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Abstract: Due to their higher strength and lighter weight compared to conventional metals, graphene-
nickel (Gr-Ni) composites have recently gained growing interest for use in the automotive and
aerospace industries. Homogeneous Gr dispersion, the metal powder dispersity and processing
conditions play a key role in obtaining the desired grain size distribution, an amount of high angle
grain boundaries thus reaching the desired balance between strength and plasticity of the composite.
Here, we report an approach to fabricating graphene-nickel composites with balanced strength and
ductility through the microstructure optimization of the nickel matrix. A graphite platelets (GP)
content of 0.1–1 wt.% was used for the optimization of the mechanical properties of the material. In
situ, conversion GP-to-Gr was performed during the milling step. This paper discusses the effect of
bimodal nano- and micro-sized Ni (nNi and mNi) on the mechanical properties and microstructure of
Gr-Ni composites synthesized using a modified powder metallurgy approach. Specimens with varied
nNi:mNi ratios were produced by two-step compaction and investigated by X-ray diffraction (XRD),
scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy,
electron back-scattered diffraction (EBSD) and nanoindentation. The best combination of ultimate
tensile strength (UTS), yield limit (YL), elongation and hardness were obtained for 100nNi and
50nNi matrices, and the best composites were those with 0.1% graphene. The addition of more than
0.5 wt.% GP to the nickel matrix induces the fracture mechanism change from tensile to brittle fracture.
Dedicated to the 300th anniversary of the St. Petersburg University Foundation.

Keywords: nickel-matrix composites; graphene; bimodal precursor powder; ultimate tensile strength;
yield limit; elongation; Vickers hardness; modified powder metallurgy

1. Introduction

The interest in the new generation of metal matrix composites (MMCs) development
has been growing staidly over the past decade. Due to their enhanced toughness, strength
and thermal and electrical properties, MMCs often demonstrate a better performance
than conventional metals and their alloys [1,2]. Among them, graphene-reinforced nickel-
based (Gr-Ni) composites should be pointed out because of their superior mechanical,
electrical and thermal properties. The excellent mechanical characteristics of graphene
(tensile strength ~130 GPa and Young modulus ~1 TPa, see, e.g., [3], outstanding electro-
and thermal conductivity [4–7]) coupled with their light weight, high strength, toughness
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and good corrosion resistance make Gr-Ni composites the most promising materials for
various engineering and biomedical applications [8,9].

The reinforcement by graphene has been proven to have an advantage over the
other commonly used nano-inclusions such as carbon nanotubes (CNTs) [10–14], oxide
nanoparticles [15,16], carbides [17,18] and nitrides [19,20]. As follows from [21], the major
problems of graphene-doped MMCs are as follows: (i) the agglomeration of graphene
during composite synthesis; (ii) weak interfacial bonding between Gr and the metal matrix
and (iii) poor structural integrity of graphene. Graphene is coherent with nickel, enabling
stronger bonding between graphene and the nickel metal matrix in Ni-Gr composites
compared to the other Gr-reinforced MMCs [22–25]. It enables stress transfer between
graphene and the Ni matrix and contributes to overall reinforcement efficiency.

In turn, the homogeneous Gr distribution in the metal matrix also has a great impact on
the load transfer efficiency and the possibility to reach enhanced strength while maintaining
good ductility [21]. It can enhance or, in the case of graphene agglomeration, weaken the
strength of the nickel-based composite. In addition, the type of the Gr-containing additive
(graphene nanoplatelets; GNPs, graphene oxide; GO, reduced graphene oxide; rGO, or
Gr itself) and the production approach [26,27] are among the key factors affecting Gr
distribution. In the recent work of authors [28], the effect of the graphene derivative type
on the mechanical properties of nickel-graphene composites has been investigated. It was
shown that a minimum amount of 0.1 wt.% Gr in the form of rGO and GNPs is enough to
provide very different mechanical properties of composites.

So far, several studies have been conducted to fabricate graphene-reinforced nickel
composites with superior properties [25,27–34]. As mentioned in [35], the high solubility of
carbon in Ni and the formation of carbides require the implementation of complex sintering
approaches such as friction stir processing [36], electrochemical deposition [37–40], spark
plasma sintering (SPS) [8,24], selective laser sintering (SLS) [18,41], etc. In the work of
C. Zhao [8], a complex approach consisting of molecular-level mixing followed by SPS
was used to produce Ni-Gr specimens with a homogeneous graphene distribution. It
was shown that the addition of 1.5 wt.% of Gr-containing additive resulted in a tensile
strength increase of up to 95.2% and a yield strength increase of up to 327.6%. along
with a sufficient elongation (12.1%). In situ, high-temperature Chemical Vapor Deposition
(CVD) followed by SPS applied by K. Fu et al. in [27] resulted in the formation of a 3D
graphene network that hinders grain growth and significantly improves the composite
microstructure. The yield strength of 474 MPa and tensile strength of 546 MPa were obtained
for the composite containing 1.0 vol.% of Gr additive. The obtained composites, although
exhibiting superior hardness, are limited by the geometry of obtained samples and are not
likely to be mass-produced.

