Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Linseed Oil Ethyl Esters Production
2.3. Emulsion Preparation
2.4. Emulsion Properties Analysis
2.5. Encapsulation Process
2.6. Encapsulation Efficiency Analysis
2.7. Powder Basic Properties Analysis
2.8. Fatty Acid Composition
2.9. Oxidative Stability Analysis
2.10. Statistical Analysis
3. Results
3.1. Emulsion Properties
3.1.1. Morphology
3.1.2. Particle Size Distribution
3.1.3. Stability
3.2. Powders—Morphology, Particle Size Distribution and other Physicochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knoema. Linseed Production in the World. Available online: https://knoema.com/data/agriculture-indicators-production+linseed (accessed on 22 January 2024).
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahshan, O.A.; Farag, M.A. A Comprehensive Review of the Health Benefits of Flaxseed Oil in Relation to Its Chemical Composition and Comparison with Other Omega-3-Rich Oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The Review of Alpha-linolenic Acid: Sources, Metabolism, and Pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Aune, D.; Beyene, J.; Mobarak, S.; Asadi, M.; Sadeghi, O. Dietary Intake and Biomarkers of Alpha Linolenic Acid and Risk of All Cause, Cardiovascular, and Cancer Mortality: Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. BMJ 2021, 375, n2213. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.H.; Reifen, R.; Crawford, M.A. Past and Present Insights on Alpha-Linolenic Acid and the Omega-3 Fatty Acid Family. Crit. Rev. Food Sci. Nutr. 2016, 56, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, N.R.; Loh, T.C.; Foo, H.L.; Alshelmani, M.I.; Akit, H. Influence of Dietary Ratios of n-6: N-3 Fatty Acid on Gene Expression, Fatty Acid Profile in Liver and Breast Muscle Tissues, Serum Lipid Profile, and Immunoglobulin in Broiler Chickens. J. Appl. Poult. Res. 2019, 28, 454–469. [Google Scholar] [CrossRef]
- Elgar, K. EPA/DHA: A Review of Clinical Use and Efficacy. Nutr. Med. J. 2022, 2, 97–132. [Google Scholar]
- Liu, Y.; Huang, Y.; Wang, Z.; Cai, S.; Zhu, B.; Dong, X. Recent Advances in Fishy Odour in Aquatic Fish Products, from Formation to Control. Int. J. Food Sci. Technol. 2021, 56, 4959–4969. [Google Scholar] [CrossRef]
- IPSOS. An Exploration into Diets around the World. Available online: https://www.ipsos.com/sites/default/files/ct/news/documents/2018-09/an_exploration_into_diets_around_the_world.pdf (accessed on 29 November 2023).
- Kim, D.; Choi, J.-E.; Park, Y. Low-Linoleic Acid Diet and Oestrogen Enhance the Conversion of α-Linolenic Acid into DHA through Modification of Conversion Enzymes and Transcription Factors. Br. J. Nutr. 2019, 121, 137–145. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers 2023, 15, 2659. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Haque, M.A.; Adhikari, B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food Nutr. Sci. 2020, 11, 481–508. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Dry. Technol. 2020, 38, 235–258. [Google Scholar] [CrossRef]
- Damerau, A.; Ogrodowska, D.; Banaszczyk, P.; Dajnowiec, F.; Tańska, M.; Linderborg, K.M. Baltic Herring (Clupea harengus membras) Oil Encapsulation by Spray Drying Using a Rice and Whey Protein Blend as a Coating Material. J. Food Eng. 2022, 314, 110769. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Elik, A.; Koçak Yanık, D.; Göğüş, F. A Comparative Study of Encapsulation of Carotenoid Enriched-Flaxseed Oil and Flaxseed Oil by Spray Freeze-Drying and Spray Drying Techniques. LWT 2021, 143, 111153. [Google Scholar] [CrossRef]
