Characterization of South African Bentonite and Kaolin Clays
Abstract
:1. Introduction
2. Methods and Materials
2.1. Clay Material
2.2. Instrumentation and Equipment
2.3. Sample Preparation and Analysis Procedures
2.3.1. Scanning Electron Microscopy
2.3.2. High-Resolution Transmission Electron Microscopy
2.3.3. Powder X-ray Powder Diffraction
2.3.4. Fourier-Transform Infrared Spectroscopy
2.3.5. Thermal Gravimetric Analysis
2.3.6. Brunauer–Emmett–Teller
2.3.7. Zeta Potential and Particle Size
2.3.8. X-ray Fluorescence
3. Results and Discussion
3.1. SEM and TEM Characterization
3.2. PXRD Characterization
3.3. FTIR Spectroscopy Characterization
3.4. XRF Characterization
3.5. EDS Analysis
3.6. BET Characterization
3.7. TGA Characterization
3.8. Zeta Potential
3.9. Particle Size Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ochieng, O. Characterization and Classification of Clay Minerals for Potential Applications in Rugi Ward, Kenya. Afr. J. Environ. Sci. Technol. 2016, 10, 415–431. [Google Scholar] [CrossRef]
- Sarkar, B.; Rusmin, R.; Ugochukwu, U.C.; Mukhopadhyay, R.; Manjaiah, K.M. Modified Clay Minerals for Environmental Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128146187. [Google Scholar]
- Biswas, B.; Juhasz, A.L.; Mahmudur Rahman, M.; Naidu, R. Modified Clays Alter Diversity and Respiration Profile of Microorganisms in Long-Term Hydrocarbon and Metal Co-Contaminated Soil. Microb. Biotechnol. 2020, 13, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay Mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Kadİr, S.; Külah, T.; Erkoyun, H.; Christidis, G.E.; Arslanyan, R. Geology, Mineralogy, Geochemistry, and Genesis of Bentonite Deposits in Miocene Volcano–Sedimentary Units of the Balikesir Region, Western Anatolia, Turkey. Clays Clay Miner. 2019, 67, 371–398. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Bioremediation of PAHs and VOCs: Advances in Clay Mineral-Microbial Interaction. Environ. Int. 2015, 85, 168–181. [Google Scholar] [CrossRef]
- Ahmad, S.; Yasin, K. Removal of Organic Pollutants by Using Surfactant Modified Bentonite. J. Chem. Soc. Pak. 2018, 40, 447–456. [Google Scholar]
- Sun, L.; Ling, C.Y.; Lavikainen, L.P.; Hirvi, J.T.; Kasa, S.; Pakkanen, T.A. Influence of Layer Charge and Charge Location on the Swelling Pressure of Dioctahedral Smectites. Chem. Phys. 2016, 473, 40–45. [Google Scholar] [CrossRef]
- Idoko, O.; Ajana, M.O.; Gushit, J.S.; Jock, A. Adsorption of Heavy Metals (Lead Ion) from Industrial Waste Water Using Acidified Bentonite Clay. Int. J. Eng. Appl. Sci. Technol. 2019, 04, 394–401. [Google Scholar] [CrossRef]
- Muhammad, N.; Siddiqua, S. Calcium Bentonite vs. Sodium Bentonite: The Potential of Calcium Bentonite for Soil Foundation. Mater. Today Proc. 2022, 48, 822–827. [Google Scholar] [CrossRef]
- Barbooti, M.M. Simultaneous Removal of Chromium and Lead from Water by Sorption on Iraqi Montmorillonite. J. Environ. Prot. 2015, 6, 237–249. [Google Scholar] [CrossRef]
- Hernández, A.C.; Sánchez-Espejo, R.; Meléndez, W.; González, G.; López-Galindo, A.; Viseras, C. Characterization of Venezuelan Kaolins as Health Care Ingredients. Appl. Clay Sci. 2019, 175, 30–39. [Google Scholar] [CrossRef]