Recently, several feasible and scalable approaches for nickel-graphene composite
fabrication based on modified powder metallurgy were suggested in [30,35,42,43]. For
instance, Zhang et al. [35] fabricated a Ni-Ni3C composite with a nacre-like, brick-and-
mortar structure using Ni powders and graphene sheets. The composite achieved a 73%
increase in strength with a 28% compromise on ductility, leading to a notable improvement
in toughness. The 0.1 wt.% GNPs-Ni composites obtained in [42] via the powder metallurgy
and spark plasma sintering (SPS) showed the improvement of yield strength by 29.5%
and ultimate tensile strength by 24.8%, respectively, and preserved good ductility. J. Jiang
with co-authors [44] synthesized bulk Ni-Gr composites by graphene in situ growth in the
nickel matrix during the powder metallurgy procedure; the authors reported the composite
hardness and the tensile strength of ~107 HV and 370 MPa, 1.7 and 4.1 times that of pure
Ni, respectively.

As seen, the described approaches were shown to be efficient in achieving improved
strength and good ductility in Ni-Gr composites through the reinforcements by 0.1–1.5 wt.%
Gr for most composites. Obviously, a key point here is that the ratio of the particle surfaces
of the MMC and Gr additive provides a measure of grain size control without undesirable
graphene agglomeration, see, e.g., [45]. Indeed, the type of Gr derivative used for reinforce-
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ment determines the effective surface of the Gr additive, while the synthesis procedure
provides the uniformity of the Gr-additive distribution and preservation of Gr-integrity.
At the same time, the effective surface can be also controlled through the variable particle
size of nickel powder (nano-, micron-sized powders). The use of nickel powders with
different dispersities at certain processing conditions may provide a bimodality of grain
sizes in the nickel matrix and significantly contribute to the enhancement of mechanical
properties. As it was demonstrated in [46], the introduction of graphene into the MMC
under several manufacturing conditions also can lead to the bimodality of the grain size
distribution of the metal matrix. The obtained nanocomposites reinforced by 1.6 vol.%
graphene nanoplatelets exhibited Young’s modulus, yield strength and ultimate tensile
strength of 55 GPa, 271 MPa and 352 MPa composite. The values were improved by 20%,
166% and 35%, respectively, compared with that of the unreinforced magnesium-based
alloy due to the control of grain growth by graphene. Thus, the impacts of graphene, metal
particle size and the processing conditions and their synergetic effect on the mechanical
properties of composites are not clear and should be investigated in detail. The present
research continues the series of works [28,30] devoted to the Ni-Gr composites fabrication
with superior properties. Therefore, the aim of the present study was the investigation
of the effect of a bimodal matrix, graphene addition and processing conditions on the
microstructures, mechanical properties and fracture mechanisms of the Gr-Ni composites.
The novelty of the approach consists of the use of two different nickel matrices, nano and
micro-sized, which are mixed in different percentages, as well as a second compaction step
that gives the composite outstandingly different mechanical properties.

2. Materials and Methods
2.1. Materials and Synthesis Procedure

Three series of samples were taken for investigation (Table 1). The samples of series
I were produced using the mixtures of nano-and micron-sized nickel powders (nNi and
mNi, respectively) with the nNi:mNi ratios of 100:0, 85:15, 65:35, 50:50, 35:65, 15:85 and
0:100 without any carbon derivative addition. The samples of Series II were produced from
the powder mixtures of 100nNi + x wt.% of graphene addition (x = 0; 0.1; 0.2; 0.5 and 1.0)
without mNi. Series III utilizes the mixtures of 50 wt.% nNi–50 wt.% mNi with x wt.% of
graphene (x = 0; 0.1; 0.2; 0.5 and 1.0).

Table 1. Specimens and their abbreviations.

Series Composition of the Powder Mixture, wt.% Abbreviation for Final Ni-Gr Composite

I

100mNi–0nNi 100mNi
85mNi–15nNi 15nNi
65mNi–35nNi 35nNi
50mNi–50nNi 50nNi
35mNi–65nNi 65nNi
15mNi–85nNi 85nNi
0mNi–100nNi 100nNi

II

0.1Gr–99.9nNi 0.1Gr–100nNi
0.2Gr–99.8nNi 0.2Gr–100nNi
0.5Gr–99.5nNi 0.5Gr–100nNi
1.0Gr–99.0nNi 1Gr–100nNi

III

0.1Gr–99.9(50mNi–50nNi) 0.1Gr–50nNi
0.2Gr–99.8(50mNi–50nNi) 0.2Gr–50nNi
0.5Gr–99.5(50mNi–50nNi) 0.5Gr–50nNi
1.0Gr–99.0(50mNi–50nNi) 1Gr–50nNi

Nanosized nickel powder (mean particle size 80 nm, purity ≥ 99.76%, “Advanced
Powder Technologies”, Ltd., Tomsk, Russia) and micron-sized nickel powder (commercially
available PNE-1 powder with the mean particle size of 20 µm and Ni contents ≥ 99.50%)
were used as the starting materials for sample fabrication. The microstructures of the initial
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Ni powders are shown in Figure S1. Commercial graphite, intercalated by ammonia (“Activ
nano”, Ltd., Saint Petersburg, Russia) was used as a graphene precursor. In order to obtain
graphite platelets (GP), commercial graphite was thermally exfoliated at 600 ◦C for 10 min
for further in situ conversion into graphene. The microstructure of the produced GP is
presented in Figure 1.
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Figure 1. High-resolution SEM photos of graphite platelets (GP) after thermal exfoliation at 600 ◦C;
(a) magnification ×500; (b) magnification ×10,000.