- Naz, S.; Shabbir, M.A.; Aadil, R.M.; Khan, M.R.; Ciftci, O.N.; Sameen, A.; Yasmin, I.; Hayee, A.; Maqsood, M. Effect of Polymer and Polymer Blends on Encapsulation Efficiency of Spray-Dried Microencapsulated Flaxseed Oil. Int. Food Res. J. 2020, 27, 78–87. [Google Scholar]
- Avci, E.; Karadag, A.; Karasu, S. Production of Freeze-Dried Flaxseed Oil Powders by Using Rocket Seed Gum as an Alternative Novel Encapsulation Agent to Improve Oxidative Stability. Sains Malays. 2021, 51, 3647–3662. [Google Scholar] [CrossRef]
- Aguilera-Oviedo, J.; Yara-Varón, E.; Torres, M.; Canela-Garayoa, R.; Balcells, M. Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil. Catalysts 2021, 11, 100. [Google Scholar] [CrossRef]
- Dempsey, M.; Rockwell, M.S.; Wentz, L.M. The Influence of Dietary and Supplemental Omega-3 Fatty Acids on the Omega-3 Index: A Scoping Review. Front. Nutr. 2023, 10, 1072653. [Google Scholar] [CrossRef]
- Chevalier, L.; Plourde, M. Comparison of Pharmacokinetics of Omega-3 Fatty Acid Supplements in Monoacylglycerol or Ethyl Ester in Humans: A Randomized Controlled Trial. Eur. J. Clin. Nutr. 2021, 75, 680–688. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Damerau, A.; Banaszczyk, P.; Tańska, M.; Konopka, I.Z.; Piłat, B.; Dajnowiec, F.; Linderborg, K.M. Native and Pregelatinized Potato and Rice Starches and Maltodextrin as Encapsulating Agents for Linseed Oil Ethyl Esters—Comparison of Emulsion and Powder Properties. J. Food Eng. 2024, 364, 111799. [Google Scholar] [CrossRef]
- Armenta, R.E.; Vinatoru, M.; Burja, A.M.; Kralovec, J.A.; Barrow, C.J. Transesterification of Fish Oil to Produce Fatty Acid Ethyl Esters Using Ultrasonic Energy. J. Am. Oil Chem. Soc. 2007, 84, 1045–1052. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Malvern Instruments Ltd. User Manual. Mastersizer 2000, MANO347; Malvern Instruments Ltd.: Worcestershire, UK, 2007. [Google Scholar]
- Dąbrowski, G.; Czaplicki, S.; Szustak, M.; Cichońska, E.; Gendaszewska-Darmach, E.; Konopka, I. Composition of Flesh Lipids and Oleosome Yield Optimization of Selected Sea Buckthorn (Hippophae rhamnoides L.) Cultivars Grown in Poland. Food Chem. 2022, 369, 130921. [Google Scholar] [CrossRef]
- Hu, Y.-T.; Ting, Y.; Hu, J.-Y.; Hsieh, S.-C. Techniques and Methods to Study Functional Characteristics of Emulsion Systems. J. Food Drug Anal. 2017, 25, 16–26. [Google Scholar] [CrossRef]
- Campelo, P.H.; do Carmo, E.L.; Zacarias, R.D.; Yoshida, M.I.; Ferraz, V.P.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Effect of Dextrose Equivalent on Physical and Chemical Properties of Lime Essential Oil Microparticles. Ind. Crop. Prod. 2017, 102, 105–114. [Google Scholar] [CrossRef]
- Premi, M.; Sharma, H.K. Effect of Different Combinations of Maltodextrin, Gum Arabic and Whey Protein Concentrate on the Encapsulation Behavior and Oxidative Stability of Spray Dried Drumstick (Moringa oleifera) Oil. Int. J. Biol. Macromol. 2017, 105, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Ursica, L.; Tita, D.; Palici, I.; Tita, B.; Vlaia, V. Particle Size Analysis of Some Water/Oil/Water Multiple Emulsions. J. Pharm. Biomed. Anal. 2005, 37, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Hebishy, E.; Zamora, A.; Buffa, M.; Blasco-Moreno, A.; Trujillo, A.-J. Characterization of Whey Protein Oil-in-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization. Processes 2017, 5, 6. [Google Scholar] [CrossRef]