- Akisanmi, P.; Akisanmi, P. Classification of Clay Minerals. Mineralogy 2022, 3–9. [Google Scholar] [CrossRef]
- Birnin Yauri, U.A.; Faruq, U.Z.; Noma, S.S.; Sharif, V. Characterization of Dabagi Clay Deposit for Its Ceramics Potential. Afr. J. Environ. Sci. Technol. 2014, 8, 455–459. [Google Scholar] [CrossRef]
- da Silva Favero, J.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Veras, D.G.; Dani, N.; Mexias, A.S.; Bergmann, C.P. Evaluation and Characterization of Melo Bentonite Clay for Cosmetic Applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
- Tadesse, S.H. Application of Ethiopian Bentonite for Water Treatment Containing Zinc. Emerg. Contam. 2022, 8, 113–122. [Google Scholar] [CrossRef]
- Wahyuni, N.; Zissis, G.; Mouloungui, Z. Characterization of Acid Sites on Modified Kaolinite by FTIR Spectra of Pyridine Adsorbed. AIP Conf. Proc. 2018, 2026, 020042. [Google Scholar] [CrossRef]
- Liu, X.; Hicher, P.; Muresan, B.; Saiyouri, N.; Hicher, P.Y. Heavy Metal Retention Properties of Kaolin and Bentonite in a Wide Range of Concentration and Different PH Conditions. Appl. Clay Sci. 2016, 119, 365–374. [Google Scholar] [CrossRef]
- Mulaba-Bafubiandi, A.F.; Hlekane, P.X.D.A. Characterisation of Traditional Ceramic Materials Used in the Sotho Culture (South Africa) for Clay Pot Making. In Proceedings of the SAIP 2015, Port Elizabeth, South Africa, 29 June–3 July 2015; pp. 79–83. [Google Scholar]
- Diko-Makia, L.; Ligege, R. Composition and Technological Properties of Clays for Structural Ceramics in Limpopo (South Africa). Minerals 2020, 10, 700. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Coetzee, L.L.; Puka, R.; Mubenga, S. Characterisation of Selected South African Clays for Defluoridation of Natural Waters. Water SA 2003, 29, 331–338. [Google Scholar] [CrossRef]
- Morekhure-Mphahlele, R.; Focke, W.W.; Grote, W. Characterisation of Vumba and Ubumba Clays Used for Cosmetic Purposes. S. Afr. J. Sci. 2017, 113, 2–6. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Refay, N.M.; El-Sherbeeny, A.M.; Mostafa, A.M.; Elmeligy, M.A. Facile Synthesis of Bentonite/Biopolymer Composites as Low-Cost Carriers for 5-Fluorouracil Drug; Equilibrium Studies and Pharmacokinetic Behavior. Int. J. Biol. Macromol. 2019, 141, 721–731. [Google Scholar] [CrossRef] [PubMed]
- García-Romero, E.; Suárez, M. A Structure-Based Argument for Non-Classical Crystal Growth in Natural Clay Minerals. Miner. Mag. 2018, 82, 171–180. [Google Scholar] [CrossRef]
- Pan, X.; Li, S.; Li, Y.; Guo, P.; Zhao, X.; Cai, Y. Resource, Characteristic, Purification and Application of Quartz: A Review. Miner. Eng. 2022, 183, 107600. [Google Scholar] [CrossRef]
- Gan, C.; Hu, H.; Meng, Z.; Zhu, X.; Gu, R.; Wu, Z.; Wang, H.; Wang, D.; Gan, H.; Wang, J.; et al. Characterization and Hemostatic Potential of Two Kaolins from Southern China. Molecules 2019, 24, 3160. [Google Scholar] [CrossRef] [PubMed]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of Activated Bentonite Clay Mineral and the Mechanisms Underlying Its Sorption for Ciprofloxacin from Aqueous Solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef]
- Huggett, J.M. Clay Minerals. Ref. Modul. Earth Syst. Environ. Sci. 2015, 40, 358–365. [Google Scholar] [CrossRef]