As seen from the Figures, microstructures of thermally exfoliated GP represent a
stack of layers that are connected with each other. Each of them is wrinkled and veil-like
(see, Figure 1b). All the compositions were mixed by dry ball-milling under optimized
conditions (Pulverisete-6 planetary mill (Fritsch, Hamburg, Germany), 400 rpm for 2 h with
2 min reverse cycles), which created an in situ graphite-to-graphene conversion [30,47].
Milling was performed in a N2 atmosphere with a water and oxygen content less than
0.001 vol.% to prevent nNi oxidation because of its high flammability in air. The obtained
composite powders were compacted into green body pellets with a diameter of 25 mm and
a height of 9 mm using cold uniaxial pressing (12.5 t/cm2, 15 min). Obtained green bodies
of series I specimens (see Table 1) were then subjected to hydrostatic pressing at 152 MPa.
All the obtained samples were annealed in a vacuum at 1250 ◦C for 1 h. Thus, three series
of metallic composites were obtained, and their abbreviations are presented in Table 1.

2.2. Characterization

X-ray diffraction analysis (XRD, SHIMADZU XRD-6000 (SHIMADZU, Kyoto, Japan),
Cu-Kα at λ = 1.54 Å) was used to identify the phase composition of the specimens. Raman
spectroscopy (Raman Spectrometer Horiba SENTERRA T64000 (Horiba Corp., Kyoto,
Japan); the wavelength of the excitation laser was 488 nm) was used to investigate the state
of carbon allotropes.

Scanning electron microscopy (SEM, Supra 55VP, Carl Zeiss QEC GmbH, Peine, Ger-
many), energy-dispersive X-ray spectroscopy analysis (EDX, Oxford Instruments INCAx-
act X-ray microanalysis spectrometer, Oxford Instruments, Wycombe, Buckinghamshire,
UK) and electron backscatter diffraction technique (EBSD analysis, TESCAN MIRA 3LMH
FEG with EBSD unit “Channel 5”, Hitachi S-3400 N, Hitachi, Ltd., Kyoto, Japan) were used
to study the nickel specimens and composites microstructures. The EBSD procedure was
carried out with the accuracy of misorientation angle and axis determination less than
2 and 5◦, respectively. Patterns of backscattered electrons (EBSP) were acquired from a
rectangular grid with a step size of 0.5 µm for 23 µsec per one EBSP acquisition during
mapping. Oxford Instruments Aztec HKL analysis software version 6.0 (Oxford Instru-
ments, Wycombe, Buckinghamshire, UK) was used to identify the crystal orientation from
the Kikuchi pattern in automatic mode, and the crystal structure of metallic nickel was
used to estimate the grain size in the composites. The minimal determined grain size was
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3 pixels; grain boundaries were determined as the linear intercepts between high-angle
grain boundaries. SEM and EBSD data were obtained from the surfaces of the samples. The
samples for SEM and EBSD were first embedded into an epoxy resin. Then, the surfaces
were polished with a series of microcrystalline diamond suspensions and finished with a
nano-sized colloidal silica suspension. No etching was performed. For TEM, an extremely
thin cut (<100 µm) was taken from a sample embedded in hardened resin. The cut was
double-polished to ensure the absence of scratches from the cut. Then, the polishing mate-
rial was removed by repeated washing in water and alcohol. This allows for the electron
beam to pass from the electron gun through the specimen to the detector. The apparent
densities of specimens were measured by hydrostatic weighting (scales RADWAG 220 c/xc,
Radwag, Radom, Poland). Each sample was weighed in air and then in isopropyl alcohol.
The data were obtained for 3 samples and averaged over 5 independent measurements for
each sample. Vickers hardness tests (Shimadzu HMV-G21DT, SHIMADZU, Kyoto, Japan)
were performed using a diamond pyramidal indenter with a 2 N load (HV0.2) applied
for 15 s (data was averaged over 15 tests over the specimen’s cross-section). Mechanical
properties tests were also carried out via uniaxial tension tests using a SHIMADZU AG
X-Plus test machine (SHIMADZU, Kyoto, Japan) at the strain rate of 10−3 s−1. Each curve
was averaged over 5 tests. The t-bone-shaped samples (shoulder blade) were cut along
the cross-section of the specimens using an electrical erosion machine. The size of the
working part of the samples was 6 mm in length, 2 mm in width and 1.3 mm in thickness.
Fractography (Zeiss Auriga Laser, Carl Zeiss QEC GmbH, Peine, Germany) was used to
perform the failure analysis of specimens.

3. Results and Discussion
3.1. Microstructure and Mechanical Properties of Nickel Specimens Manufactured from mNi and
nNi Powders

To provide a better understanding of the ratio of graphene to metal matrix effects
on the final properties of composites, microstructure and mechanical properties of the
reference specimens—specimens produced from the powder mixtures with 0, 15, 35, 50, 65,
85 and 100 wt.% of nano-Ni—were investigated. Typical inverted polar figures (IPF) images
obtained by EBSD for the above specimens are shown in Figure 2. As seen from the figure,
the number of dislocations is negligible in all specimens, while the grain boundaries are
clearly defined. All specimens can be characterized by a high amount of high-angle grain
boundaries (HABs) and twins. Specimens with the maximum nano-Ni contents (100nNi
and 85nNi) also demonstrated significant grain growth during the manufacturing process.
Note that the mean size of the initial nano-powder particles was ~80 nm; therefore, a three
times magnitude growth can be observed.
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The information on the grain size and grain boundaries type was obtained from the
analysis of the images taken from the large surfaces (more than 5000 grains for each speci-
men); the grain boundaries were subdivided into the following groups: misorientations
below 15◦ were treated as LABs (low-angle grain boundaries), special misorientations that
could be interpreted as being due to the coinciding site lattices were attributed to CSLs
(coincident site lattices) and all others were treated as HABs (high-angle grain bound-
aries). Since CSL misorientation also exceeds 15◦, data includes the CSL fraction. Figure 3
demonstrates the dependencies of the mean grain size (here, grain size was estimated as
the diameter of a circle having the same area as the grain area from EBSD data) and the
HABs fraction. Grain size distributions are shown in Figure S2, Supplementary Materials.
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As seen from Figure 3a, the grain size in the specimens decreases with the increase
in nNi contents in the initial precursor; however, some slight increase in the mean size is
observed for 100nNi specimen. As for the HABs fraction, it increases with nNi contents
up to 35% (HABs fraction here exceeds 90%); a further increase in nNi contents resulted in
some decrease in the HABs fraction (down to ~75% at 65% of nNi) followed by the increase
of up to ~95% for the pure nNi specimen. Table 2 summarizes the data on grain boundary
types in the specimens studied. It should be noted that the specimen with 35% nNi is
characterized by the maximum fraction of CSL, while pure nNi showed the maximum
HABs fraction.