- Dybowska, B.E. Whey Protein-Stabilized Emulsion Properties in Relation to Thermal Modification of the Continuous Phase. J. Food Eng. 2011, 104, 81–88. [Google Scholar] [CrossRef]
- Drozłowska, E.; Bartkowiak, A.; Łopusiewicz, Ł. Characterization of Flaxseed Oil Bimodal Emulsions Prepared with Flaxseed Oil Cake Extract Applied as a Natural Emulsifying Agent. Polymers 2020, 12, 2207. [Google Scholar] [CrossRef] [PubMed]
- Querol, N.; Barreneche, C.; Cabeza, L. Storage Stability of Bimodal Emulsions vs. Monomodal Emulsions. Appl. Sci. 2017, 7, 1267. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Písecký, J. Chapt. 10 Achieving Product Properties. In Handbook of Milk Powder Manufacture; Niro A/S: Copenhagen, Denmark, 1997. [Google Scholar]
- McKenna, A.B.; Lloyd, R.J.; Munro, P.A.; Singh, H. Microstructure of Whole Milk Powder and of Insolubles Detected by Powder Functional Testing. Scanning 1999, 21, 305–315. [Google Scholar] [CrossRef]
- Charoen, R.; Jangchud, A.; Jangchud, K.; Harnsilawat, T.; Naivikul, O.; McClements, D.J. Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil-in-water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. J. Food Sci. 2011, 76, E165–E172. [Google Scholar] [CrossRef] [PubMed]
- Chanamai, R.; McClements, D.J. Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers: Influence of PH, CaCl2 and Temperature. J. Food Sci. 2002, 67, 120–125. [Google Scholar] [CrossRef]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solís, V.; Álvarez-Salas, C.; Saavedra-Leos, M.Z. Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K.T. Spray Drying of Whey Protein Stabilized Nanoemulsions Containing Different Wall Materials—Maltodextrin or Trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Tatar, F.; Tunç, M.T.; Dervisoglu, M.; Cekmecelioglu, D.; Kahyaoglu, T. Evaluation of Hemicellulose as a Coating Material with Gum Arabic for Food Microencapsulation. Food Res. Int. 2014, 57, 168–175. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Tańska, M.; Brandt, W. The Influence of Drying Process Conditions on the Physical Properties, Bioactive Compounds and Stability of Encapsulated Pumpkin Seed Oil. Food Bioprocess Technol. 2017, 10, 1265–1280. [Google Scholar] [CrossRef]
- Quispe-Condori, S.; Saldaña, M.D.A.; Temelli, F. Microencapsulation of Flax Oil with Zein Using Spray and Freeze Drying. LWT 2011, 44, 1880–1887. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Panigrahi, C.; Mishra, H.N. A Comparative Approach on the Spray and Freeze Drying of Probiotic and Gamma-Aminobutyric Acid as a Single Entity: Characterization and Evaluation of Stability in Simulated Gastrointestinal Conditions. Food Chem. Adv. 2023, 3, 100385. [Google Scholar] [CrossRef]
- Silva, V.M.; Vieira, G.S.; Hubinger, M.D. Influence of Different Combinations of Wall Materials and Homogenisation Pressure on the Microencapsulation of Green Coffee Oil by Spray Drying. Food Res. Int. 2014, 61, 132–143. [Google Scholar] [CrossRef]