- Zhirong, L.; Azhar Uddin, M.; Zhanxue, S. FT-IR and XRD Analysis of Natural Na-Bentonite and Cu(II)-Loaded Na-Bentonite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1013–1016. [Google Scholar] [CrossRef]
- Chandra, U.; Pandey, K.K.; Parthasarathy, G.; Sharma, S.M. High-Pressure Investigations on Piplia Kalan Eucrite Meteorite Using in-Situ X-Ray Diffraction and 57Fe Mössbauer Spectroscopic Technique up to 16 GPa. Geosci. Front. 2016, 7, 265–271. [Google Scholar] [CrossRef]
- Caponi, N.; Carvalho Collazzo, G.; Luiz Jahn, S.; Dotto, G.L.; Mazutti, M.A.; Foletto, E.L. Use of Brazilian Kaolin as a Potential Low-Cost Adsorbent for the Removal of Malachite Green from Colored Effluents. Mater. Res. 2017, 20, 14–22. [Google Scholar] [CrossRef]
- Ravindra Reddy, T.; Kaneko, S.; Endo, T.; Lakshmi Reddy, S. Spectroscopic Characterization of Bentonite. J. Lasers Opt. Photonics 2017, 4, 171. [Google Scholar] [CrossRef]
- Al-Essa, K. Activation of Jordanian Bentonite by Hydrochloric Acid and Its Potential for Olive Mill Wastewater Enhanced Treatment. J. Chem. 2018, 2018, 8385692. [Google Scholar] [CrossRef]
- Al-Essa, K.; Al-Essa, E.M. Effective Approach of Activated Jordanian Bentonite by Sodium Ions for Total Phenolic Compounds Removal from Olive Mill Wastewater. J. Chem. 2021, 2021, 7405238. [Google Scholar] [CrossRef]
- Hebbar, R.S.; Isloor, A.M.; Prabhu, B.; Inamuddin; Asiri, A.M.; Ismail, A.F. Removal of Metal Ions and Humic Acids through Polyetherimide Membrane with Grafted Bentonite Clay. Sci. Rep. 2018, 8, 4665. [Google Scholar] [CrossRef]
- El-Mahalaway, A.M.; El-Azab, N.E.; Abdrabbo, M.; Said, O.M.; Sabry, D. Sorption Characteristics of Iron, Fluoride and Phosphate from Wastewater of Phosphate Fertilizer Plant Using Natural Sodium Bentonite. J. Membr. Sci. Technol. 2018, 8, 3. [Google Scholar] [CrossRef]
- Kumar, A.; Lingfa, P. Sodium Bentonite and Kaolin Clays: Comparative Study on Their FT-IR, XRF, and XRD. Mater. Today Proc. 2020, 22, 737–742. [Google Scholar] [CrossRef]
- Hedfi, I.; Hamdi, N.; Srasra, E.; Rodriguez, M.A. The Preparation of Micro-Porous Membrane from a Tunisian Kaolin. Appl. Clay Sci. 2014, 101, 574–578. [Google Scholar] [CrossRef]
- Oumar, K.O.; Gilbert François, N.N.; Bertrand, M.M.; Nathanael, T.; Constantin, B.E.; Simon, M.J.; Jacques, E. Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon, Central Africa. Appl. Sci. 2022, 12, 9143. [Google Scholar] [CrossRef]
- Pierre, T.J.; Pierre, N.J.; Achile, B.M.; Djakba, B.S.; Lucien, B.D. Morphological, Physico Chemical, Mineralogical and Geochemical Properties of Vertisols Used in Bricks Production in the Logone Valley (Cameroon, Central Africa). Int. Res. J. Geol. Min. 2015, 5, 20–30. [Google Scholar] [CrossRef]
- Tsozué, D.; Nzeugang, A.N.; Mache, J.R.; Loweh, S.; Fagel, N. Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. J. Build. Eng. 2017, 11, 17–24. [Google Scholar] [CrossRef]
- Ravisankar, R.; Naseerutheen, A.; Rajalakshmi, A.; Raja Annamalai, G.; Chandrasekaran, A. Application of Thermogravimetry–Differential Thermal Analysis (TG–DTA) Technique to Study the Ancient Potteries from Vellore Dist, Tamilnadu, India. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 201–208. [Google Scholar] [CrossRef]