Table 2. Analysis of the grain boundary types in the specimens studied.

Specimen
Grain Boundary Fraction, %

LAB CSL HAB

100mNi 72.9 5.9 21.2

15nNi 35.7 25.7 38.6

35nNi 8.9 40.4 50.7

50nNi 17.8 30.7 51.5

65nNi 26.8 29.8 43.4

85nNi 10.5 10.7 68.8

100nNi 5.0 28.6 66.40

The data on the specimen’s density and Vickers hardness are presented in Figure 4.
As seen from the figure, the densities of the specimens manufactured using a powder
metallurgy approach are somehow lower than that determined for the density of bulk Ni
(8.9 g/cm3). The specimens’ density changes close-to-linear within the experimental error,
exhibiting a local minimum for the 35nNi specimen. This might be due to the presence of
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numerous defects in the microstructure caused by the irregular packing of the particles
during the initial compaction of the metal powder. Despite only the 85nNi specimen
consisting of submicron grains (mean grain size is 0.65 ± 0.05 µm), it is characterized by
a rather low amount of HAB and CLS fractions (31.2 and 10.7%, see Table 2). The values
are close to the ones obtained for 100mNi specimens. The latter shows the lowest HAB
and CLS fractions as well as the coarser grains and lower hardness values. The 50nNi
specimen is characterized by its balanced properties. In contrast to the other specimens of
series I, the grain size distribution in the 50nNi specimen is close to bimodal (see Figure S2).
Analyzing the above results, the use of Ni powder having a complex fraction composition
(50nNi–50mNi) is prospective for further reinforcement using graphene.
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3.2. The Structure of Nickel-Graphene Composites

The X-ray patterns obtained for series II and III specimens are shown in Figures 5 and 6.
As seen, the phase composition of the 100nNi specimen corresponds to the face-

centered cubic structure (FCC) typical for metallic nickel. The peak at 2Θ = 26.5◦ corre-
sponding to carbon is absent in the XRD patterns obtained for the composites containing
0.1–1.0 wt.% Gr. Remarkably, the intensity ratio of the peaks at 2Θ = 44 and 51◦ in the
XRD pattern of 0.5Gr–nNi is slightly changed. For the specimens in series III, which were
manufactured using a 50nNi powder, the phase composition corresponds to metallic nickel
with no other admixtures (see Figure 6). As seen from Figures 5 and 6, a considerable
variation of intensity ratio is seen just for one specimen (0.5Gr–100nNi). Since the intensity
ratios are not changing considerably (no enhancement of the peak at 2Θ = 76◦), it can be
concluded that no texturing of the sample takes place upon the incorporation of GP. Along
with the absence of a peak at 2Θ = 26.5◦, this gives the conclusion that a homogeneous
distribution of graphene in the metal matrix was reached. The change of the intensities is
likely due to the geometry of the sample exposed to XRD (the surface roughness contributes
to the resulted diffraction pattern).

The states of the carbon allotropes in the Gr-Ni composites fabricated using different
powder dispersities were investigated via Raman spectroscopy, see Figure 7. Spectra
obtained for the starting powder of thermally exfoliated GP, 100nNi and 50mNi specimens
are presented for a comparison. Additionally, TEM analysis was carried out for 0.1Gr–nNi
and 1Gr–nNi composites (see Figure 8).



Metals 2023, 13, 1037 8 of 19
Metals 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. The X-ray patterns obtained for the 100nNi specimen and the 0.1Gr–nNi, 0.2Gr–nNi, 
0.5Gr–nNi and 1Gr–nNi composites (specimen series II). 

The states of the carbon allotropes in the Gr-Ni composites fabricated using different 
powder dispersities were investigated via Raman spectroscopy, see Figure 7. Spectra ob-
tained for the starting powder of thermally exfoliated GP, 100nNi and 50mNi specimens 
are presented for a comparison. Additionally, TEM analysis was carried out for 0.1Gr–
nNi and 1Gr–nNi composites (see Figure 8). 

 
Figure 6. The X-ray patterns obtained for the 50nNi specimen and 0.1Gr–50nNi, 0.2Gr–50nNi, 0.5Gr–
50nNi and 1Gr–50nNi composites (specimens of the series III). 

Figure 5. The X-ray patterns obtained for the 100nNi specimen and the 0.1Gr–nNi, 0.2Gr–nNi,
0.5Gr–nNi and 1Gr–nNi composites (specimen series II).