- Ozdemir, N.; Bayrak, A.; Tat, T.; Altay, F.; Kiralan, M.; Kurt, A. Microencapsulation of Basil Essential Oil: Utilization of Gum Arabic/Whey Protein Isolate/Maltodextrin Combinations for Encapsulation Efficiency and in Vitro Release. J. Food Meas. Charact. 2021, 15, 1865–1876. [Google Scholar] [CrossRef]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Akram, S.; Bao, Y.; Butt, M.S.; Shukat, R.; Afzal, A.; Huang, J. Fabrication and Characterization of Gum Arabic- and Maltodextrin-based Microcapsules Containing Polyunsaturated Oils. J. Sci. Food Agric. 2021, 101, 6384–6394. [Google Scholar] [CrossRef]
- Vahidmoghadam, F.; Pourahmad, R.; Mortazavi, A.; Davoodi, D.; Azizinezhad, R. Characteristics of Freeze-Dried Nanoencapsulated Fish Oil with Whey Protein Concentrate and Gum Arabic as Wall Materials. Food Sci. Technol. 2019, 39, 475–481. [Google Scholar] [CrossRef]
- Linke, A.; Weiss, J.; Kohlus, R. Factors Determining the Surface Oil Concentration of Encapsulated Lipid Particles: Impact of the Emulsion Oil Droplet Size. Eur. Food Res. Technol. 2020, 246, 1933–1943. [Google Scholar] [CrossRef]
- Takeungwongtrakul, S.; Benjakul, S.; H-kittikun, A. Wall Materials and the Presence of Antioxidants Influence Encapsulation Efficiency and Oxidative Stability of Micro-encapsulated Shrimp Oil. Eur. J. Lipid Sci. Technol. 2015, 117, 450–459. [Google Scholar] [CrossRef]
- Najaf Najafi, M.; Kadkhodaee, R.; Mortazavi, S.A. Effect of Drying Process and Wall Material on the Properties of Encapsulated Cardamom Oil. Food Biophys. 2011, 6, 68–76. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Değerli, Z.; Özcan, M.M.; Babiker, E.E. Effect of Different Oil Extraction Methods on Bioactive Compounds, Antioxidant Capacity and Phytochemical Profiles of Raw Flaxseeds (Linum Usitatissimum) and after Roasting at Different Temperatures. J. Sci. Food Agric. 2023, 103, 7117–7126. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Tańska, M.; Konopka, I. Impact of the Addition of 4-Vinyl-Derivatives of Ferulic and Sinapic Acids on Retention of Fatty Acids and Terpenoids in Cold-Pressed Rapeseed and Flaxseed Oils during the Induction Period of Oxidation. Food Chem. 2019, 278, 119–126. [Google Scholar] [CrossRef]
- Ahonen, E.; Damerau, A.; Suomela, J.-P.; Kortesniemi, M.; Linderborg, K.M. Oxidative Stability, Oxidation Pattern and α-Tocopherol Response of Docosahexaenoic Acid (DHA, 22:6n–3)-Containing Triacylglycerols and Ethyl Esters. Food Chem. 2022, 387, 132882. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, A.G.; Hassanein, M.M.; Ozçelik, B.; Baranenko, D.A.; El-Messery, T.M. Omega Fatty Acid-Balanced Oil Formula and Enhancing Its Oxidative Stability by Encapsulation with Whey Protein Concentrate. Food Biosci. 2022, 50, 101975. [Google Scholar] [CrossRef]
- Corrochano, A.R.; Buckin, V.; Kelly, P.M.; Giblin, L. Invited Review: Whey Proteins as Antioxidants and Promoters of Cellular Antioxidant Pathways. J. Dairy Sci. 2018, 101, 4747–4761. [Google Scholar] [CrossRef]
Variant | Water | Linseed Oil (L) | Linseed Oil Ethyl Esters (E) | Maltodextrin (M) | Gum Arabic (G) | Whey Protein Concentrate (W) |
---|---|---|---|---|---|---|
LMG | 75 | 10 | 7.5 | 7.5 | ||
LMW | 75 | 10 | 7.5 | 7.5 | ||
EMG | 75 | 10 | 7.5 | 7.5 | ||
EMW | 75 | 10 | 7.5 | 7.5 |
Powder | LMW | LMG | EMW | EMG | ||||
---|---|---|---|---|---|---|---|---|
Method | SD | FD | SD | FD | SD | FD | SD | FD |
MC (%) | 2.51 ± 0.01 f | 1.57 ± 0.08 b | 2.84 ± 0.46 f | 1.99 ± 0.07 c | 2.09 ± 0.01 d | 1.25 ± 0.39 ab | 2.24 ± 0.04 e | 1.23 ± 0.30 ab |
D3,2 (µm) | 24.20 ± 0.44 b | n.d. | 22.62 ± 0.14 a | n.d. | 23.17 ± 1.66 a | n.d. | 23.35 ± 0.35 ab | n.d. |