- Hmeid, H.A.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; Azizi, G. Experimental Design and Modeling of Removal of Organic Matter and Nutrients in the OMW by Calcium Bentonite. E3S Web Conf. 2021, 234, 00092. [Google Scholar] [CrossRef]
- Abebe, B.; Murthy, H.C.A.; Amare, E. Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. J. Encapsulation Adsorpt. Sci. 2018, 8, 225–255. [Google Scholar] [CrossRef]
- Alothman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Dinh, V.P.; Nguyen, P.T.; Tran, M.C.; Luu, A.T.; Hung, N.Q.; Luu, T.T.; Kiet, H.A.T.; Mai, X.T.; Luong, T.B.; Nguyen, T.L.; et al. HTDMA-Modified Bentonite Clay for Effective Removal of Pb(II) from Aqueous Solution. Chemosphere 2022, 286, 131766. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.T.; Khaleefa Ali, S.A. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2020, 22, 104–111. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Hosseini, S.R.; Bonyani, M.; Leonardi, S.G.; Bonavita, A.; Neri, G. Synthesis and Characterization of Mesoporous α-Fe2O3 Nanoparticles and Investigation of Electrical Properties of Fabricated Thick Films. Process. Appl. Ceram. 2016, 10, 209–218. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Fe-Based Metal Organic Framework/Graphene Oxide Composite as an Efficient Catalyst for Fenton-like Degradation of Methyl Orange. RSC Adv. 2017, 7, 50829–50837. [Google Scholar] [CrossRef]
- Saukani, M.; Arief, S.; Syahrillah, G.R.F.; Hidayat, N. The Low Concentration of Sodium Hydroxide Influence on the Compressive Strength of Fly Ash/Natural Kaolin-Based Geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 515, 012063. [Google Scholar] [CrossRef]
- Au, P.I.; Leong, Y.K. Rheological and Zeta Potential Behaviour of Kaolin and Bentonite Composite Slurries. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A Comparison of TEM and DLS Methods to Characterize Size Distribution of Ceramic Nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef]
- Wilson, B.K.; Prud’homme, R.K. Nanoparticle Size Distribution Quantification from Transmission Electron Microscopy (TEM) of Ruthenium Tetroxide Stained Polymeric Nanoparticles. J. Colloid. Interface Sci. 2021, 604, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
Clay Type | Layer Type | Chemical Composition (wt%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MgO | K2O | Na2O | BaO | MnO | P2O5 | L.O.I | ||
Bentonite | 2:1 | 58.19 | 13.67 | 2.43 | 0.16 | 0.97 | 2.32 | 1.03 | 2.34 | 0.16 | 0.07 | 0.06 | 18.32 |
Kaolin | 1:1 | 48.99 | 37.75 | 0.44 | 1.41 | 0.15 | - | 0.10 | - | - | - | 0.07 | 14.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kgabi, D.P.; Ambushe, A.A. Characterization of South African Bentonite and Kaolin Clays. Sustainability 2023, 15, 12679. https://doi.org/10.3390/su151712679
Kgabi DP, Ambushe AA. Characterization of South African Bentonite and Kaolin Clays. Sustainability. 2023; 15(17):12679. https://doi.org/10.3390/su151712679
Chicago/Turabian StyleKgabi, Dipuo P., and Abayneh A. Ambushe. 2023. "Characterization of South African Bentonite and Kaolin Clays" Sustainability 15, no. 17: 12679. https://doi.org/10.3390/su151712679
APA StyleKgabi, D. P., & Ambushe, A. A. (2023). Characterization of South African Bentonite and Kaolin Clays. Sustainability, 15(17), 12679. https://doi.org/10.3390/su151712679