Metals 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. The X-ray patterns obtained for the 100nNi specimen and the 0.1Gr–nNi, 0.2Gr–nNi, 
0.5Gr–nNi and 1Gr–nNi composites (specimen series II). 

The states of the carbon allotropes in the Gr-Ni composites fabricated using different 
powder dispersities were investigated via Raman spectroscopy, see Figure 7. Spectra ob-
tained for the starting powder of thermally exfoliated GP, 100nNi and 50mNi specimens 
are presented for a comparison. Additionally, TEM analysis was carried out for 0.1Gr–
nNi and 1Gr–nNi composites (see Figure 8). 

 
Figure 6. The X-ray patterns obtained for the 50nNi specimen and 0.1Gr–50nNi, 0.2Gr–50nNi, 0.5Gr–
50nNi and 1Gr–50nNi composites (specimens of the series III). 

Figure 6. The X-ray patterns obtained for the 50nNi specimen and 0.1Gr–50nNi, 0.2Gr–50nNi,
0.5Gr–50nNi and 1Gr–50nNi composites (specimens of the series III).



Metals 2023, 13, 1037 9 of 19
Metals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 7. Raman spectra obtained for (a) series II composites and (b) series III composites in com-
parison with the data for thermally exfoliated GP, 100nNi and 50nNi. 

 
Figure 8. (a) The light-field TEM photo of a graphene flake in 0.1G–nNi composite; (b) the light-
field TEM photo of a graphene flake in 1Gr–nNi composite. 

As seen from the spectra obtained, the spectrum obtained for thermally exfoliated 
GP contained D, G and 2D bands at 1297, 1565 and 2635 cm−1. Their positions and intensi-
ties differ from the ones in the spectrum of graphite [47]. Thermal exfoliation efficiently 
results in the formation of a microstructure characterized by veil-like layers stuck together 
in one GP block (see, Figure 1), resulting in the Raman shift of the bands compared to 
graphite. In particular, the intensity of the D band in the spectrum obtained for GP, corre-
sponding to the breathing modes of sp2 atoms in rings, is higher than the one for graphite. 
The characteristic bands of Gr (D, G and 2D at ~1378, 1585 and 2880 cm−1, respectively 
[47]) are present in the spectra of Gr–100nNi composites. Thus, in situ GP-to-Gr conver-
sion takes place during the manufacturing process for both series II and III. The D and G 
peaks are slightly overlapped, being a typical picture for nickel matrices [8,9,30]. In the 
case of the 1Gr–nNi composite, the positions of the D and G bands are shifted. Here, the 
G band is a superposition of two peaks at 1580 and 1626 cm−1, indicating the presence of a 
certain amount of graphite in the composite. The ID/IG ratios obtained for 0.1Gr–nNi, 
0.2Gr–nNi and 0.5Gr–nNi composites are less than one, being ~0.67, ~0.80 and ~0.82 re-
spectively (see Table 3). The addition of 1 wt.% GP results in an almost equal ID/IG ratio of 
0.99 in the spectrum obtained for the 1Gr–nNi composite. For the composites of series III, 
a rather strong luminescence of the nickel matrix is observed (see Figure 6b). Both D and 
G bands are present only in the spectrum of the 0.1Gr–50nNi composite with the ratio 
being close to 0.1Gr–nNi one. Only the G band is seen at 1585 cm−1 in the spectra of 0.2Gr–
50nNi and 0.5Gr–50nNi composites. The 1Gr–50nNi shows the spectra of luminescence. 
All ID/IG ratios obtained are less than one, so one can conclude that no structural damage 
took place during the manufacturing of the composites. However, the addition of 1 wt.% 
GP results in the graphite admixture in the composite. The results of the Raman spectros-
copy analysis are in good accordance with the TEM data presented in Figure 8. 

Figure 7. Raman spectra obtained for (a) series II composites and (b) series III composites in compari-
son with the data for thermally exfoliated GP, 100nNi and 50nNi.

Metals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 7. Raman spectra obtained for (a) series II composites and (b) series III composites in com-
parison with the data for thermally exfoliated GP, 100nNi and 50nNi. 

 
Figure 8. (a) The light-field TEM photo of a graphene flake in 0.1G–nNi composite; (b) the light-
field TEM photo of a graphene flake in 1Gr–nNi composite. 

As seen from the spectra obtained, the spectrum obtained for thermally exfoliated 
GP contained D, G and 2D bands at 1297, 1565 and 2635 cm−1. Their positions and intensi-
ties differ from the ones in the spectrum of graphite [47]. Thermal exfoliation efficiently 
results in the formation of a microstructure characterized by veil-like layers stuck together 
in one GP block (see, Figure 1), resulting in the Raman shift of the bands compared to 
graphite. In particular, the intensity of the D band in the spectrum obtained for GP, corre-
sponding to the breathing modes of sp2 atoms in rings, is higher than the one for graphite. 
The characteristic bands of Gr (D, G and 2D at ~1378, 1585 and 2880 cm−1, respectively 
[47]) are present in the spectra of Gr–100nNi composites. Thus, in situ GP-to-Gr conver-
sion takes place during the manufacturing process for both series II and III. The D and G 
peaks are slightly overlapped, being a typical picture for nickel matrices [8,9,30]. In the 
case of the 1Gr–nNi composite, the positions of the D and G bands are shifted. Here, the 
G band is a superposition of two peaks at 1580 and 1626 cm−1, indicating the presence of a 
certain amount of graphite in the composite. The ID/IG ratios obtained for 0.1Gr–nNi, 
0.2Gr–nNi and 0.5Gr–nNi composites are less than one, being ~0.67, ~0.80 and ~0.82 re-
spectively (see Table 3). The addition of 1 wt.% GP results in an almost equal ID/IG ratio of 
0.99 in the spectrum obtained for the 1Gr–nNi composite. For the composites of series III, 
a rather strong luminescence of the nickel matrix is observed (see Figure 6b). Both D and 
G bands are present only in the spectrum of the 0.1Gr–50nNi composite with the ratio 
being close to 0.1Gr–nNi one. Only the G band is seen at 1585 cm−1 in the spectra of 0.2Gr–
50nNi and 0.5Gr–50nNi composites. The 1Gr–50nNi shows the spectra of luminescence. 
All ID/IG ratios obtained are less than one, so one can conclude that no structural damage 
took place during the manufacturing of the composites. However, the addition of 1 wt.% 
GP results in the graphite admixture in the composite. The results of the Raman spectros-
copy analysis are in good accordance with the TEM data presented in Figure 8. 

