 107 A/cm2 leads to a decrease in the content of micron particles and turning into a monomodal particle size distribution. The use of bimodal powders for powder–polymer feedstocks allows to achieve higher MFI values compared with monomodal powders. In addition, the use of electroexplosive synthesis of bimodal powders makes it possible to achieve a homogeneous distribution of micro- and nanoparticles in the feedstock. Full article
Show Figures

Figure 1

Back to TopTop