D4,3 (µm) | 34.46 ± 5.30 b | n.d. | 37.35 ± 0.87 b | n.d. | 28.33 ± 0.04 a | n.d. | 47.35 ± 7.88 c | n.d. |
Span (-) | 1.57 ± 0.23 b | n.d. | 1.90 ± 0.08 c | n.d. | 1.34 ± 0.00 a | n.d. | 1.99 ± 0.16 c | n.d. |
SSA (m2/g) | 0.25 ± 0.01 a | n.d. | 0.27 ± 0.00 a | n.d. | 0.25 ± 0.00 a | n.d. | 0.26 ± 0.00 a | n.d. |
SOC (%) | 8.44 ± 1.66 de | 11.48 ± 1.32 f | 8.78 ± 0.47 e | 4.42 ± 0.10 a | 7.67 ± 0.05 cd | 10.95 ± 0.01 f | 6.78 ± 0.40 c | 5.52 ± 0.12 b |
EE (%) | 78.9 ± 1.23 b | 71.31 ± 1.17 a | 78.06 ± 0.54 b | 88.94 ± 0.34 f | 80.83 ± 0.02 c | 72.63 ± 0.02 a | 83.06 ± 0.01 d | 86.2 ± 0.16 e |
Powder | LMW | LMG | EMW | EMG | ||||
---|---|---|---|---|---|---|---|---|
Method | SD | FD | SD | FD | SD | FD | SD | FD |
C14:0 | 0.20 ± 0.00 b | 0.23 ± 0.02 b | 0.06 ± 0.00 a | 0.03 ± 0.04 a | <LOD | <LOD | <LOD | <LOD |
C16:0 | 6.56 ± 0.01 e | 6.24 ± 0.12 d | 6.15 ± 0.03 d | 5.99 ± 0.03 c | 5.99 ± 0.05 c | 4.66 ± 0.01 a | 5.89 ± 0.06 c | 5.00 ± 0.02 b |
C16:1 | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.02 ± 0.04 a | 0.07 ± 0.00 a | 0.07 ± 0.10 a | 0.04 ± 0.00 a | 0.07 ± 0.10 a | 0.04 ± 0.00 a |
C18:0 | 3.15 ± 0.01 d | 3.18 ± 0.03 d | 3.04 ± 0.04 c | 3.19 ± 0.03 d | 2.86 ± 0.01 b | 2.77 ± 0.00 a | 3.01 ± 0.02 c | 2.79 ± 0.05 a |
C18:1 | 21.98 ± 0.02 a | 23.83 ± 0.05 d | 21.88 ± 0.11 a | 24.05 ± 0.14 de | 22.07 ± 0.14 a | 23.36 ± 0.23 c | 22.55 ± 0.08 b | 24.18 ± 0.07 e |
C18:2 (n-6) | 16.39 ± 0.05 c | 15.21 ± 0.24 a | 16.32 ± 0.20 c | 15.77 ± 0.00 b | 16.28 ± 0.01 c | 15.34 ± 0.08 a | 16.53 ± 0.22 c | 15.33 ± 0.01 a |
C18:3 (n-6) | 0.17 ± 0.01 b | 0.17 ± 0.02 b | 0.15 ± 0.00 ab | 0.15 ± 0.00 ab | 0.22 ± 0.03 b | 0.15 ± 0.00 ab | 0.07 ± 0.09 a | 0.13 ± 0.01 ab |
C18:3 (n-3) | 51.20 ± 0.01 c | 50.79 ± 0.02 b | 52.12 ± 0.29 e | 50.43 ± 0.09 a | 52.29 ± 0.16 e | 53.43 ± 0.13 f | 51.76 ± 0.08 d | 52.26 ± 0.17 e |
C20:0 | 0.10 ± 0.00 ab | 0.11 ± 0.00 ab | 0.10 ± 0.00 ab | 0.17 ± 0.07 b | 0.05 ± 0.07 a | 0.10 ± 0.00 ab | <LOD | 0.10 ± 0.01 ab |
C20:1 | 0.16 ± 0.01 a | 0.16 ± 0.00 a | 0.16 ± 0.00 a | 0.16 ± 0.00 a | 0.16 ± 0.02 a | 0.16 ± 0.01 a | 0.12 ± 0.17 a | 0.16 ± 0.00 a |
SFA | 10.0 ± 0.0 f | 9.8 ± 0.2 e | 9.3 ± 0.0 d | 9.4 ± 0.0 d | 8.9 ± 0.1 c | 7.5 ± 0.0 a | 8.9 ± 0.1 c | 7.9 ± 0.1 b |
UFA | 90.0 ± 0.0 a | 90.2 ± 0.2 b | 90.7 ± 0.0 c | 90.6 ± 0.0 c | 91.1 ± 0.1 d | 92.5 ± 0.0 f | 91.1 ± 0.1 d | 92.1 ± 0.1 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogrodowska, D.; Tańska, M.; Banaszczyk, P.; Dąbrowski, G.; Czaplicki, S.; Wachowicz, M.; Konopka, I.Z. Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters. Appl. Sci. 2024, 14, 1372. https://doi.org/10.3390/app14041372
Ogrodowska D, Tańska M, Banaszczyk P, Dąbrowski G, Czaplicki S, Wachowicz M, Konopka IZ. Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters. Applied Sciences. 2024; 14(4):1372. https://doi.org/10.3390/app14041372
Chicago/Turabian StyleOgrodowska, Dorota, Małgorzata Tańska, Paweł Banaszczyk, Grzegorz Dąbrowski, Sylwester Czaplicki, Marta Wachowicz, and Iwona Zofia Konopka. 2024. "Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters" Applied Sciences 14, no. 4: 1372. https://doi.org/10.3390/app14041372
APA StyleOgrodowska, D., Tańska, M., Banaszczyk, P., Dąbrowski, G., Czaplicki, S., Wachowicz, M., & Konopka, I. Z. (2024). Influence of Selected Compositions of Wall Materials and Drying Techniques Used for Encapsulation of Linseed Oil and Its Ethyl Esters. Applied Sciences, 14(4), 1372. https://doi.org/10.3390/app14041372