Figure 8. (a) The light-field TEM photo of a graphene flake in 0.1G–nNi composite; (b) the light-field
TEM photo of a graphene flake in 1Gr–nNi composite.

As seen from the spectra obtained, the spectrum obtained for thermally exfoliated GP
contained D, G and 2D bands at 1297, 1565 and 2635 cm−1. Their positions and intensities
differ from the ones in the spectrum of graphite [47]. Thermal exfoliation efficiently results
in the formation of a microstructure characterized by veil-like layers stuck together in one
GP block (see, Figure 1), resulting in the Raman shift of the bands compared to graphite.
In particular, the intensity of the D band in the spectrum obtained for GP, corresponding
to the breathing modes of sp2 atoms in rings, is higher than the one for graphite. The
characteristic bands of Gr (D, G and 2D at ~1378, 1585 and 2880 cm−1, respectively [47]) are
present in the spectra of Gr–100nNi composites. Thus, in situ GP-to-Gr conversion takes
place during the manufacturing process for both series II and III. The D and G peaks are
slightly overlapped, being a typical picture for nickel matrices [8,9,30]. In the case of the
1Gr–nNi composite, the positions of the D and G bands are shifted. Here, the G band is
a superposition of two peaks at 1580 and 1626 cm−1, indicating the presence of a certain
amount of graphite in the composite. The ID/IG ratios obtained for 0.1Gr–nNi, 0.2Gr–nNi
and 0.5Gr–nNi composites are less than one, being ~0.67, ~0.80 and ~0.82 respectively (see
Table 3). The addition of 1 wt.% GP results in an almost equal ID/IG ratio of 0.99 in the
spectrum obtained for the 1Gr–nNi composite. For the composites of series III, a rather
strong luminescence of the nickel matrix is observed (see Figure 6b). Both D and G bands
are present only in the spectrum of the 0.1Gr–50nNi composite with the ratio being close to
0.1Gr–nNi one. Only the G band is seen at 1585 cm−1 in the spectra of 0.2Gr–50nNi and
0.5Gr–50nNi composites. The 1Gr–50nNi shows the spectra of luminescence. All ID/IG
ratios obtained are less than one, so one can conclude that no structural damage took place
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during the manufacturing of the composites. However, the addition of 1 wt.% GP results
in the graphite admixture in the composite. The results of the Raman spectroscopy analysis
are in good accordance with the TEM data presented in Figure 8.

Table 3. The mechanical properties of graphene-nickel specimens and ID/IG ratio were assessed from
Raman spectra.

Composite
Ultimate Tensile

Strength, UTS
(MPa)

Yield Limit (MPa) Uniform
Elongation (%)

Maximum
Elongation (%) HV (-) ID/IG Ratio

100nNi 203 ± 1 117 ± 7 4.1 ± 0.6 5.8 ± 0.4 99 ± 8 -

0.1Gr–nNi 187 ± 10 119 ± 5 3.5 ± 0.1 3.9 ± 0.2 100 ± 4 0.67

0.2Gr–nNi 202 ± 16 114 ± 4 4.7 ± 0.9 5.4 ± 0.8 95 ± 10 0.80

0.5Gr–nNi 53 ± 12 52 ± 12 0.2 ± 0.1 0.6 ± 0.3 81 ± 4 0.82

1Gr–nNi 52 ± 3 - 0.2 ± 0.03 0.2 ± 0.03 52 ± 11 0.99

50nNi 366 ± 9 186 ± 3 19 ± 1 20.4 ± 1.5 101 ± 12 -

0.1Gr–50nNi 193 ± 33 91 ± 6 17 ± 2 19.8 ± 1.3 79 ± 8 0.67

0.2Gr–50nNi 126 ± 7 98 ± 4 1.6 ± 0.3 2.7 ± 0.8 81 ± 6 -

0.5Gr–50nNi 73 ± 5 71 ± 4 0.4 ± 0.1 0.6 ± 0.2 75 ± 15 -

1Gr–50nNi 60 ± 3 - 0.1 ± 0.03 0.3 ± 0.06 97 ± 13 -

The light-field TEM demonstrates that graphene in the 0.1Gr–nNi composite is present
in the form of wrinkled flakes and consists of one or two layers. The multi-layered flakes
are seen in the TEM image for the 1Gr–nNi composite, confirming graphite presence (see,
Figure 8b). The obtained Raman and TEM data shows that complete GP-to-graphene
conversion during ball milling of 1 wt.% Gr-100nNi composite powder at 400 rpm is not
reached. The conclusion is in accordance with our recent work [30]. Figures 9 and 10
compare the microstructures of metallic specimens fabricated from the 100nNi and 50nNi
powders with the composites from Series II and III reinforced with 0.1 wt.% Gr.

Figures 9 and 10 compare the microstructures of the composites of Series I fabricated
from the 100nNi and 50nNi with the composites from Series II and III with 0.1 wt.% Gr.

As seen, the addition of 0.1 wt.% graphene does not significantly change the mi-
crostructure of 50nNi and 100nNi specimens. Nevertheless, some minor modifications
could be assumed: the pores close and become lightly smaller; the elongated pores trans-
form to spherical ones in the case of the 0.1Gr–50nNi specimen. Note that the pores are
homogeneously distributed on the 0.1Gr–100nNi and 0.1Gr–50nNi composites surfaces.
EBSD data provides more detailed information on the microstructures of the specimens.
The addition of 0.1 wt.% GP to nanosized nickel powder results in the hindering of grain
growth, and the formation of individual large grains is suppressed. The 0.1Gr–100nNi
composite possesses a more homogeneous structure composed of submicron-sized and
micron-sized grains. In the case of the initially bimodal powder (50nNi), the incorporation
of 0.1 wt.% GP amount also results in a certain grain refinement. The allocated areas of
grains with smaller grains and larger sizes (all micron-sized) are well distinguished. The
grain distributions in 0.1Gr–100nNi and 0.1Gr–50nNi are close to bimodal.

The typical microstructures of composites synthesized from the powders with different
graphene addition are shown in Figures 11 and 12.

The introduction of 0.2 wt.% GP into the 100nNi matrix results in a slight porosity
decrease in the composite, however, the grain sizes enlarge considerably. Further increase of
GP content to 0.5 wt.% leads to a significant pores size increase and their transformation to
round-shaped pores (0.5Gr–100nNi composite). The maximum contents of 1 wt.% GP leads
to pores merging with the formation of pores agglomerates of irregular shape allocated
along the grain boundaries. Large grains of ~50 µm are well distinguished for 1Gr–100nNi
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composites (see Figure 12b). The incorporation of 1 wt.% GP to 50nNi matrix results in the
formation of elongated pore agglomerates and fast grain coarsening (see Figures 11f and 12c).
Grains with sizes close to ~500 µm, separated by smaller grains of ~50 µm, are present in
the structure of the 1Gr–50nNi composite. Coupling SEM, TEM and EBSD data, one can
expect much lower mechanical properties of the 0.5Gr–100nNi, 1Gr–100nNi and 1Gr–50nNi
composites than those for composites with smaller graphene contents.
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3.3. The Mechanical Properties of Gr-Ni Composites

The stress-strain curves obtained for specimens of series II and III are shown in
Figure 13.

As seen from Figure 13a, the mechanical properties of 100nNi, 0.1Gr–100nNi and
0.2Gr–100nNi exhibit close ultimate tensile strength (UTS) values and yield limit (YL).
Among composites with a 100nNi matrix, the 0.2Gr–100nNi composite shows the best
combination of uniform elongation and UTS and YL being close to 100nNi. The 0.1Gr–
100nNi composite shows a slightly decreased ductility of its nickel matrix. The 0.1 wt.% GP
incorporation results in about a factor of two decreases in UTS and yield limit values, while
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the elongation remains almost the same, allowing for experimental error. The composites
of both series II and III fabricated from powders having a graphene content of 0.5 and
1 wt.% demonstrate drastically decreased UTS and elongation values. The presence of pore
agglomerates as well as the multi-layered graphene flakes in the grain boundaries result in
the low bonding between the graphene additive and nickel matrix and the simultaneous
decrease of strength and ductility.
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Vickers hardness data is presented in Table 3 and Figure 14. The hardness values
of reference samples 100nNi and 50 nNi, presented in Figures 4 and 14, differ by almost
twice. It is due to the difference in the manufacturing approach: specimens of series I
were manufactured using an additional step of hydrostatic pressing at 152 MPa, whereas
series II and III were not made the same way. Comparing the Vickers hardness data of
100nNi specimen after two-step compaction and Gr–100nNi composites obtained, one can
see that the values of hardness are also twice decreased when uniaxial compaction is used.
Increased hardness of the specimens after additional processing are likely due to the same
strengthening mechanism related to grain sizes. Refined microstructure (absence of pores
and large microstructure defects) leads to an increase of hardness values. The hardness of
Gr–Ni composites manufactured from nNi powder show the gradual decrease of values
with the increase of GP content from 0.2 to 1 wt.%. In contrast, specimens of series III with
50nNi demonstrated a different behavior. As seen from Figure 14, the Vickers hardness of
the reference specimen 50nNi manufactured with no additional compaction step is close to
that of the composite with the maximum Gr contents (1Gr–50nNi), while the specimens
0.1Gr–50nNi, 0.2Gr–50nNi and 0.5Gr–50nNi are characterized by somehow lower hardness,
which is nearly the same for these specimens.
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3.4. Fracture of Nickel-Graphene Composites

The results of the mechanical testing are in accordance with obtained fractography
data. Figures 15 and 16 represent the fractography test results, obtained for 100nNi, 50nNi
specimens and composites produced from the powder mixtures with 0.1 and 1 wt.% Gr
addition after the mechanical testing.

As seen from the figures, the fracture surface changes depending on graphene con-
tent. At the same time, the surface of all specimens contains particles of different sizes,
resembling the shape of metallic nickel. Fracture surfaces, obtained for specimens with
the same graphene content but different initial nickel precursor powder sizes, have similar
features. However, they are different from those for 100nNi and 50nNi specimens (see,
Figures 15 and 16a,b). The fracture surface of 100nNi composite consists primarily of shal-
low dimples of different sizes, where the particles are situated. The particles may act as
the origin of the voids. Despite the more pronounced plastic deformation of the 50nNi
specimen, dimple fracture is localized in disparate agglomerations along its fracture surface.
The intergranular fracture process is expressed during the fracture of the 50nNi specimen,
and it is followed by the secondary cracks. In addition, pronounced slip traces are observed
on the grain boundaries. Thus, the plastic deformation of the two series of specimens is due
to the different mechanisms. The specimens manufactured from bimodal nickel powder
showed significantly higher tensile strength and elongation. The fracture surface relief
becomes more uniform with the Gr amount increase. The dimple-like fracture contribution
to the overall specimen fracture decreases when compared to the 100nNi sample. The
brittle intergranular fracture starts to prevail. As seen in Figure 16e,f it is characterized
by the pronounced block steps on the intergranular crack’s surface. As discussed in [48],
such an image of the fracture may be a result of the shear band’s collision with a crack.
The ledge formed favors the further brittle fracture process. One more mechanism can
be due to the deformation in the region of the crack tip. Therefore, the traces of slips and
twinning are left on the crack’s surface. The observed step-like formations can take place
on the grain surfaces or on the edge with pores or inclusions during the solidification and
cooling of the material. This favors a surface energy decrease, when there is not enough
material to fulfill the voids. The composites having 1 wt.% GP (1Gr–nNi and 1Gr–50nNi,
see Figures 15 and 16e,f have smooth facets of the intergranular fracture with no typical fea-
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tures of plastic deformation. The 1Gr–100nNi and 1Gr–50nNi specimens are characterized
by the highest porosity value.
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Figure 15. Fractography surfaces obtained for (a,b) 100nNi specimen and (c,d) 0.1Gr–100nNi com-
posite, (e,f) 1Gr–100nNi after mechanical testing.

Therefore, the low tensile strength of the materials is due to the presence of the
individual Ni particles in the structure and the low bonding of the multi-layered graphene
flakes with the metallic matrix. The first microstructure feature, the presence of the particles,
results in the decrease of the composite working section and increased local stresses.
The second one, i.e., low bonding, does not provide a smooth transfer of stresses and
deformations on the graphene-nickel interface.

The balance achieved in the mechanical properties of both Gr-Ni composites and
specimens with the bimodal matrix with no Gr reinforcement, obviously, has different
origins, or, in other words, different strengthening mechanisms. The two-step compaction
contributes the most to the doubling of hardness values. The strengthening mechanism
is likely due to the presence of high amounts of HAB and CLS fractions of the grain
boundaries that act as pinning points to hinder dislocation propagation [35,49]. According
to [50], the introduction of graphene results in the Young modulus enhancement for a pure
metal (Ni or Al) only under compression. In the present work, tensile experiments were
conducted. The obtained experimental results are in good accordance with a computational
model proposed in [8] describing the mechanical properties of composites graphene-
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ultrafine grained metal matrix and graphene-bimodal metal matrix. For composites with a
homogeneous ultrafine-grained Ni matrix, grain-boundary sliding along graphene platelets
can begin at the real flow stresses of the graphene-metal composites and reduce their yield
strength. For composites having a bimodal structure of the metal matrix, a decrease in
the yield strength of the composites is associated with grain boundary sliding. Indeed,
when the graphene amount is increased to 0.5 and 1 wt.% steady embitterment of both
50nNi and 100nNi composites is seen. The mechanism proposed in [51] is confirmed
by the fractography results (Figures 15 and 16). In this way, the optimal amounts of
graphene addition to the Ni matrix for use in tensile conditions are 0.1–0.2 wt.%, which
is in accordance with the available literature data on Ni-Gr composites manufactured via
different techniques [8,26,27,42,52].
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In summary, 100nNi, 50nNi and composites manufactured with 0.1 wt.% Gr using a
modified powder metallurgy approach show a combination of balanced tensile strength
and elongation. The use of the single step for powder compaction allows a rather facile
Ni–Gr composite fabrication with sufficient mechanical properties. The introduction of
an additional compaction step (hydrostatic pressing at 152 MPa) favors more uniform
compaction leading to a doubling in hardness and can be used as an alternative to such an
advanced technique, such as SPS.
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4. Conclusions

Using mechanical testing, it was shown that 100nNi and 50nNi specimens exhibit the
best combination of UTS, yield limit, elongation and hardness, and the best composites are
those with 0.1wt.% graphene. The UTS values are 366 ± 9 MPa for the 50nNi specimen and
193 ± 33 MPa for the 0.1Gr-50nNi composite with the maximal elongation value of 20%.
The step of hydrostatic pressing results in the doubling of hardness values for 50nNi and
100nNi materials. Via Raman spectroscopy and TEM it was shown that for 0.1–0.5 wt.%
GP addition to Ni matrix, no structural damage took place during the manufacturing of
the composites; the addition of 1 wt.% GP results in a graphite admixture in the composite.
The addition of more than 0.5 wt.% Gr to nickel matrix induces the fracture mechanism
change from tensile to brittle fracture.
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size distribution in (a) 100mNi, (b) 15nNi, (c) 35nNi, (d) 50 nNi, (e) 65nNi, (f) 85nNi (g) 100nNi.
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